Research article

Asymptotic behavior for a class of viscoelastic equations with memory lacking instantaneous damping

  • Received: 29 December 2020 Accepted: 20 June 2021 Published: 24 June 2021
  • MSC : 35K57, 35B40, 35B41

  • In this paper, we mainly investigate long-time behavior for viscoelastic equation with fading memory

    $ u_{tt}-\Delta u_{tt}-\nu \Delta u+\int_{0}^{+\infty}k'(s)\Delta u(t-s)ds+f(u) = g(x). $

    The main feature of the above equation is that the equation doesn't contain $ -\Delta u_t $, which contributes to a strong damping. The existence of global attractors is obtained by proving asymptotic compactness of the semigroup generated by the solutions for the viscoelastic equation. In addition, the upper semicontinuity of global attractors also is obtained.

    Citation: Jiangwei Zhang, Yongqin Xie. Asymptotic behavior for a class of viscoelastic equations with memory lacking instantaneous damping[J]. AIMS Mathematics, 2021, 6(9): 9491-9509. doi: 10.3934/math.2021552

    Related Papers:

  • In this paper, we mainly investigate long-time behavior for viscoelastic equation with fading memory

    $ u_{tt}-\Delta u_{tt}-\nu \Delta u+\int_{0}^{+\infty}k'(s)\Delta u(t-s)ds+f(u) = g(x). $

    The main feature of the above equation is that the equation doesn't contain $ -\Delta u_t $, which contributes to a strong damping. The existence of global attractors is obtained by proving asymptotic compactness of the semigroup generated by the solutions for the viscoelastic equation. In addition, the upper semicontinuity of global attractors also is obtained.



    加载中


    [1] S. Zang, W. Zhuang, The strain solitary waves in a nonlinear elastic rod, Acta. Mech. Sinica, 3 (1987), 62–72. doi: 10.1007/BF02486784
    [2] C. Sayler, D. Fonstermacher, A symmetric regularized-long-wave equation, Phys. Fluids, 27 (1984), 4–7. doi: 10.1063/1.864487
    [3] I. L. Bogolubsky, Some examples of inelastic soliton interaction, Comput. Phys. Commun., 13 (1977), 149–155. doi: 10.1016/0010-4655(77)90009-1
    [4] G. Barenblatt, I. Zheltov, I. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286–1303. doi: 10.1016/0021-8928(60)90107-6
    [5] S. Messaoudi, N. Tatar, Global existence and uniform stability of solutions for a quasilinear viscoelastic problem, Math. Methods Appl. Sci., 30 (2007), 665–680. doi: 10.1002/mma.804
    [6] M. Cavalcanti, V. Domingos Cavalcanti, J. Ferreira, Existence and uniform decay for a non-linear viscoelastic equation with strong damping, Math. Methods Appl. Sci., 24 (2001), 1043–1053. doi: 10.1002/mma.250
    [7] M. Cavalcanti, V. Domingos Cavalcanti, T. F. Ma, J. A. Soriano, Global existence and asymptotic stability for viscoelastic problems, Differ. Integral Equ., 15 (2002), 731–748.
    [8] M. Cavalcanti, V. Domingos Cavalcanti, P. Martinez, General decay rate estimates for viscoelastic dissipative systems, Nonlinear Anal., 68 (2008), 177–193. doi: 10.1016/j.na.2006.10.040
    [9] J. Robinson, Infinite-dimensional dynamical systems, Cambridge University Press, Cambridge, 2001.
    [10] S. Messaoudi, Blow-up and global existence in a nonlinear viscoelastic wave equation, Math. Nachr., 260 (2003), 58–66. doi: 10.1002/mana.200310104
    [11] S. Messaoudi, Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation, J. Math. Anal. Appl., 320 (2006), 902–915. doi: 10.1016/j.jmaa.2005.07.022
    [12] S. Messaoudi, N. Tatar, Global existence and uniform decay of solutions for a quasilinear viscoelastic problem, Math. Methods Appl. Sci., 30 (2007), 665–680. doi: 10.1002/mma.804
    [13] S. Messaoudi, N. Tatar, Exponential decay for a quasilinear viscoelastic equation, Math. Nachr., 282 (2009), 1443–1450. doi: 10.1002/mana.200610800
    [14] C. Sun, D. Cao, J. Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645–2665. doi: 10.1088/0951-7715/19/11/008
    [15] X. Han, M. Wang, General decay of energy for a viscoelastic equation with nonlinear damping, Math. Methods Appl. Sci., 32 (2009), 346–358. doi: 10.1002/mma.1041
    [16] X. Han, M. Wang, Global existence and uniform decay for a nonlinar viscoelastic equation with damping, Nonlinear Anal.: Theory Methods Appl., 70 (2009), 3090–3098. doi: 10.1016/j.na.2008.04.011
    [17] J. Park, S. Park, General decay for quasiliear viscoelastic equations with nonlinear weak damping, J. Math. Phys., 50 (2009), 1–10.
    [18] R. Araújo, T. Ma, Y. Qin, Long-time behavior of a quasilinear viscoelastic equation with past history, J. Differ. Equ., 254 (2013), 4066–4087. doi: 10.1016/j.jde.2013.02.010
    [19] Y. Qin, B. Feng, M. Zhang, Uniform attractors for a non-autonomous viscoelastic equation with a past history, Nonlinear Anal.: Theory Methods Appl., 101 (2014), 1–15. doi: 10.1016/j.na.2014.01.006
    [20] M. Conti, T. F. Ma, E. M. Marchini, P. N. Seminario Huertas, Asymptotics of viscoelastic materials with nonlinear density and memory effects, J. Differ. Equ., 264 (2018), 4235–4259. doi: 10.1016/j.jde.2017.12.010
    [21] C. Sun, M. Yang, Dynamics of the nonclassical diffusion equation, Asymptotic Anal., 59 (2008), 51–81. doi: 10.3233/ASY-2008-0886
    [22] M. Conti, F. DellOro, V. Pata, Nonclassical diffusion equation with memory lacking instantaneous damping, Commun. Pure Appl. Anal., 19 (2020), 2035–2050. doi: 10.3934/cpaa.2020090
    [23] Y. Xie, Y. Li, Y. Zeng, Uniform attractors for nonclassical diffusion equations with memory, J. Funct. Spaces Appl., 2016 (2016), 1–11.
    [24] Y. Xie, Q. Li, K. Zhu, Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity, Nonlinear Anal.: Real Word Appl., 31 (2016), 23–37. doi: 10.1016/j.nonrwa.2016.01.004
    [25] C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 297–308. doi: 10.1007/BF00251609
    [26] J. Zhang, Y. Xie, Q. Luo, Z. Tang, Asymptotic behavior for the semilinear reaction-diffusion equations with memory, Adv. Differ. Equ., 2019 (2019), 1–19. doi: 10.1186/s13662-018-1939-6
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2189) PDF downloads(101) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog