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Abstract: In this paper, we mainly investigate long-time behavior for viscoelastic equation with fading
memory

utt − ∆utt − ν∆u +

∫ +∞

0
k′(s)∆u(t − s)ds + f (u) = g(x).

The main feature of the above equation is that the equation doesn’t contain −∆ut, which contributes to
a strong damping. The existence of global attractors is obtained by proving asymptotic compactness
of the semigroup generated by the solutions for the viscoelastic equation. In addition, the upper
semicontinuity of global attractors also is obtained.

Keywords: viscoelastic equation; contractive function; global attractor; memory
Mathematics Subject Classification: 35K57, 35B40, 35B41

1. Introduction

In this paper, we mainly study the following initial-boundary value problem for viscoelastic
equation with hereditary memory:

utt − ∆utt − ν∆u −
∫ +∞

0
k′(s)∆u(t − s)ds + f (u) = g(x), (x, t) ∈ Ω × R+,

u(x, t)|∂Ω = 0, ∀ t ∈ R+,

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ Ω,

(1.1)

where Ω ⊂ R3 is a bounded smooth domain, ν > 0, and the forcing term g = g(x) ∈ L2(Ω) is given.
Next, we establish the following hypotheses for the kernel function k(s)
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(H1) Let µ(s) = −k′(s), and assume

µ ∈ C1(R+) ∩ L1(R+), µ(s) ≥ 0, µ′(s) ≤ 0,∀s ∈ R+, (1.2)

and there exists δ > 0, such that
µ′(s) + δµ(s) 6 0,∀s ∈ R+, (1.3)

and let
m0 =

∫ ∞

0
µ(s)ds.

(H2) The nonlinearity f ∈ C1 satisfies f (0) = 0 and also fulfills the following conditions

| f ′(s)| ≤ c(1 + |s|4), ∀s ∈ R (1.4)

and
lim
|s|→∞

inf
f (s)

s
> −λ1. (1.5)

where c, λ1 are positive constants and λ1 is the first eigenvalue of −∆ in H1
0(Ω) with Dirichlet boundary

condition. From (1.5), it’s easy to get that there exist λ(0 < λ < λ1) and c f ≥ 0; such that

f (s)s ≥ −λs2 −C. (1.6)

Let F(s) =
∫ s

0
f (σ)dσ, then

F(u) ≥ −
1
2
λ|u|2 − c f and f (u)u ≥ F(u) −

1
2
λ|u|2 − c f . (1.7)

The equation associated with Eq (1.1) is as follows

utt − uxx − uxxtt = 0,

which mainly describes a pure dispersion wave process, such as the motion equation of strain-arc
wave of linear elastic rod considering transverse inertia and ion-acoustic wave propagation equation in
space transformation with weak nonlinear effects (see e.g., [1–4]).

In recent years, the following types of equations have been studied by many scholars (see e.g.,
[5–18] and the references therein)

|ut|
ρutt − ∆utt − γ∆ut − α∆u +

∫ t

0
g(u − t)∆u(s)ds + ν f (ut) + µg(u) = 0.

Many researchers considered different kinds of cases, respectively, when the parameters ρ, γ, α, ν, µ = 0
or ρ, γ, α, ν, µ , 0 under different situations. However, they only obtained global existence of solutions
and the energy decay results [6–8, 15, 16]. In particular, in [10, 11, 17], the scholars only proved blow-
up result, decay result and global existence result of solutions under various kinds of conditions and
when the dispersion term and dissipative term don’t be contained. Next, we analyze several key results
in detail. Araújo et al. [18] established well-posedness result when γ ≥ 0, ν, µ = 0 and proved the
existence of global attractor when ν, µ = 0 and −∆ut was included.
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Qin et al. [19] proved the existence of uniform attractors in non-autonomous case by improving the
result of [18] when −∆ut was still included. Recently, Conti et al. [20] obtained the existence of global
attractors and optimal regularity of global attractors for the following equation when the nonlinearity
f meets critical growth

|ut|
ρutt − ∆utt − ∆u +

∫ +∞

0
µ(s)∆u(t − s)ds + f (u) = h.

with ρ ∈ [0, 4] and ρ < 4, respectively. Therefore, based on the above existing research, we devote
to obtain the existence of global attractors in higher regular space for the problem (1.1) which doesn’t
contain the strong damping −∆ut in this paper.

Firstly, because the Eq (1.1) doesn’t contain strong dissipative term −∆ut, which makes that the
Eq (1.1) is different from usual viscoelastic equations. Next, for the Eq (1.1), its dissipation is only
generated by memory term with weaker dissipation rather than the strong dissipative term −∆ut, which
leads to the need of higher regularity to ensure compactness, so the multiplier Aκut will be used to obtain
our result. We use new analytical techniques to obtain the upper semicontinuity of global attractors.
Thus, our results complement the existing conclusions because we only use the memory dissipation to
prove the existence and the semicontinuity of global attractors.

In addition, to the best of our knowledge, the key point for proving the existence of global attractors
is to verify the existence of bounded absorbing set and the compactness of the semigroup in some
sense. However, the absence of term −∆ut causes that energy dissipation of Eq (1.1) is lower than
usual viscoelastic equation, and its dissipation only is presented by the memory term. Hence, this
will lead to two main difficulties. On the one hand, the absence of term −∆ut makes the equation
lacks strong structural damping. On the other hand, to ensure strong convergence of the solution in
L2(0,T ; H1

0(Ω)), how to obtain higher regularity of solutions. Thereby, for obtaining dissipative and
compactness of semigroup, we will use analysis techniques and the ideas in [21,22] to overcome these
difficulties.

The plan of this paper is as follows. In Section 2, we recall some basic concepts and useful results
that will be used later. In Section 3, firstly, the bounded absorbing set is obtained. Secondly, we verify
asymptotic compact of semigroup by contractive function method [23, 24]. Finally, the existence of
global attractors A is proved in H1

0(Ω) × H1
0(Ω) × L2

µ(R
+; H1

0(Ω)). In section 4, we obtain the upper
semicontinuity of global attractors.

2. Preliminaries

Following the Dafermos’ idea of introducing an additional variable ηt, the past history of u,
whose evolution is ruled by a first-order hyperbolic equation (see e.g., [25] and references therein).
Thus the original problem (1.1) can be translated into a dynamical system on a phase space with two
components (see [26]). In particular, in the following, we introduce the past history of u in the, i.e.

ηt = ηt(x, s) := u(x, t) − u(x, t − s), s ∈ R+, (2.1)

Provided that let ηt
t = ∂

∂tη
t, ηt

s = ∂
∂sη

t, then we have

ηt
t = −ηt

s + ut ∀(x, s) ∈ Ω × R+, t ≥ 0. (2.2)
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Historical variable u0(·,−s) of u satisfies the following condition∫ ∞

0
e−σs‖u0(−s)‖20ds ≤ <. (2.3)

where< > 0 and σ ≤ δ (δ is from (1.3)).
By (H1) and (2.1), (2.2), we get

−

∫ ∞

0
k′(s)∆u(t − s)ds =

∫ ∞

0
µ(s)∆uds −

∫ ∞

0
µ(s)∆ηt(s)ds (2.4)

= m0∆u −
∫ ∞

0
µ(s)∆ηt(s)ds. (2.5)

Thus, if we assume ν − m0 = 1, then the system (1.1) can be rewrite as utt − ∆utt − ∆u −
∫ ∞

0
µ(s)∆ηt(s)ds + f (u) = g(x),

ηt
t = −ηt

s + ut.

(2.6)

with initial-boundary condition
u(x, t)|∂Ω = 0, ηt(x, s)|∂Ω×R+ = 0, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), η0(x, s) =

∫ s

0
u0(x,−r)dr, (x, s) ∈ Ω × R+.

(2.7)

In the whole paper, unless otherwise stated, z(t) = (u(t), ut(t), ηt) is the solution of systems (2.6), (2.7)
with initial value z0 = (u0, u1, η

0).
For conveniences, hereafter let | · |p be the norm of Lp(Ω)(p ≥ 1). Let 〈·, ·〉 be the inner product of

L2(Ω), ‖ · ‖20 be the equivalent norm H1
0(Ω). Denote A = −∆ with domain D(A) = H2(Ω) ∩ H1

0(Ω).
Denoting the weight spaceV1 = L2

µ(R
+; H1

0(Ω)),V2 = L2
µ(R

+; D(A)) and its inner product and norm are

〈ψ, η〉µ,0 =

∫ ∞

0
µ (s)〈∇ψ,∇η〉ds;

∥∥∥ηt
∥∥∥2

µ,0
=

∫ ∞

0
µ (s)

∥∥∥ηt
∥∥∥2

0
ds.

Then phase spaces of the Eq (2.6) are

M1 = H1
0 × H1

0 ×V1,

and their corresponding norms are

‖·‖
2
M1

= ‖·‖20 + ‖·‖20 + ‖·‖2V1
,

In addition, denote Vκ = D(A
κ+1

2 )(κ ∈ (0, 1
2 )) and let ‖ · ‖κ be the norm of Vκ. Then we can also

define phase space of the Eq (1.1) is

Mκ = Vκ ×Vκ × L2
µ(R

+;Vκ).

and the corresponding norm is ‖·‖2Mκ
= ‖·‖2κ + ‖·‖2κ + ‖·‖2µ,κ .

And there exists the following compact embedding

D(A
s
2 ) ↪→ D(A

r
2 ), ∀s > r. (2.8)
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Definition 2.1. Let X be a Banach spaces and X be a family of operators defined on it. We say that
{S (t)}t≥0 is a continuous semigroup on X if {S (t)}t≥0 fulfills

S (t) : X → X, ∀t ≥ 0.

and satisfies
(i)S (0) = Id(Identity operator);
(ii)S (t + s) = S (t)S (s),∀t, s ≥ 0.

The main results of this paper (the existence of global attractors) can be obtained by the following
definitions and theorem. Next, let’s talk about it (it’s similar to [14, 23, 26]).

Definition 2.2. Let X,Y be two Banach spaces and B be a bounded subset of X × Y. We call a
function φ(·, ·; ·, ·), defined on (X × X) × (Y × Y), to be a contractive function if for any sequence
{(xn, yn)}∞n=1 ⊂ B, there is a subsequence {(xnk , ynk)}

∞
k=1 ⊂ {(xn, yn)}∞n=1 satisfies

lim
k→∞

lim
l→∞

φ(xnk , xnl ; ynk , ynl) = 0. (2.9)

We denote the set of all contractive functions on B × B by E(B).

Lemma 2.3. Let X,Y be two Banach spaces and B be a bounded subset of X × Y, {S (t)}t≥0 is
semigroup with a bounded absorbing set B0 on X × Y. Moreover, assume that for any ε > 0 there exist
T = T (B; ε) and φT (·, ·; ·, ·) ∈ E(B) such that

‖S (T )z1 − S (T )z2‖X ≤ ε + φT (x1, x2; y1, y2), ∀(xi, yi) ∈ B(i = 1, 2).

where φT depends on T . Then the semigroup {S (t)}t≥0 is asymptotically compact in X × Y.

In the following theorem, we give a method to verify the asymptotically compactness of a semigroup
generated by the Eq (1.1), which will be used in our later discussion.

Theorem 2.4. Let X,Y be two Banach spaces and {S (t)}t≥0 be a continuous semigroup on X × Y.
Then {S (t)}t≥0 has a global attractor in X × Y. Provided that the following conditions hold:
(i) {S (t)}t≥0 has a bounded absorbing set B0 on X × Y;
(ii) {S (t)}t≥0 is a contractive semigroup on X × Y.

Lemma 2.5. Let X ⊂⊂ H ⊂ Y be Banach spaces, with X reflexive. Suppose that un is a sequence
that is uniformly bounded in L2(0,T ; X) and dun/dt is uniformly bounded in Lp(0,T ; Y), for some
p > 1. Then there is a subsequence of un that converges strongly in L2(0,T ; H).

3. Global attractors inM1

Throughout the paper, we assume that Ω ⊂ Rn(n = 3) be bounded smooth domain, the kernel
function µ and the nonlinearity satisfy (H1) and (H2) respectively, and g ∈ L2(Ω).

Firstly, the well-posedness result for the Eq (1.1) can be obtained by the Faedo-Galerkin method
(see e.g., [18]). Thereout, we only give the final result.
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Lemma 3.1. For any T > 0 and z0 = (u0, u1, η
0) ∈ M1, the problem (1.1) has unique weak solution

z = (u(x, t), ut(x, t), ηt) satisfying
z ∈ C([0,T ];M1), .

and

u ∈ L∞([0,T ]; H1
0(Ω)), ut ∈ L∞([0,T ]; H1

0(Ω)),
utt ∈ L2([0,T ]; H1

0(Ω)), ηt ∈ L∞([0,T ], L2
µ(R

+; H1
0(Ω))).

By Lemma 3.1, the semigroup {S (t)}t≥0 inM1 will be defined as the following:

S (t) :M1 →M1,

z0 → z(t) = S (t)z0,

and it is a strongly continuous semigroup onM1.

Lemma 3.2. For some R > 0 and
‖z0‖M1 ≤ R,

then there exists a constant R1 = R1(R), such that for any t ≥ 0 , the following estimate holds:

|ut(t)|22 + ‖ut(t)‖20 + ‖u(t)‖20 + ‖ηt‖2µ,0 ≤ R1.

Proof. Multiplying the first equation of (2.6) by ut, and integrating over Ω, we obtain that

1
2

d
dt

[
|ut|

2
2 + ‖ut‖

2
0 + ‖u‖20 + ‖ηt‖2µ,0 − 2〈F(u), 1〉 − 2〈g, u〉

]
+ δ‖ηt‖2µ,0 = 0. (3.1)

Next, let E(t) = |ut|
2
2 + ‖ut‖

2
0 + ‖u‖20 + ‖ηt‖2µ,0 − 2〈F(u), 1〉 − 2〈g, u〉, then by (H2), Hölder inequality

and Young inequality, we can get that

E(t) ≥ |ut|
2
2 + ‖ut‖

2
0 +

1 − λ
λ1

2
‖u‖20 + ‖ηt‖2µ,0 −

2
λ1 − λ

|g|22 − 2c f |Ω| (3.2)

≥
1 − λ

λ1

2

[
|ut|

2
2 + ‖ut‖

2
0 +

1
2
‖u‖20 + ‖ηt‖2µ,0

]
−C(1 + |g|22),

and

E(t) ≤ |ut|
2
2 + ‖ut‖

2
0 + ‖u‖20 + ‖ηt‖2µ,0 +

λ1

2
|u|22 +

2
λ1
|g|22 + C(1 + |u|66)

≤ |ut|
2
2 + ‖ut‖

2
0 +

3
2
‖u‖20 + ‖ηt‖2µ,0 +

2
λ1
|g|22 + C(1 + ‖u‖60)

(3.3)

hold for any t ≥ 0.
In addition, it’s easy to obtain that

d
dt

E(t) + δ‖ηt‖2µ,0 ≤ 0. (3.4)

Integrating (3.4) about t from 0 to t, and combining with (3.2), (3.3), we have

|ut(t)|22 + ‖ut(t)‖20 + ‖u(t)‖20 + ‖ηt‖2µ,0 +

∫ t

0
‖ητ‖2µ,0dτ ≤ R1. (3.5)

where R1 = R1(‖z(0)‖M1) depends on ‖z(0)‖M1 .
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Lemma 3.3. For any T > 0, z0 ∈ M1 and ‖z0‖M1 ≤ R, then there exists a constant K1 = K1(R,T ),
it follows that

|utt|
2
2 + ‖utt(t)‖20 +

∫ t

0
‖utt(s)‖20ds ≤ K1. (3.6)

holds for any t ∈ [0,T ].

Proof. Multiplying the first equation of (2.6) by utt, and integrating over Ω, we obtain that

|utt|
2
2 + ‖utt(t)‖20 ≤ −

∫
Ω

∇u∇utt −

∫
Ω

f (u)utt +

∫
Ω

gutt

−

∫ ∞

0
µ(s)

∫
Ω

∇ηt(s)∇uttds.
(3.7)

Using Lemma3.2, Hölder inequality and Young inequality, then

| −

∫
Ω

∇u∇uttdx| ≤ 2‖u‖20 +
1
8
‖utt‖

2
0.

|

∫
Ω

guttdx| ≤
2
λ1
|g|22 +

1
8
‖utt‖

2
0.

| −

∫ ∞

0
µ(s)

∫
Ω

∇ηt(s)∇uttdxds| ≤ 2m0‖η
t‖2µ,0 +

1
8
‖utt‖

2
0.

| −

∫
Ω

f (u)uttdx| ≤ c
∫

Ω

(1 + |u|5)uttdx ≤ C(1 + R6
1) +

1
2
|utt|

2
2 +

1
8
‖utt‖

2
0

(3.8)

By Lemma 3.2, we have

|utt|
2
2 + ‖utt(t)‖20 ≤ C

[
1 + R6

1 + |g|22
]
. (3.9)

Combining with (3.8) and t ∈ [0,T ], we get

∫ t

0
‖utt(s)‖20ds ≤ C

[
1 + R6

1 + |g|22
]
T. (3.10)

Just let K1 = C
[
1 + R6

1 + |g|22
]
(1 + T ), then (3.6) holds.

Lemma 3.4. Provided that (u(t), ut(t), ηt) is a sufficiently regular solution of (2.6), (2.7). Then, for
the functional

Λ0(t) = −〈ηt, ut〉M1 −

∫ ∞

0
µ(s)〈ηt, ut〉ds,

it satisfies the following estimate

d
dt

Λ0(t) +
m0

2
[|ut(t)|22 + ‖ut(t)‖20] ≤ (l + C)‖u(t)‖20 + (

m0

l
+ m0)‖ηt‖2µ,0 (3.11)

+
µ(0)
2m0

(1 +
1
λ2

1

)
∫ ∞

0
−µ′(s)‖ηt(s)‖20ds +

l
2λ2

1

|g|22.

And we can also obtain

|Λ0(t)| ≤ k0H(t). (3.12)

where H(t) = 1
2 |ut|

2
2 + 1

2‖u‖
2
0 + 1

2‖ut‖
2
0 + 1

2‖η
t‖2µ,0, and k0 = k0(m0) is a positive constant.
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Proof. First of all, by Hölder inequality and Young inequality, it’s easy to get that

|Λ0(t)| ≤ ‖ut‖0

∫ ∞

0
µ(s)‖ηt(s)‖0ds + |ut|2

∫ ∞

0
µ(s)|ηt|2ds

≤
√

m0‖ut‖0‖η
t(s)‖µ,0 +

√
m0

λ1
|ut|2‖η

t(s)‖µ,0

≤ k0H(t).

Next, taking the derivative about t for Λ0(t), we have

d
dt

Λ0(t) =

∫ ∞

0
µ(s)〈ηt,∆utt − utt〉ds +

∫ ∞

0
µ(s)〈ηt

t,∆ut − ut〉ds (3.13)

=

∫ ∞

0
µ(s)〈ηt,−∆u −

∫ ∞

0
µ(s)∆ηt(s)ds + f (u) − g〉ds +

∫ ∞

0
µ(s)〈ηt

t,∆ut − ut〉ds.

Now, we sequentially deal with the two terms on the right of (3.13).
The estimate for the first term is as follows

|

∫ ∞

0
µ(s)〈ηt,−∆u〉ds| ≤ l‖u‖20 +

m0

4l
‖ηt‖2µ,0

|

∫ ∞

0
µ(s)〈ηt,−

∫ ∞

0
µ(s)∆ηtds〉ds| ≤ m0‖η

t‖2µ,0

|

∫ ∞

0
µ(s)〈ηt, g〉ds| ≤

l
2λ2

1

|g|22 +
m0

2l
‖ηt‖2µ,0;

|

∫ ∞

0
µ(s)〈ηt, f (u)〉ds| ≤ m

1
2
0 | f (u)| 6

5
‖ηt‖µ,0 ≤ C‖u‖20 +

m0

4l
‖ηt‖2µ,0.

(3.14)

The estimate for the second term, by concerning the second equation of (2.6), we obtain∫ ∞

0
µ(s)〈ηt

t,∆ut〉ds = −〈ηt
t, ut〉M1 (3.15)

= 〈ηt
s, ut〉M1 − m0‖ut‖

2
0

≤
√
µ(0)‖ut‖0

( ∫ ∞

0
−µ′(s)‖ηt(s)‖20ds

) 1
2 − m0‖ut‖

2
0

≤ −
m0

2
‖ut‖

2
0 +

µ(0)
2m0

∫ ∞

0
−µ′(s)‖ηt(s)‖20ds.

and

|

∫ ∞

0
µ(s)〈ηt

t,−ut〉ds| ≤

√
µ(0)
λ1
|ut|2

( ∫ ∞

0
−µ′(s)‖ηt(s)‖20ds

) 1
2 − m0|ut|

2
2 (3.16)

≤ −
m0

2
|ut|

2
2 +

µ(0)
2λ2

1m0

∫ ∞

0
−µ′(s)‖ηt(s)‖20ds.

Thus, combining with (3.13)–(3.16), then (3.11) holds.
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Lemma 3.5. Assuming that (u(t), ut(t), ηt) is a sufficiently regular solution of (2.6), (2.7). Then the
functional

N(t) =

∫
Ω

(ut − ∆ut) u,

fulfills the following control

|N(t)| ≤ kH(t). (3.17)

And we can obtain differential inequality

N ′(t) ≤
ε − 1

2
‖u‖20 + (ε − 1)H(t) +

(
k1 −

ε − 1
2

)
‖ut‖

2
0 +

(m0

4ε
−
ε − 1

2
)
‖ηt‖2µ,0 (3.18)

+
1 − ε

2
|ut|

2
2 + |g|2|u|2.

where k is a positive constant and ε ∈ (0, 1).

Proof. Using Hölder inequality, Young inequality and Poincaré inequality, it’s easy to get

|N(t)| ≤
1
2
(
|ut|

2
2 + |u|22

)
+

1
2
(
‖ut‖

2
0 + ‖u‖20

)
(3.19)

≤ k
(
‖ut‖

2
0 + ‖u‖20

)
≤ kH(t).

Furthermore, taking the time-derivative forN(t) and combining with the first equation (2.6), it follows
that

N ′(t) +

∫
Ω

f (u)udx ≤ −
∫ ∞

0
µ(s)〈∇u,∇ηt〉ds + 〈g, u〉 − ‖u‖20 + k1‖ut‖

2
0, (3.20)

where k1 ≥
1
λ1

+ 1. Next, we dispose each term on the right side of (3.20), it follows that

| −

∫ ∞

0
µ(s)〈∇u,∇ηt〉ds| ≤

√
m0‖u‖0

∫ ∞

0
µ(s)‖ηt(s)‖20ds (3.21)

≤ ε‖u‖20 +
m0

4ε
‖ηt(s)‖2µ,0,

and by (1.6)

|

∫
Ω

gudx| ≤ |g|2|u|2, (3.22)

By (3.20)–(3.22) and the definition of H(t), it yields

N ′(t) +

∫
Ω

f (u)udx

≤
ε − 1

2
‖u‖20 +

ε − 1
2

[
2H(t) − |ut|

2
2 − ‖ut‖

2
0 − ‖η

t‖2µ,0
]
+

m0

4ε
‖ηt‖2µ,0 + |g|2|u|2 + k1‖ut‖

2
0

≤
1 − ε

2
|ut|

2
2 +

ε − 1
2
‖u‖20 + (ε − 1)H(t) +

(
k1 −

ε − 1
2

)
‖ut‖

2
0 +

(m0

4ε
−
ε − 1

2
)
‖ηt‖2µ,0 + |g|2|u|2.
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Theorem 3.6. There exists a constant R0, such that, for any T0 = T0(‖z0‖M1) > 0, whenever

z0 ∈ M1,

then for all t ≥ T0, we have

‖S (t)z0‖M1 ≤ R0.

Proof. According to the definition of H(t), we can obtain

H′(t) +
d
dt
〈F(u), 1〉 +

δ

4
‖ηt‖2µ,0 ≤

1
4

∫ ∞

0
µ′(s)‖ηt(s)‖20ds + 〈g, ut〉. (3.23)

In addition, the following functional can be defined

L(t) = CH(t) + εN(t) + ε〈F(u), 1〉 + Λ0(t).

By Lemma 3.4 and Lemma 3.5, we get

(C − εk − k0)H(t) ≤ L(t) − ε〈F(u), 1〉 ≤ (C + εk + k0)H(t). (3.24)

Let its perturbation ε be small enough and C be sufficiently large, and combining with (H2), then it
yields

C
2

H(t) + ε〈F(u), 1〉 ≤ L(t) ≤
3C
2

H(t) + ε〈F(u), 1〉. (3.25)

However, combining with (H2), (3.11), (3.18) and (3.23), we have

L′(t) + ε〈 f (u), u〉 + C
δ

4
‖ηt‖2µ,0 +

m0

2
[
|ut|

2
2 + ‖ut‖

2
0
]

(3.26)

≤
(m0

4
+ ε

1 − ε
2

)
|ut|

2
2 +

(C2

m0
+

1 + 4ε
2λ2

1

)
|g|22 +

[
l −

ε(3 − 4ε)
8

]
‖u‖20 − ε(1 − ε)H(t)

+ ε(k1 −
ε − 1

2
)‖ut‖

2
0 + ε

(m0

4ε
−
ε − 1

2
+

3m0

4l
+ m0

)
‖ηt‖2µ,0

+
[C

4
−
µ(0)
2m0

(
1 +

1
λ2

1

)] ∫ ∞

0
µ′(s)‖ηt(s)‖20ds.

i.e.

L′(t) + ε〈F(u), 1〉 + ε(1 − ε)H(t)

≤
(
−

m0

4
+ ε

1 − ε
2

)
|ut|

2
2 +

(C2

m0
+

1 + 4ε
2λ2

1

)
|g|22 +

[
l +

ελ

λ1
−
ε(3 − 4ε)

8
]
‖u‖20

+
[
ε(k1 −

ε − 1
2

) −
m0

2
]
‖ut‖

2
0 +

[
ε
(m0

4ε
−
ε − 1

2
+

3m0

4l
+ m0

)
−C

δ

4
]
‖ηt‖2µ,0

+
[C

4
−
µ(0)
2m0

(
1 +

1
λ2

1

)] ∫ ∞

0
µ′(s)‖ηt(s)‖20ds + εc f |Ω|.

(3.27)

AIMS Mathematics Volume 6, Issue 9, 9491–9509.



9501

Thus, when δ is fixed, then we can choose appropriate l, ε,C, such that

l +
ελ

λ1
−
ε(3 − 4ε)

8
< 0, ε(k1 −

ε − 1
2

) −
m0

2
< 0, −

m0

4
+ ε

1 − ε
2

< 0,

and
ε
(m0

4ε
−
ε − 1

2
)
−C

δ

4
< 0,

C
4
−
µ(0)
2m0

(
1 +

1
λ2

1

)
> 0.

Furthermore, let γ = ε(1 − ε), γ0 = max{C
2

m0
+ 1+2ε

2λ2
1
, εc f |Ω|}, then by (3.27), we obtain

L′(t) ≤ −γ(H(t) + 〈F(u), 1〉) + γ0(|g|22 + 1). (3.28)

Using (3.25), we have

L′(t) ≤ −
2γ
3C
L(t) + γ0(|g|22 + 1). (3.29)

From Gronwall Lemma, it’s easy to obtain

L(t) ≤ L(0)e−
2γ
3C t +

3γ0C
2γ

(|g|22 + 1). (3.30)

Using (3.25) again, we have

H(t) ≤
2L(0)

C
e−

2γ
3C t +

3γ0

γ
(|g|22 + 1) +

2εc f

C
|Ω|. (3.31)

Hence, for any t ≥ T0 = 3C
2γ ln 2γL(0)

3γ0(|g|22+1)+
2εc f

C |Ω|
, we obtain

‖S (t)z0‖M1 ≤ R0.

where R0 =
12γ0
γ

(|g|22 + 1) +
8εc f

C |Ω|.
Therefore, we can know that the set

B0 =
{
(u, ut, η

t) ∈ M1 : ‖z(t)‖M1 ≤ R0
}

is a bounded absorbing set for semigroup {S (t)}t≥0 onM1.

Corollary 3.7. There exists a constant CR0 , such that, for all t ≥ T0, we have∫ t+1

t
(|ut(s)|22 + ‖u(s)‖20 + ‖ut(s)‖20)ds ≤ CR0 . (3.32)

Proof. Integrating (3.29) about t from t to t + 1, and combining with (3.25) and Lemma 3.7, the
above estimate is easily obtained.

Lemma 3.8. For any T > 0, there exists a constant R3 > 0, such that, whenever

‖z(0)‖M1 ≤ R1,

it follows that

|A
κ
2 ut(t)|22 + ‖ut(t)‖2κ + ‖u(t)‖2κ + ‖ηt‖2µ,κ ≤ R3 ∀t ∈ [0,T ].
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Proof. Multiplying the first equation of (2.6) by Aκut, and integrating over Ω, we obtain that

d
dt

E1(t) + 〈 f (u), Aκut〉 +
δ

2
‖ηt‖2µ,κ ≤ 〈g, A

κut〉. (3.33)

where E1(t) = 1
2

[
|A

κ
2 ut|

2
2 + ‖ut‖

2
κ + ‖u‖2κ + ‖ηt‖2µ,κ

]
.

Due to
〈g, Aκut〉 ≤ h|A−

1
2 g|2|A

1+κ
2 ut|2 ≤ h|g|22 + h|A

1+κ
2 ut|

2
2, (3.34)

and by (H2) and Lemma 3.2, we obtain

〈 f (u), Aκut〉 ≤ C(1 + ‖ut‖
2
κ), (3.35)

Then by (3.33)–(3.35), we have

d
dt

E1(t) ≤ h1E1 + h|g|22. (3.36)

where h, h1 are positive constant.
Hence, using Gronwall lemma, we can obtain that

E1(t) ≤ R4(R1)(1 + |g|22)e`t. (3.37)

holds for any t ∈ [0,T ]. This proof is finished.

Lemma 3.9. For any t ∈ [0,T ], there exists a constant R5 > 0, such that, whenever

‖z0‖M1 ≤ R1,

it follows that ∫ t+1

t
‖u(s)‖2κds ≤ R5.

Proof. Firstly, the first equation of the system (2.6), it can be rewritten

utt + (1 − δ1)Av + Avt + (1 − δ1 + δ2
1)Au − Aut +

∫ ∞

0
µ(s)Aηt(s)ds + f (u) = g. (3.38)

Next, let v = ut + δ1u, and multiplying (3.38) by Aκv, and integrating over Ω, we obtain that

1
2

d
dt

[
‖v(t)‖2κ + (1 − 2δ1 + δ2

1)‖u(t)‖2κ + ‖ηt‖2µ,κ
]
+ (1 − δ1)‖v(t)‖2κ +

δ

2
‖ηt‖2µ,κ

+ δ1(1 − δ1 + δ2
1)‖u(t)‖2κ + 〈 f (u), Aκv〉

≤ ‖ut‖
2
κ + 〈g, Aκv〉 − 〈utt, Aκut〉 − δ1

∫ ∞

0
µ(s)〈Aηt, Aκu〉ds.

(3.39)

In addition, we deal with each term on the right of (3.39), it yields by using Minkowski inequality
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|〈g, Aκv〉| ≤ h2|g|22 +
δ1

2
‖ut‖

2
κ +

δ1

4
‖u‖2κ (3.40)

≤ h2|g|22 +
δ1

2
‖v‖2κ +

2δ2
1 + δ1

4
‖u‖2κ ,

and

| − δ1

∫ ∞

0
µ(s)〈Aηt, Aκu〉ds| ≤ δ1

√
m0‖u‖κ

( ∫ ∞

0
µ(s)‖η‖2κds

) 1
2 (3.41)

≤
δ1

2
‖u‖2κ +

m0δ1

2
‖η‖2µ,κ,

| − 〈utt, Aκut〉| ≤ h0(‖utt‖
2
0 + ‖ut‖

2
0), (3.42)

next, we deal with the nonlinear term by using Hölder inequality and Sobolev embedding theorem, it
yields

|〈 f (u), Aκv〉| ≤ c
∫

Ω

(1 + |u|5)|Aκv|dx

≤ c
∫

Ω

|Aκv|dx + c
∫

Ω

|u|5|Aκv|dx

≤ C +
δ1

8
(‖ut‖

2
κ + ‖u‖2κ),

(3.43)

which, together with (3.39)–(3.42), obtains

1
2

d
dt

[
‖v(t)‖2κ + (1 − 2δ1 + δ2

1)‖u(t)‖2κ + ‖ηt‖2µ,κ
]
+ (1 −

δ1

3
)‖v(t)‖2κ

+ δ1(
1
8
−

3
2
δ1 + δ2

1)‖u(t)‖2κ +
δ − m0δ1

2
‖ηt‖2µ,κ

≤ (1 +
δ1

8
)‖ut‖

2
κ + h2|g|22 + h0(‖utt‖

2
0 + ‖ut‖

2
0).

(3.44)

Where h0, h2 are positive constant.
Let δ1 be small enough, such that

β1 = min{1, 1 − 2δ1 + δ2
1} > 0 and β0 = min{1 −

δ1

3
, δ1(

1
8
−

3
2
δ1 + δ2

1),
δ − m0δ1

2
} > 0.

Then combining Lemma 3.1, Lemma 3.2, Lemma 3.8 and Gronwall lemma, we get

‖v(t)‖2κ + ‖u(t)‖2κ + ‖ηt‖2µ,κ ≤
Q(‖z0‖κ)
β1

e−2β0t +
2

β0β1

[
(1 +

δ1

8
)R3 + h0(R1 +K1) + h2|g|22

]
.

Moreover, integrating (3.41) about t from t to t+1, then we have∫ t+1

t
‖v(s)‖2κ + ‖u(s)‖2κ + ‖ηs‖2µ,κds ≤ R5.

where R5 = R5(Q(‖z0‖κ), β0, β1, δ1,R1,R3,K1, |g|2).
In order to prove the existence of global attractor for {S (t)}t≥0 on M1, we have to verify some

compactness for the semigroup {S (t)}t≥0. For further purpose, we will give asymptotically compact
theorem of the semigroup onM1.
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Theorem 3.10. The semigroup {S (t)}t≥0 associated with problem (2.6), (2.7) is asymptotically
compact onM1.

Proof. Firstly, Let z1(t) = (u1(t), u1
t (t), ηt

1), z2(t) = (u2(t), u2
t (t), ηt

2) are two solutions of (2.6)
corresponding with the initial data z1

0 = (u1
0, u

1
1, η

0
1), z2

0 = (u2
0, u

2
1, η

0
2) respectively. Setting

z(t) = (ω(t), ωt(t), θt) = (u1(t) − u2(t), u1
t (t) − u2

t (t), ηt
1 − η

t
2), then z(t) satisfies the following equation ωtt − ∆ωtt − ∆ω −

∫ +∞

0
µ(s)∆θt(s)ds + f (u1) − f (u2) = 0,

θt
t + θt

s = ωt.

(3.45)

with initial-boundary conditions ω(x, t)|∂Ω = 0, θt(x, s)|∂Ω×R+ = 0,
ω(x, 0) = u1

0 − u2
0, ωt(x, 0) = u1

1 − u2
1, θ

0(x, s) = η0
1 − η

0
2.

(3.46)

Similar to the definition of H(t), we letHω(t) = 1
2 |ωt(t)|22 + 1

2‖ω(t)‖20 + 1
2‖ωt(t)‖20 + 1

2‖θ
t‖2µ,0, then according

to Lemma 3.4 and Lemma 3.5, we obtain
(i) Let Λω(t) = −〈θt, ωt〉M1 −

∫ ∞
0
µ(s)〈θt, ωt〉ds, we have

d
dt

Λω(t) +
m0

2
[|ωt(t)|22 + ‖ωt(t)‖20] ≤ C‖ω(t)‖20 + 2m0‖θ

t‖2µ,0 (3.47)

+
µ(0)
2m0

(1 +
1
λ2

1

)
∫ ∞

0
−µ′(s)‖θt(s)‖20ds.

and

|Λω(t)| ≤ k0Hω(t). (3.48)

(ii) Assuming that Nω(t) =
∫

Ω
ωtωdx +

∫
Ω
∇ωt∇ωdx, we can also obtain that

N ′ω(t) ≤
ε − 1

2
‖ω‖20 +

1 − ε
2
|ωt| + (ε − 1)Hω(t) +

1 − ε
2
|ωt|

2
2 (3.49)

+
(
k1 −

ε − 1
2

)
‖ωt‖

2
0 +

(m0

4ε
−
ε − 1

2
)
‖θt‖2µ,0.

and

|Nω(t)| ≤ kHω(t). (3.50)

(iii) Obviously, we can get it easily

H ′ω(t) + 〈 f (u1) − f (u2), ωt〉 +
δ

4
‖θt(s)‖2µ,0 ≤

1
4

∫ ∞

0
µ′(s)‖θt(s)‖20ds. (3.51)

By (H2), it’s easy to obtain

|〈 f (u1) − f (u2), ωt〉| ≤ C
∫

Ω

(1 + |u1|
4 + |u|4)|ω||ωt|dx

≤ εQ(
1
λ

)‖ωt‖
2
0 + Q(

1
λε

)‖ω‖20,
(3.52)
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where Q(·) denotes monotonically increasing function.
Combining with (3.51) and (3.52), we have

H ′ω(t) +
δ

4
‖θt(s)‖2µ,0 ≤

1
4

∫ ∞

0
µ′(s)‖θt(s)‖20ds + εQ(

1
λ

)‖ωt‖
2
0 + Q(

1
λε

)‖ω‖20. (3.53)

Secondly, we can define the following functional

Lω(t) = C1Hω(t) + εNω(t) + Λω(t).

By (3.48) and (3.50), we get

(C1 − εk − k0)Hω(t) ≤ Lω(t) ≤ (C1 + εk + k0)Hω(t). (3.54)

Next, let its perturbation ε be small enough and C1 be sufficiently large, then yields

C1

2
Hω(t) ≤ Lω(t) ≤

3C1

2
Hω(t). (3.55)

Therefore, we can also deduce easily that

L′ω(t) ≤ ε(ε − 1)Hω(t) −
[δC1

4
−

5m0

4
− ε

(m0

4ε
−
ε − 1

2
)]
‖θt(s)‖2µ,0

+
ε(ε − 1)

2
‖ω‖20 + Q(

1
ελ

)‖ω‖20 +
[
ε
(
k1 −

ε − 1
2

+ Q(
1
λ

)
)
−

m0

2
]
‖ωt‖

2
0

−
(m0

2
− ε

1 − ε
2

)
|ωt|

2
2 +

[C1

4
−
µ(0)
2m0

(
1 +

1
λ2

1

)] ∫ ∞

0
µ′(s)‖θt(s)‖20ds.

(3.56)

In the same way, let ε > 0 be small enough and C1 is sufficiently large, such that

ε
(
k1 −

ε − 1
2

+ Q(
1
λ

)
)
−

m0

2
< 0,

C1

4
−
µ(0)
2m0

(
1 +

1
λ2

1

)
> 0.

and
δC1

4
−

5m0

4
− ε

(m0

4ε
−
ε − 1

2
)
> 0,

m0

2
− ε

1 − ε
2

> 0.

and let α0 = ε(1 − ε), then (3.56) becomes

L′ω(t) ≤ −α0Hω(t) + Q(
1
ελ

)‖ω‖20 (3.57)

≤ −
2β
3C
Lω(t) + Q(

1
ελ

)‖ω‖20.

Using Gronwall lemma, we can deduce that

Lω(T ) ≤ Lω(0)e−
2β
3C T +

2βα1

3C
Q(

1
ελ

)
∫ T

0
‖ω(s)‖20ds, (3.58)

holds for any T > 3C
2β ln 2Lω(0)

Cε .
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Combining with (3.55) and (3.58), then we have

Hω(T ) ≤ ε + φT (z1, z2). (3.59)

where

φT (z1, z2) =
4βα1

3C2 Q(
1
ελ

)
∫ T

T1

‖ω(s)‖20ds.

Next, for all T ≥ T1 > 0, we prove φT (z1, z2) ∈ E(B).
Indeed, let zn(t) = (un(t), unt(t), ηt

n) ∈ B0 be the solution with initial value zn(0) = zn
0 = (un

0, u
n
1, η

0
n) ∈

B0. According to Corollary 3.11 and Lemma 3.8, we know that the sequence {(un(t), unt(t), ηt
n)} is

uniformly bounded inM1. That is

un is uniformly bounded in L2(0,T ; D(A
1+κ

2 )),
unt is uniformly bounded in L2(0,T ; L2(Ω))).

Because we know that the embedding D(A
1+κ

2 ) ↪→ D(A
1
2 ) is compact by (2.8) and D(A

1
2 ) ↪→ L2(Ω) is

continuous, then combining with Lemma 2.5, it’s easy to get that there exists subsequence (still note
{(un(t), unt(t), ηt

n)}) of {(un(t), unt(t), ηt
n)} such that

lim
n→∞

lim
m→∞

∫ T

T1

‖un(s) − um(s)‖20ds = 0.

Thanks to Theorem 3.7 and Theorem 3.10, we can deduce the main result of this paper as the
following theorem:

Theorem 3.11. The semigroup {S (t)}t≥0 for the problem (2.6), (2.7) possesses a global attractorA
inM1; andA is non-empty, compact, invariant inM1 and attracts any bounded set ofM1 with respect
toM1-norm.

4. Upper semicontinuity of attractors inM1

Let’s consider the following equations vtt − ∆vtt − ∆v + ωvt −

∫ ∞

0
µ(s)∆ξt(s)ds + f (v) = g(x),

ξt
t = −ξt

s + vt.

(4.1)

with initial-boundary condition
v(x, t)|∂Ω = 0, ξt(x, s)|∂Ω×R+ = 0, t ≥ 0,

v(x, 0) = v0(x), vt(x, 0) = v1(x), ξ0(x, s) =

∫ s

0
v0(x,−r)dr, (x, s) ∈ Ω × R+,

(4.2)

where ω ∈ [0, 1] is a disturbance parameter.
Let ω = 0, then the above equation is transformed into Eq (2.6) with (2.7). Using the proof method

of above section word by word, we have the following lemma:
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Lemma 4.1. The semigroup {S ω(t)}t≥0 associated with Eq (4.1) with (4.2) possesses a compact
global attractorAω for any ω ≥ 0.

ThenA0 = A(A from Theorem 3.11).

Lemma 4.2. For any T ≥ 0 and z0 ∈ Aω, then we have

‖S ω(t)z0 − S 0(t)z0‖M1 ≤ Cω,

for 0 ≤ t ≤ T holds, where C is independently of ω.

Proof. Let z = (u, ut, η
t) and zω = (v, vt, ξ

t) are unique solutions of Eqs (2.6) and (4.1) with initial
value z0 ∈ Aω respectively. Setting w = u − v, ζ t = ηt − ξt, then (w,wt, ζ

t) is a unique solution of the
following equations wtt − ∆wtt − ∆w −

∫ ∞

0
µ(s)∆ζ t(s)ds + f (u) − f (v) = ωvt,

ζ t
t = −ζ t

s + wt.

(4.3)

with initial-boundary condition w(x, t)|∂Ω = 0, ζ t(x, s)|∂Ω×R+ = 0, t ≥ 0,
w(x, 0) = 0, wt(x, 0) = 0, ζ0(x, s) = 0, (x, s) ∈ Ω × R+.

(4.4)

Multiplying the first equation of (4.3) by wt in L2(Ω), we obtain

1
2

d
dt

(
|wt|

2
2 + ‖wt‖

2
0 + ‖ζ t‖2µ,0

)
+ δ‖ζ t‖2µ,0 ≤

∫
Ω

| f (u) − f (v)||wt| + ω

∫
Ω

|vt||wt|

According to Hölder inequality, zω ∈ Aω and Lemma 3.2, there exist a constant α > 0 such that

d
dt

(
|wt|

2
2 + ‖wt‖

2
0 + ‖ζ t‖2µ,0

)
− α

(
|wt|

2
2 + ‖wt‖

2
0 + ‖ζ t‖2µ,0

)
≤ QR0ω, (4.5)

where QR0 = QR0(R0) is independently ω.
Let C =

QR0
α

and applying Gronwall Lemma, we have

|wt|
2
2 + ‖wt‖

2
0 + ‖ζ t‖2µ,0 ≤ Cω. (4.6)

Theorem 4.3. Let Ω ⊂ R3 be a bounded domain with smooth boundary, and we assume that f
satisfies (1.4)–(1.7) and (1.2), (1.3) holds, given g ∈ L2(Ω), then

lim
ω→0

distM1(Aω,A) = 0.

Proof. For any ε > 0, sinceAω is an universal bounded subset ofM1 for any ω ∈ [0, 1], andA is a
compact attracting set for {S (t)}t≥0 onM1. So there exists T > 0 such that S (t)(T )Aω ⊂ N(A, ε2 ). On
the other hand, associating with the invariance ofAω and Lemma (4.2), for any t ≥ T , we have

Aω = S ω(t)Aω ⊂ N(S (t)Aω,
ε

2
),

as ω small enough. Setting ε = ω
C , so we have

Aω ⊂ N(A,
ω

ν
)

here ν ≥ C is a constant, which completes the proof of the desired results.
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