Let $ G = (V, E) $ be a local finite connected weighted graph, $ \Omega $ be a finite subset of $ V $ satisfying $ \Omega^\circ\neq\emptyset $. In this paper, we study the nonexistence of the nonlinear wave equation
$ \partial^2_t u = \Delta u + f(u) $
on $ G $. Under the appropriate conditions of initial values and nonlinear term, we prove that the solution for nonlinear wave equation blows up in a finite time. Furthermore, a numerical simulation is given to verify our results.
Citation: Desheng Hong. Blow-up of solutions for nonlinear wave equations on locally finite graphs[J]. AIMS Mathematics, 2023, 8(8): 18163-18173. doi: 10.3934/math.2023922
Let $ G = (V, E) $ be a local finite connected weighted graph, $ \Omega $ be a finite subset of $ V $ satisfying $ \Omega^\circ\neq\emptyset $. In this paper, we study the nonexistence of the nonlinear wave equation
$ \partial^2_t u = \Delta u + f(u) $
on $ G $. Under the appropriate conditions of initial values and nonlinear term, we prove that the solution for nonlinear wave equation blows up in a finite time. Furthermore, a numerical simulation is given to verify our results.
[1] | L. M. Song, Z. J. Yang, X. L. Li, S. M. Zhang, Coherent superposition propagation of Laguerre-Gaussian and Hermite Gaussian solitons, Appl. Math. Lett., 102 (2020), 106114. https://doi.org/10.1016/j.aml.2019.106114 doi: 10.1016/j.aml.2019.106114 |
[2] | S. Shen, Z. J. Yang, Z. G. Pang, Y. R. Ge, The complex-valued astigmatic cosine-Gaussian soliton solution of the nonlocal nonlinear Schrödinger equation and its transmission characteristics, Appl. Math. Lett., 125 (2022), 107755. https://doi.org/10.1016/j.aml.2021.107755 doi: 10.1016/j.aml.2021.107755 |
[3] | S. Shen, Z. J. Yang, X. L. Li, S. Zhang, Periodic propagation of complex-valued hyperbolic-cosine-Gaussian solitons and breathers with complicated light field structure in strongly nonlocal nonlinear media, Commun. Nonlinear Sci. Numer. Simul., 103 (2021), 106005. https://doi.org/10.1016/j.cnsns.2021.106005 doi: 10.1016/j.cnsns.2021.106005 |
[4] | M. M. Khader, M. Adel, Numerical solutions of fractional wave equations using an efficient class of FDM based on the Hermite formula, Adv. Differential Equ., 2016 (2016), http://dx.doi.org/10.1186/s13662-015-0731-0 |
[5] | M. M. Khader, M. Inc, M. Adel, M. A. Akinlar, Numerical solutions to the fractional-order wave equation, Int. J. Mod. Phys. C, 345 (2023), 2350067. http://dx.doi.org/10.1142/S0129183123500675 doi: 10.1142/S0129183123500675 |
[6] | F. Gazzola, M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations, Ann. I. H. Poincaré- AN, 23 (2006), 185–207. http://dx.doi.org/10.1016/j.anihpc.2005.02.007 doi: 10.1016/j.anihpc.2005.02.007 |
[7] | H. Feng, S. Li, Global nonexistence for a semilinear wave equation with nonlinear boundary dissipation, J. Math. Anal. Appl., 391 (2012), 255–264. http://dx.doi.org/10.1016/j.jmaa.2012.02.013 doi: 10.1016/j.jmaa.2012.02.013 |
[8] | H. Kawarada, On solutions of nonlinear wave equations, J. Phys. Soc. Jpn., 31 (1971), 280–282. http://dx.doi.org/10.1143/JPSJ.31.280 doi: 10.1143/JPSJ.31.280 |
[9] | K. Matsuya, A blow-up theorem for a discrete semilinear wave equation, J. Diff. Equa. Appl., 19 (2013), 457–465. http://dx.doi.org/10.1080/10236198.2011.651134 doi: 10.1080/10236198.2011.651134 |
[10] | A. Huang, Y. Lin, S. T. Yau, Existence of solutions to mean field equations on graphs, Commun. Math. Phys., 377 (2020), 613–621. https://doi.org/10.1007/s00220-020-03708-1 doi: 10.1007/s00220-020-03708-1 |
[11] | X. Han, M. Shao, L. Zhao, Existence and convergence of solutions for nonlinear biharmonic equations on graphs, J. Differ. Equ., 268 (2020), 3936–3961. https://doi.org/10.1016/j.jde.2019.10.007 doi: 10.1016/j.jde.2019.10.007 |
[12] | Y. Lin, Y. Y. Yang, A heat flow for the mean field equation on a finite graph, Calc. Var. Part. Differ. Equ., 60 (2021). https://doi.org/10.1007/s00526-021-02086-3 |
[13] | S. Liu, Y. Y. Yang, Multiple solutions of Kazdan-Warner equation on graphs in the negative case, Calc. Var. Part. Differ. Equ., 59 (2020), 1–15. http://dx.doi.org/10.1007/s00526-020-01840-3 doi: 10.1007/s00526-020-01840-3 |
[14] | A. Grigor'yan, Y. Lin, Y. Y. Yang, Yamabe type equations on graphs, J. Differ. Equ., 261 (2016), 4924–4943. http://dx.doi.org/10.1016/j.jde.2016.07.011 doi: 10.1016/j.jde.2016.07.011 |
[15] | A. Grigor'yan, Y. Lin, Y. Y. Yang, Kazdan-Warner equation on graph, Calc. Var. Part. Differ. Equ., 55 (2016), 92. http://dx.doi.org/10.1007/s00526-016-1042-3 doi: 10.1007/s00526-016-1042-3 |
[16] | A. Grigor'yan, Y. Lin, Y. Y. Yang, Existence of positive solutions to some nonlinear equations on locally finite graphs, Sci. China Math., 60 (2017), 1311–1324. http://dx.doi.org/10.1007/s11425-016-0422-y doi: 10.1007/s11425-016-0422-y |
[17] | Y. Lin, Y. Wu, The existence and nonexistence of global solutions for a semilinear heat equation on graphs, Calc. Var. Part. Differ. Equ., 56 (2017), 102. http://dx.doi.org/10.1007/s00526-017-1204-y doi: 10.1007/s00526-017-1204-y |
[18] | Y. Lin, Y. Wu, Blow-up problems for nonlinear parabolic equations on locally finite graphs, Acta Math. Sci. Ser. B (Engl. Ed.), 38 (2018), 843–856. http://dx.doi.org/10.3969/j.issn.0252-9602.2018.03.009 |
[19] | J. Friedman, J. P. Tillich, Wave equations for graphs and the edge-based Laplacian, Pacific J. Math., 216 (2004), 229–266. http://dx.doi.org/10.2140/pjm.2004.216.229 doi: 10.2140/pjm.2004.216.229 |
[20] | L. Ma, X. Wang, Schrödinger and wave equations on finite graphs, 2012. https://doi.org/10.48550/arXiv.1207.5191 |
[21] | Y. Lin, Y. Y. Xie, The existence of the solution of the wave equation on graphs, 2021. https://doi.org/10.48550/arXiv.1908.02137 |
[22] | Y. Lin, Y. Y. Xie, Application of Rothe's method to a nonlinear wave equation on graphs, Bull. Korean Math. Soc., 59 (2022), 745–756. https://doi.org/10.4134/BKMS.b210445 doi: 10.4134/BKMS.b210445 |
[23] | F. Han, B. Hua, Uniqueness class of the wave equation on graphs, 2020. https://doi.org/10.48550/arXiv.2009.12793 |
[24] | A. Grigor'yan, Introduction to analysis on graphs, University Lecture Series, AMS, Providence, RI, 2018. https://bookstore.ams.org/ulect-71/ |