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Abstract: In this work, we study the canal surfaces foliated by pseudo hyperbolic spheres H2
0 along a

Frenet curve in terms of their Gauss maps in Minkowski 3-space. Such kind of surfaces with pointwise
1-type Gauss maps are classified completely. For example, an oriented canal surface that has proper
pointwise 1-type Gauss map of the first kind satisfies ∆G = −2KG, where K and G is the Gaussian
curvature and the Gauss map of the canal surface, respectively.
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1. Introduction

The idea of finite type immersion of Riemannian manifolds into Euclidean space (resp. pseudo
Euclidean space) was introduced by B.Y. Chen in the late 1970’s, which was extended to the differential
maps on the submanifolds such as the Gauss maps. A submanifoldM in Euclidean space (resp. pseudo
Euclidean space) whose Gauss mapG satisfies ∆G = f (G+C) is said to have a proper pointwise 1-type
Gauss map for a non-zero smooth function f and a constant vector C, where ∆ is the Laplacian defined
onM and in local coordinates given by

∆ = −
1√

|det(gi j)|

∑
i, j

∂

∂xi (
√
|det(gi j)|gi j ∂

∂x j ), (1.1)

where gi j are the components of the inverse matrix of the first fundamental form of M. Specially, it
is said to be of the first kind or the second kind when the vector C is zero or non-zero, respectively.
Furthermore, G is said to be of proper pointwise 1-type if the function f is not constant, otherwise
a non-proper pointwise 1-type Gauss map is just of ordinary 1-type. When the smooth function f
vanishes, G is said to be harmonic [1, 2, 5].
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In the theory of surfaces, a canal surface is formed by moving a family of spheres whose centers
lie on a space curve in Euclidean 3-space. The geometric characteristics of such surfaces have been
studied by many experts and geometers [4, 8, 13]. For example, the authors of [4] investigated the
geometric properties of such surfaces, including the Gaussian curvature, the mean curvature and their
relationships. In recent years, the construction idea of canal surfaces in Euclidean 3-space is extended
to Lorentz-Minkowski space. In Minkowski 3-space, a canal surface can be formed as the envelope of
a family of pseudo-Riemannian space forms, i.e., pseudo spheres S2

1, pseudo hyperbolic spheresH2
0 and

lightlike cones Q2 [3, 9, 12]. Let p be a fixed point, r > 0 be a constant in E3
1. The pseudo-Riemannian

space forms, i.e., the de-Sitter space S2
1(p, r), the hyperbolic spaceH2

0(p, r) and the lightlike cone Q2
1(p)

are defined by

M2(ε) ={x ∈ E3
1 : 〈x − p, x − p〉 = εr2} =


S2

1(p, r) | ε = 1;
H2

0(p, r) | ε = −1;
Q2

1(p) | ε = 0.

When r = 1 and the center p is the origin, we write them by S2
1, H2

0 and Q2, simply. According to
the classification of curves in Minkowski space, there are nine types of canal surfaces in Minkowski 3-
space whose fundamental geometric properties have been achieved by discussing the linear Weingarten
canal surfaces in [3, 9].

Based on the conclusions obtained in [4], a canal surface with pointwise 1-type Gauss map is
discussed in [8]. In order to do further geometric investigation for canal surfaces in Minkowski 3-
space, in this work we study surfaces foliated by pseudo hyperbolic spheres H2

0 along Frenet curves.
In section 2, the Frenet formulas of Frenet curves, the parameterized equations and the relationships
between the Gaussian curvatures and the mean curvatures of three types of canal surfaces are recalled.
In section 3, three types of canal surfaces with pointwise 1-type Gauss maps are classified completely.

The surfaces which are discussed here are smooth, regular and topologically connected unless oth-
erwise stated.

2. Preliminaries

Let E3
1 be a Minkowski 3-space with natural Lorentzian metric

〈·, ·〉 = dx2
1 + dx2

2 − dx2
3

in terms of the natural coordinate system (x1, x2, x3). It is well known that a vector υ∈E3
1 is called to

be spacelike if 〈υ, υ〉 > 0 or υ = 0; timelike if 〈υ, υ〉 < 0; null (lightlike) if 〈υ, υ〉 = 0, respectively.
The norm of a vector υ is given by ‖υ‖ =

√
|〈υ, υ〉|. The timelike or lightlike vector is said to be

causal [6]. Due to the causal character of the tangent vectors, the curves are classified into spacelike
curves, timelike curves or lightlike (null) curves. What’s more, the spacelike curves are classified into
the first and the second kind of spacelike curves or the null type spacelike curves (pseudo null curves)
according to their normal vectors are spacelike, timelike or lightlike, respectively.

Remark 2.1. [7] Timelike curves and spacelike curves with spacelike or timelike normal vectors are
called Frenet curves in Minkowski space.
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Proposition 2.2. [4] Let c(s) : I → E3
1 be a Frenet curve parameterized by arclength s with Frenet

frame {T (s),N(s), B(s)}. Then the following Frenet equations are satisfied
T ′(s) = κ(s)N(s),
N′(s) = −ε1κ(s)T (s) + ε2τ(s)B(s),
B′(s) = τ(s)N(s),

where T is the tangent vector, N and B is the normal vector and the binormal vector of c(s), respec-
tively. When c(s) is a timelike curve, ε1 = ε2 = −1; when c(s) is a spacelike curve of the first kind,
ε1 = ε2 = 1; when c(s) is a spacelike curve of the second kind, ε1 = −ε2 = −1. The function κ(s), τ(s)
is called the curvature, the torsion of c(s), respectively.

Definition 1. [3] A surface M in E3
1 is called a canal surface which is formed as the envelope of a

family of pseudo hyperbolic spheres H2
0 (resp. pseudo spheres S2

1 or lightlike cones Q2) whose centers
lie on a space curve c(s) framed by {T,N, B}. ThenM can be parameterized by

x(s, θ) = c(s) + λ(s, θ)T (s) + µ(s, θ)N(s) + ω(s, θ)B(s),

where λ, µ and ω are differential functions of s and θ, ‖x(s, θ) − c(s)‖2 = εr2(s), (ε = ±1 or 0). The
curve c(s) is called the center curve and r(s) is called the radial function ofM.

Precisely, if M is foliated by pseudo hyperbolic spheres H2
0 (resp. pseudo spheres S2

1 or lightlike
conesQ2), then ε = −1(resp. 1 or 0) andM is said to be of typeM− (resp. M+ orM0). As well, the canal
surfaces of typeM− can be classified intoM1

− (resp. M2
− orM3

−) when c(s) is spacelike (resp. timelike
or null). Moreover, when c(s) is the first kind spacelike curve, the second kind spacelike curve and the
pseudo null curve,M1

− is denoted byM11
− ,M12

− andM13
− , respectively. Similarly, the canal surfacesM+

(resp. M0) can be classified intoM1
+,M2

+ andM3
+ (resp. M1

0,M2
0 orM3

0). Naturally,M1
+ (resp. M1

0) can
be divided intoM11

+ ,M12
+ andM13

+ (resp. M11
0 ,M12

0 orM13
0 ) [9].

Remark 2.3. In the present work, we consider the canal surfaces foliated by pseudo hyperbolic spheres
H2

0 which have Frenet curves as center curves, i.e., the canal surfaces of typeM11
− ,M12

− andM2
−.

The canal surfacesM11
− ,M12

− andM2
− are expressed as [9]

M11
− : x(s, θ) = c(s) + r(s)(r′(s)T +

√
1 + r′2(s) sinh θN +

√
1 + r′2(s) cosh θB);

M12
− : x(s, θ) = c(s) + r(s)(r′(s)T +

√
1 + r′2(s) cosh θN +

√
1 + r′2(s) sinh θB);

M2
− : x(s, θ) = c(s) + r(s)(−r′(s)T +

√
r′2(s) − 1 cos θN +

√
r′2(s) − 1 sin θB).

Without loss of generality, the authors assumed r′(s) = sinhϕ forM11
− andM12

− , −r′(s) = coshϕ for
M2
−, where ϕ = ϕ(s) is a smooth function, then the canal surfacesM11

− ,M12
− andM2

− can be rewritten by

M11
− : x(s, θ) = c(s) + r(s)(sinhϕ(s)T + coshϕ(s) sinh θN + coshϕ(s) cosh θB); (2.1)

M12
− : x(s, θ) = c(s) + r(s)(sinhϕ(s)T + coshϕ(s) cosh θN + coshϕ(s) sinh θB); (2.2)

M2
− : x(s, θ) = c(s) + r(s)(coshϕ(s)T + sinhϕ(s) cos θN + sinhϕ(s) sin θB). (2.3)
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Proposition 2.4. [9] For the canal surface M11
− (resp. M12

− ,M
2
−), the Gaussian curvature K and the

mean curvature H satisfy

H = −
1
2

(Kr −
1
r

).

Remark 2.5. By Proposition 2.4, the principal curvatures κ1, κ2 of the canal surface M11
− (resp.

M12
− ,M

2
−) are given by

κ1 = Kr, κ2 = −
1
r
.

From now on, we concern on the classifications of three kinds of canal surfaces in terms of their
Gauss maps. We only prove the results forM11

− and omit the proofs forM12
− andM2

− since they can be
similarly done to those ofM11

− .

3. The canal surfaces of typeM11
−

From Eq (2.1), the canal surfaceM11
− is parameterized by

x(s, θ) =c(s) + r(s)(sinhϕ(s)T + coshϕ(s) sinh θN + coshϕ(s) cosh θB),

where sinhϕ(s) = r′(s).

Through direct calculations, we have

xs = x1
sT + x2

s N + x3
s B, xθ = x1

θN + x2
θB,

where
x1

s = rr′′ − rκ coshϕ sinh θ + cosh2 ϕ,

x2
s = r′ coshϕ sinh θ + rr′κ + rr′ϕ′ sinh θ + rτ coshϕ cosh θ,

x3
s = r′ coshϕ cosh θ + rτ coshϕ sinh θ + rr′ϕ′ cosh θ,

x1
θ = r coshϕ cosh θ,

x2
θ = r coshϕ sinh θ.

(3.1)

Thus, the Gauss map G ofM11
− is

G = sinhϕT + coshϕ sinh θN + coshϕ cosh θB, (3.2)

which point outwardsM11
− and 〈G,G〉 = −1.

Meanwhile, the component functions of the first fundamental form are obtained as

g11 =
P2

1 + r2R2
1

cosh2 ϕ
, g12 = r2R1, g22 = r2 cosh2 ϕ, (3.3)

the component functions of the second fundamental form are written by

h11 = −
rR2

1 + P1Q1

cosh2 ϕ
, h12 = −rR1, h22 = −r cosh2 ϕ, (3.4)
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where
P1 = rr′′ + cosh2 ϕ − rκ coshϕ sinh θ = rQ1 + cosh2 ϕ,

Q1 = r′′ − κ coshϕ sinh θ,
R1 = r′κ coshϕ cosh θ + τ cosh2 ϕ.

(3.5)

From Eqs (3.3) and (3.4), the Gaussian curvature K and the mean curvature H ofM11
− are

K = −
Q1

rP1
, H =

2P1 − cosh2 ϕ

2rP1
. (3.6)

Remark 3.1. From g11g22 − g2
12 = r2P2

1, due to regularity, we see that P1 , 0 everywhere.

Serving the following discussion, the Laplacian of the Gauss map G of M11
− need to be calculated.

First, from the first fundamental form ofM11
− , we have

g11 =
cosh2 ϕ

P2
1

, g12 = −
R1

P2
1

, g22 =
P2

1 + r2R2
1

r2P2
1 cosh2 ϕ

. (3.7)

Substituting (3.2), (3.3) and (3.7) into (1.1), and by putting

U1 = g22Hs − g12Hθ, V1 = −g12Hs + g11Hθ, (3.8)

where

Hs =
5r2r′r′′κ coshϕ sinh θ − 2r2r′κ2 cosh2 ϕ sinh2 θ + r2r′′′ cosh2 ϕ − 2rr′r′′ cosh2 ϕ − 4r2r′r′′2

2r2P2
1

+

(2rr′κ − r2κ′) cosh3 ϕ sinh θ − r′ cosh4 ϕ

2r2P2
1

,

Hθ = −
κ cosh3 ϕ cosh θ

2P2
1

,

(3.9)
after tedious tidying up, we get

∆G = −
1

r2P2
1

{[(r2Q2
1 + P2

1) sinhϕ − 2x1
sU1]T + [(r2Q2

1 + P2
1) coshϕ sinh θ − 2(x2

sU1 + x1
θV1)]N+

[(r2Q2
1 + P2

1) coshϕ cosh θ − 2(x3
sU1 + x2

θV1)]B}.
(3.10)

Assume a canal surfaceM11
− satisfies ∆G = f (G + C). Without loss of generality, we may suppose

C = C1T + C2N + C3B, (3.11)

where C1 = 〈C,T 〉,C2 = 〈C,N〉,C3 = −〈C, B〉.
Substituting (3.2), (3.10) and (3.11) into ∆G = f (G + C), we obtain the following equation system

(r2Q2
1 + P2

1) sinhϕ − 2x1
sU1 = −r2P2

1(sinhϕ + C1) f ,

(r2Q2
1 + P2

1) coshϕ sinh θ − 2(x2
sU1 + x1

θV1) = −r2P2
1(coshϕ sinh θ + C2) f ,

(r2Q2
1 + P2

1) coshϕ cosh θ − 2(x3
sU1 + x2

θV1) = −r2P2
1(coshϕ cosh θ + C3) f .

(3.12)
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From the last two equations of (3.12), we have

2U1(rτ cosh2 ϕ + rr′κ coshϕ cosh θ − x3
sC2 + x2

sC3) + 2V1(r cosh2 ϕ − x2
θC2 + x1

θC3)
= coshϕ(2P2

1 − 2P1 cosh2 ϕ + cosh4 ϕ)(C3 sinh θ −C2 cosh θ).
(3.13)

Rearranging (3.13) with the help of (3.1), (3.5) and (3.8), we get

2(g22Hs − g12Hθ)(rτ cosh2 ϕ + rr′κ coshϕ cosh θ − x3
sC2 + x2

sC3) + 2(−g12Hs + g11Hθ)
(r cosh2 ϕ − r coshϕ sinh θC2 + r coshϕ cosh θC3)

= coshϕ[(rr′′ − rκ coshϕ sinh θ)2 + (rr′′ + cosh2 ϕ − rκ coshϕ sinh θ)2](C3 sinh θ −C2 cosh θ).
(3.14)

Since {cosh(mθ), sinh(mθ)|m ∈ N} constructs a set of linearly independent functions, in view of the
coefficients of sinh 5θ and cosh 5θ in (3.14) by the aid of (3.1), (3.3) and (3.9), we have{

r6κ4 cosh5 ϕC3 = 0,
r6κ4 cosh5 ϕC2 = 0.

(3.15)

From (3.15), we consider a non-empty open subset O = {p ∈ M11
− | κ(p) , 0} of M11

− . Since r , 0,
coshϕ , 0, then we have C2 = C3 = 0 on O. However, if C2 = C3 = 0, (3.14) gives

−r2R2
1 + g11 cosh2 ϕ = P2

1 = 0

which contradicts to the regularity ofM11
− . Therefore, κ ≡ 0,M11

− is a surface of revolution.
Let c(s) = (s, 0, 0) and T = (1, 0, 0),N = (0, 1, 0), B = (0, 0, 1), thenM11

− can be represented as

x(s, θ) =(s + r(s) sinhϕ, r(s) coshϕ sinh θ, r(s) coshϕ cosh θ).

Furthermore, when κ = 0, the first equation of (3.12) gives

f =
2r2 cosh2 ϕP1Hs − (2P2

1 − 2P1 cosh2 ϕ + cosh4 ϕ) sinhϕ
r2P2

1(sinhϕ + C1)
. (3.16)

Because P1,Hs are all functions of s when κ = 0, Equation (3.16) yields f = f (s). Then, by the last
two equations of (3.12), we have (r2Q2

1 + P2
1) coshϕ sinh θ − 2r2r′ cosh2 ϕHs(coshϕ + rϕ′) sinh θ = −r2P2

1(coshϕ sinh θ + C2) f ,

(r2Q2
1 + P2

1) coshϕ cosh θ − 2r2r′ cosh2 ϕHs(coshϕ + rϕ′) cosh θ = −r2P2
1(coshϕ cosh θ + C3) f .

(3.17)
Because r , 0, P1 , 0 and f = f (s), Equation system (3.17) implies C2 = C3 = 0. And

f (s) =
2r2HsP1 sinhϕ − (2P2

1 − 2P1 cosh2 ϕ + cosh4 ϕ)
r2P2

1

. (3.18)

Combining (3.16) and (3.18), we get

C1(2P2
1 − 2P1 cosh2 ϕ + cosh4 ϕ) + 2r2HsP1(1 −C1r′) = 0, (3.19)
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substituting (3.19) into (3.18), we have

f (s) =
2Hs

C1P1
=

4H2 + 2K
C1r′ − 1

. (3.20)

Considering the principal curvatures are given by

κ1 = −
r′′

rr′′ + r′2 + 1
, κ2 = −

1
r

(3.21)

when κ = 0, thus the Gaussian curvature K and the mean curvature H are

K = −
r′′

r(rr′′ + r′2 + 1)
, H =

2rr′′ + r′2 + 1
2r(rr′′ + r′2 + 1)

. (3.22)

Due to f , 0, the mean curvature cannot be constant. With the help of (3.6), Equation (3.19) can
be rewritten as

2r2Hs(1 − rH)(C1r′ − 1) = C1(2r2H2 − 2rH + 1)(r′2 + 1). (3.23)

Simplifying Eq (3.23) with the help of (3.22), the radial function r(s) satisfies

κ1

(
κ1 −

1
r

)′
= (ln |C1r′ − 1|)′

(
κ2

1 +
1
r2

)
, (3.24)

where κ1 is stated as (3.21).
Conversely, ifM11

− is a surface of revolution satisfying (3.24), ∆G = f (G + C) can be satisfied for a
non-zero function f as stated by (3.20) and a constant vector C = (C1, 0, 0) in which C1 is a non-zero
constant.

Theorem 3.2. A canal surface M11
− has proper pointwise 1-type Gauss map of the second kind if and

only if it is a surface of revolution with the following form

x(s, θ) =(s + r(s) sinhϕ, r(s) coshϕ sinh θ, r(s) coshϕ cosh θ),

where r(s) satisfies (3.24).

Corollary 3.3. A canal surfaceM11
− with proper pointwise 1-type Gauss map of the second kind satis-

fies ∆G = f (G + C) for a constant vector C = (C1, 0, 0) and non-zero smooth function

f (s) =
4H2 + 2K
C1r′ − 1

,

where H and K are given by (3.22), C1 is a non-zero constant.

Corollary 3.4. A canal surface M11
− has 1-type Gauss map of the second kind if and only if it is a

surface of revolution represented as

x(s, θ) =(s + r(s) sinhϕ, r(s) coshϕ sinh θ, r(s) coshϕ cosh θ),

where r(s) satisfies (3.26).
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Proof of Corollary 3.4. When a canal surface M11
− satisfies ∆G = λ(G + C), (λ ∈ R − {0},C , 0), by

Theorem 3.2,M11
− is a surface of revolution satisfying (3.24). By Corollary 3.3, we get

κ1

(
κ1 −

1
r

)′
= λC1r′′. (3.25)

From (3.24) and (3.25), we have

κ2
1 +

1
r2 = λ(C1r′ − 1), (3.26)

where λ and C1 are non-zero constants, κ1 is stated as (3.21). The converse is straightforward. �

Theorem 3.5. A canal surfaceM11
− has proper pointwise 1-type Gauss map of the first kind if and only

if it is minimal. Precisely, it is a part of a surface of revolution as

x(s, θ) =(s + r(s) sinhϕ, r(s) coshϕ sinh θ, r(s) coshϕ cosh θ),

where r(s) satisfies (3.29).

Proof of Theorem 3.5. A canal surface M11
− has proper pointwise 1-type Gauss map of the first kind,

i.e., ∆G = fG for a smooth function f . From Equation (3.10), we have
(r2Q2

1 + P2
1) sinhϕ − 2x1

sU1 = −r2P2
1 sinhϕ f ,

(r2Q2
1 + P2

1) coshϕ sinh θ − 2(x2
sU1 + x1

θV1) = −r2P2
1 coshϕ sinh θ f ,

(r2Q2
1 + P2

1) coshϕ cosh θ − 2(x3
sU1 + x2

θV1) = −r2P2
1 coshϕ cosh θ f .

(3.27)

From the last two equations of (3.27), we get

(g22Hs − g12Hθ)(τ cosh2 ϕ + r′κ coshϕ cosh θ) + (−g12Hs + g11Hθ) cosh2 ϕ = 0. (3.28)

With the help of Eq (3.3), we obtain P2
1Hθ = 0. Therefore, Hθ = 0 due to P1 , 0. Furthermore,

from the first two equations of (3.27), we get 2r2P1Hs = 0. It is obvious that Hs = 0. Then, the
mean curvature ofM11

− is constant. By the Corollary 2 of [9], i.e., the canal surfaceM11
− with non-zero

constant mean curvature does not exist, thus the canal surfaceM11
− is minimal. From the Theorem 4 of

[9], it is a part of a surface of revolution with the following form

x(s, θ) =(s + r(s) sinhϕ, r(s) coshϕ sinh θ, r(s) coshϕ cosh θ),

where r(s) satisfies

s = c2 ±

∫ √
r

c1 − r
dr, (c1 > r, c2 ∈ R). (3.29)

Looking back the Eq (3.27) with the conclusions obtained above, we have

f (s) = −2K = −
2
r2 . (3.30)

Conversely, suppose that M11
− is a surface of revolution satisfying (3.29), M11

− is minimal from the
Theorem 4 of [9] and ∆G = fG is satisfied for a non-zero function f given by (3.30). �
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Corollary 3.6. A canal surfaceM11
− with proper pointwise 1-type Gauss map of the first kind satisfies

∆G = −2KG = −
2
r2G.

Assume that a canal surface M11
− satisfies ∆G = λG, (λ ∈ R − {0}). By Corollary 3.6, we have

λ = − 2
r2 is a constant, i.e., r is a constant. Thus, we have the following result.

Corollary 3.7. A canal surfaceM11
− has 1-type Gauss map of the first kind if and only if it is a circular

cylinder.

From Corollary 3.6, the following conclusion is straightforward since − 2
r2 , 0.

Corollary 3.8. The canal surfaceM11
− with harmonic Gauss map does not exist.

4. The canal surfaces of typeM12
−

From Eq (2.2), the canal surfaceM12
− is parameterized by

x(s, θ) =c(s) + r(s)(sinhϕ(s)T + coshϕ(s) cosh θN + coshϕ(s) sinh θB),

where sinhϕ(s) = r′(s).
Through direct calculations, we have

xs = x1
sT + x2

s N + x3
s B, xθ = x1

θN + x2
θB,

where
x1

s = rr′′ + cosh2 ϕ + rκ coshϕ cosh θ;
x2

s = r′ coshϕ cosh θ + rr′κ + rr′ϕ′ cosh θ + rτ coshϕ sinh θ;
x3

s = r′ coshϕ sinh θ + rτ coshϕ cosh θ + rr′ϕ′ sinh θ;
x1
θ = r coshϕ sinh θ;

x2
θ = r coshϕ cosh θ.

Then, the Gauss map G ofM12
− is

G = − sinhϕT − coshϕ cosh θN − coshϕ sinh θB, (4.1)

which point outwardsM12
− and 〈G,G〉 = −1.

Meanwhile, the component functions of the first fundamental form are given by

g11 =
P2

2 + r2R2
2

cosh2 ϕ
, g12 = r2R2, g22 = r2 cosh2 ϕ, (4.2)

the component functions of the second fundamental form are written by

h11 = −
rR2

2 + P2Q2

cosh2 ϕ
, h12 = −rR2, h22 = −r cosh2 ϕ, (4.3)
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where
P2 = rr′′ + cosh2 ϕ + rκ coshϕ cosh θ = rQ2 + cosh2 ϕ,

Q2 = r′′ + κ coshϕ cosh θ,
R2 = τ cosh2 ϕ − r′κ coshϕ sinh θ.

From Eqs (4.2) and (4.3), the Gaussian curvature K and the mean curvature H ofM12
− are

K = −
Q2

rP2
, H =

2P2 − cosh2 ϕ

2rP2
.

Remark 4.1. From g11g22 − g2
12 = r2P2

2, due to regularity, we see that P2 , 0 everywhere.

Next, we compute the Laplacian of the Gauss map G ofM12
− . First, from the first fundamental form

ofM12
− , we have

g11 =
cosh2 ϕ

P2
2

, g12 = −
R2

P2
2

, g22 =
r2R2

2 + P2
2

r2P2
2 cosh2 ϕ

. (4.4)

Substituting (4.1), (4.2) and (4.4) into (1.1), and by putting

U2 = g22Hs − g12Hθ, V2 = −g12Hs + g11Hθ,

where

Hs =
2rr′r′′ cosh2 ϕ + r2r′′′ cosh2 ϕ − 4r2r′r′′2 − 2r2r′κ2 cosh2 ϕ cosh2 θ − 5r2r′r′′κ coshϕ cosh θ

2r2P2
2

−

(2rr′κ − r2κ′) cosh3 ϕ cosh θ + r′ cosh4 ϕ

2r2P2
2

,

Hθ =
κ cosh3 ϕ sinh θ

2P2
2

,

after tedious tidying up, we get

∆G =
1

r2P2
2

{[(r2Q2
2 + P2

2) sinhϕ + 2x1
sU2]T + [(r2Q2

2 + P2
2) coshϕ cosh θ + 2(x2

sU2 + x1
θV2)]N+

[(r2Q2
2 + P2

2) coshϕ sinh θ + 2(x3
sU2 + x2

θV2)]B}.

Do discussions similar to those ofM11
− , we have the following conclusions directly.

Theorem 4.2. A canal surface M12
− has proper pointwise 1-type Gauss map of the second kind if and

only if it is a surface of revolution with the following form

x(s, θ) =(r(s) sinhϕ + s, r(s) coshϕ sinh θ, r(s) coshϕ cosh θ),

in which r(s) satisfies

κ1

(
κ1 −

1
r

)′
= −(ln |1 + C1r′|)′

(
κ2

1 +
1
r2

)
,

where C1 is a non-zero constant and κ1 is the principal curvature as

κ1 = −
r′′

rr′′ + r′2 + 1
.
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Corollary 4.3. A canal surfaceM12
− with proper pointwise 1-type Gauss map of the second kind satis-

fies ∆G = f (G + C) for a constant vector C = (C1, 0, 0) and non-zero smooth function

f (s) = −
4H2 + 2K
1 + C1r′

,

where C1 is a non-zero constant, H and K are given by

K = −
r′′

r(rr′′ + r′2 + 1)
, H =

2rr′′ + r′2 + 1
2r(rr′′ + r′2 + 1)

.

Corollary 4.4. A canal surface M12
− has 1-type Gauss map of the second kind if and only if it is a

surface of revolution represented as

x(s, θ) =(s + r(s) sinhϕ, r(s) coshϕ sinh θ, r(s) coshϕ cosh θ),

in which r(s) satisfies

κ2
1 +

1
r2 = −λ(1 + C1r′),

where λ and C1 are non-zero constants and

κ1 = −
r′′

rr′′ + r′2 + 1
.

Theorem 4.5. A canal surfaceM12
− has proper pointwise 1-type Gauss map of the first kind if and only

if it is minimal. Precisely, it is a part of a surface of revolution as

x(s, θ) =(s + r(s) sinhϕ(s), r(s) coshϕ(s) sinh θ, r(s) coshϕ(s) cosh θ),

in which r(s) satisfies

s = c2 ±

∫ √
r

c1 − r
dr, (c1 > r, c2 ∈ R).

Corollary 4.6. A canal surfaceM12
− with proper pointwise 1-type Gauss map of the first kind satisfies

∆G = −2KG = −
2
r2G.

Corollary 4.7. A canal surfaceM12
− has 1-type Gauss map of the first kind if and only if it is a circular

cylinder.

Corollary 4.8. The canal surfaceM12
− with harmonic Gauss map does not exist.

5. The canal surfaces of typeM2
−

From Eq (2.3), the canal surfaceM2
− is parameterized by

x(s, θ) =c(s) + r(s)(coshϕ(s)T + sinhϕ(s) cos θN + sinhϕ(s) sin θB),
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where − coshϕ(s) = r′(s).
Through direct calculations, we have

xs = x1
sT + x2

s N + x3
s B, xθ = x1

θN + x2
θB,

where
x1

s = −rr′′ + rκ sinhϕ cos θ − sinh2 ϕ;
x2

s = r′ sinhϕ cos θ − rr′κ − rr′ϕ′ cos θ + rτ sinhϕ sin θ;
x3

s = r′ sinhϕ sin θ − rτ sinhϕ cos θ − rr′ϕ′ sin θ;
x1
θ = −r sinhϕ sin θ;

x2
θ = r sinhϕ cos θ.

Then, the Gauss map G ofM2
− is

G = − coshϕT − sinhϕ cos θN − sinhϕ sin θB, (5.1)

which point outwardsM2
− and 〈G,G〉 = −1.

Meanwhile, the component functions of the first fundamental form are obtained as

g11 =
P2

3 + r2R2
3

sinh2 ϕ
, g12 = r2R3, g22 = r2 sinh2 ϕ, (5.2)

the component functions of the second fundamental form are written by

h11 = −
rR2

3 + P3Q3

sinh2 ϕ
, h12 = −rR3, h22 = −r sinh2 ϕ, (5.3)

where
P3 = rr′′ − rκ sinhϕ cos θ + sinh2 ϕ = rQ3 + sinh2 ϕ,

Q3 = r′′ − κ sinhϕ cos θ,
R3 = τ sinh2 ϕ + r′κ sinhϕ sin θ.

From Eqs (5.2) and (5.3), the Gaussian curvature K and the mean curvature H ofM2
− are

K = −
Q3

rP3
, H =

2P3 − sinh2 ϕ

2rP3
. (5.4)

Remark 5.1. From g11g22 − g2
12 = r2P2

3, due to regularity, we see that P3 , 0 everywhere.

In the following, the Laplacian of the Gauss map G of M2
− is to be calculated. First, from the first

fundamental form ofM2
−, we have

g11 =
sinh2 ϕ

P2
3

, g12 = −
R3

P2
3

, g22 =
P2

3 + r2R2
3

r2P2
3 sinh2 ϕ

. (5.5)

Substituting (5.1), (5.2) and (5.5) into (1.1), and by putting

U3 = g22Hs − g12Hθ, V3 = −g12Hs + g11Hθ,
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where

Hs =
−2r2r′κ2 sinh2 ϕ cos2 θ + r2r′r′′κ sinhϕ cos θ − 2rr′r′′ sinh2 ϕ + r2r′′′ sinh2 ϕ − 4r2r′r′′2

2r2P2
3

+

(2rr′κ − r2κ′) sinh3 ϕ cos θ − r′ sinh4 ϕ

2r2P2
3

,

Hθ =
κ sinh3 ϕ sin θ

2P2
3

,

after complicated arrangements, we get

∆G =
1

r2P2
3

{[(r2Q2
3 + P2

3) coshϕ + 2x1
sU3]T + [(r2Q2

3 + P2
3) sinhϕ cos θ + 2(x2

sU3 + x1
θV3)]N+

[(r2Q2
3 + P2

3) sinhϕ sin θ + 2(x3
sU3 + x2

θV3)]B}.

Do discussions similar to those ofM11
− andM12

− , the following results forM2
− can be given directly.

Theorem 5.2. A canal surface M2
− has proper pointwise 1-type Gauss map of the second kind if and

only if it is a surface of revolution with the following form

x(s, θ) =(r(s) sinhϕ sin θ, r(s) sinhϕ cos θ, s + r(s) coshϕ),

in which r(s) satisfies

κ1

(
κ1 −

1
r

)′
= −(ln |1 + C1r′|)′

(
κ2

1 +
1
r2

)
,

where C1 is a non-zero constant and κ1 is the principal curvature as

κ1 = −
r′′

rr′′ + r′2 − 1
.

Corollary 5.3. A canal surfaceM2
− with proper pointwise 1-type Gauss map of the second kind satisfies

∆G = f (G + C) for a constant vector C = (C1, 0, 0) and non-zero smooth function

f (s) = −
4H2 + 2K
1 + C1r′

,

where C1 is a non-zero constant, H and K are given by

K = −
r′′

r(rr′′ + r′2 − 1)
, H =

2rr′′ + r′2 − 1
2r(rr′′ + r′2 − 1)

.

Corollary 5.4. A canal surface M2
− has 1-type Gauss map of the second kind if and only if it is a

surface of revolution represented as

x(s, θ) =(r(s) sinhϕ sin θ, r(s) sinhϕ cos θ, s + r(s) coshϕ),

in which r(s) satisfies

κ2
1 +

1
r2 = −λ(1 + C1r′),

where λ and C1 are non-zero constants and

κ1 = −
r′′

rr′′ + r′2 − 1
.
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Theorem 5.5. A canal surfaceM2
− has proper pointwise 1-type Gauss map of the first kind if and only

if it is minimal. Precisely, it is a part of a surface of revolution as

x(s, θ) =(r(s) sinhϕ sin θ, r(s) sinhϕ cos θ, s + r(s) coshϕ),

in which r(s) satisfies

s = c2 ±

∫ √
r

c1 + r
dr, (c1 > −r, c2 ∈ R).

Corollary 5.6. A canal surfaceM2
− with proper pointwise 1-type Gauss map of the first kind satisfies

∆G = −2KG = −
2
r2G.

Corollary 5.7. The canal surfaceM2
− with 1-type Gauss map of the first kind does not exist.

Proof. Assume that a canal surface M2
− satisfies ∆G = λG, (λ ∈ R − {0}). By Corollary 5.6, we have

λ = − 2
r2 is a constant, i.e., r is a constant. Notice that the radial function r(s) can’t be constant forM2

−,
therefore, we get contradiction. �

Corollary 5.8. The canal surfaceM2
− with harmonic Gauss map does not exist.

6. Conclusions

Until now, the canal surfacesM11
− ,M12

− andM2
− foliated by pseudo hyperbolic spheres H2

0 along the
first kind spacelike curve, the second kind spacelike curve and a timelike curve, respectively have been
classified in terms of their Gauss maps. The similar works for the canal surfaces M11

+ , M12
+ and M2

+

have been done in another recent work. The canal surfaces M13
− , M3

− (M13
+ , M3

+) foliated by pseudo
hyperbolic spheres H2

0 (resp. pseudo spheres S2
1) along a null type spacelike curve or a null curve are

to be investigated in the continued works.
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