Research article

Geometric characterizations of canal surfaces with Frenet center curves

  • Received: 17 April 2021 Accepted: 10 June 2021 Published: 23 June 2021
  • MSC : 53A05, 53B25

  • In this work, we study the canal surfaces foliated by pseudo hyperbolic spheres $ \mathbb{H}_{0}^{2} $ along a Frenet curve in terms of their Gauss maps in Minkowski 3-space. Such kind of surfaces with pointwise 1-type Gauss maps are classified completely. For example, an oriented canal surface that has proper pointwise 1-type Gauss map of the first kind satisfies $ \Delta \mathbb{G} = -2K\mathbb{G}, $ where $ K $ and $ \mathbb{G} $ is the Gaussian curvature and the Gauss map of the canal surface, respectively.

    Citation: Jinhua Qian, Jie Liu, Xueshan Fu, Seoung Dal Jung. Geometric characterizations of canal surfaces with Frenet center curves[J]. AIMS Mathematics, 2021, 6(9): 9476-9490. doi: 10.3934/math.2021551

    Related Papers:

  • In this work, we study the canal surfaces foliated by pseudo hyperbolic spheres $ \mathbb{H}_{0}^{2} $ along a Frenet curve in terms of their Gauss maps in Minkowski 3-space. Such kind of surfaces with pointwise 1-type Gauss maps are classified completely. For example, an oriented canal surface that has proper pointwise 1-type Gauss map of the first kind satisfies $ \Delta \mathbb{G} = -2K\mathbb{G}, $ where $ K $ and $ \mathbb{G} $ is the Gaussian curvature and the Gauss map of the canal surface, respectively.



    加载中


    [1] B. Y. Chen, M. Choi, Y. H. Kim, Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc., 42 (2005), 447–455. doi: 10.4134/JKMS.2005.42.3.447
    [2] M. Choi, Y. H. Kim, H. Liu, D. W. Yoon, Helicoidal surfaces and their Gauss map in Minkowski 3-space, Bull. Korean Math. Soc., 47 (2010), 859–881. doi: 10.4134/BKMS.2010.47.4.859
    [3] X. Fu, S. D. Jung, J. Qian, M. Su, Geometric charaterizations of canal surfaces in Minkowski 3-space $\mathbb{I}$, Bull. Korean Math. Soc., 56 (2019), 867–883.
    [4] Y. H. Kim, H. Liu, J. Qian, Some characterizations of canal surfaces, Bull. Korean Math. Soc., 53 (2016), 461–477.
    [5] Y. H. Kim, D. W. Yoon, Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys., 34 (2000), 191–205. doi: 10.1016/S0393-0440(99)00063-7
    [6] Y. H. Kim, D. W. Yoon, On non-developable ruled surface in Lorentz-Minkowski 3-spaces, Taiwan. J. Math., 11 (2007), 197–214.
    [7] R. Lopez, Differential geometry of curves and surfaces in Lorentz-Minkowski Space, Int. Electron. J. Geom., 7 (2014), 44–107. doi: 10.36890/iejg.594497
    [8] J. H. Qian, Y. H. Kim, Some classification of canal surfaces with the Gauss Map, Bull. Malays. Math. Sci. Soc., 42 (2019), 3261–3272. doi: 10.1007/s40840-018-0658-1
    [9] J. Qian, M. Su, X. Fu, S. D. Jung, Geometric characterizations of canal surfaces in Minkowski 3-space $\mathbbII$, Mathematics, 7 (2019), 703. doi: 10.3390/math7080703
    [10] J. H. Qian, M. F. Su, Y. H. Kim, Canal surfaces with generalized 1-type Gauss map, Rev. Union Mat. Argent., 62 (2021), 199–211.
    [11] J. H. Qian, X. S. Fu, X. Q. Tian, Y. H. Kim, Surfaces of revolution and canal surfaces with generalized Cheng-Yau 1-type Gauss maps, Mathematics, 8 (2020), 1728. doi: 10.3390/math8101728
    [12] A. Ucum, K. Ilarslan, New Types of Canal Surfaces in Minkowski 3-Space, Adv. Appl. Clifford Algebras, 26 (2016), 449–468. doi: 10.1007/s00006-015-0556-7
    [13] Z. Q. Xu, R. Z. Feng, J. G. Sun, Analytic and algebraic properties of canal surfaces, Appl. Math. Comp., 195 (2006), 220–228.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2367) PDF downloads(145) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog