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Abstract: Let G = (V, E) be a local finite connected weighted graph, Ω be a finite subset of V
satisfying Ω◦ , ∅. In this paper, we study the nonexistence of the nonlinear wave equation

∂2
t u = ∆u + f (u)

on G. Under the appropriate conditions of initial values and nonlinear term, we prove that the solution
for nonlinear wave equation blows up in a finite time. Furthermore, a numerical simulation is given to
verify our results.
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1. Introduction

As is known to us, differential equations have been extensively studied and achieved rich results,
including ordinary differential equation, partial differential equation, stochastic differential equation,
etc. Among them, wave equations and their related applications have attracted many scholars because
of its unique properties and wide applications [1–7]. For a Euclidean space, the nonlinear wave
equation reads

∂2
t u(t, x) = ∆u(t, x) + f (u(t, x)), (t, x) ∈ (0,+∞) ×Ω

where Ω is bounded domain with smooth boundary ∂Ω in Rn and f is a nonlinear function.
Kawarada [8] gave the sufficient conditions of nonexistence global solutions with the homogenous
Dirichlet boundary and the initial value

u(0, x) = a(x), ∂tu(0, x) = b(x), x ∈ Ω,

where a(x) and b(x) are sufficiently smooth in Ω with a(x)|∂Ω = b(x)|∂Ω = 0. Matsuya [9] studied
a discretization of a nonlinear wave equation with f (u) = |u|p with p > 1 and obtained a blow-up
theorem.
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Many structures in our real life can be represented by a connected graph whose vertices represent
nodes, and whose edges represent their links, such as the brain, organizations, internet, and so on.
In recent years, many authors paid attention to study the behavior of solutions of various nonlinear
equations on graphs, see for example [10–13] and references therein. In particular, Grigor’yan et
al. [14–16] investigated the discrete version of nonlinear elliptic equations, such as Yamabe equation
and Kazdan–Warner equation, and obtained the sufficient conditions for the existence of solutions. Lin
and Wu [17, 18] studied nonlinear parabolic equations including semilinear heat equation on graphs,
and explored the existence and nonexistence results of global solution. However, hyperbolic equations,
especially wave equations, have not attracted extensive attention on graphs. Friedman and Tillich [19]
studied the linear damped wave equation whose Laplacian is based on the edge. On finite graphs,
Ma [20] gave explicit expressions for solutions to the linear wave equation, and Lin and Xie [21, 22]
proved the existence and uniqueness of the solution to nonlinear wave equations with and without a
damping term. On infinite graphs, Han and Hua [23] obtain a sharp uniqueness class for the solutions
of wave equations.

In this paper, we investigate the blow-up phenomenon of nonlinear wave equations on graphs, which
is to extend the result of Kawarada [8] to graph.

The rest of the paper is organized as follows. We recall notations from graph theory and state our
main results in Section 2. In Section 3, we prove the blow-up theorem. In Section 4, we give an
example to explain our results. Meanwhile, we provide a numerical experiment to demonstrate the
example.

2. Notations and main results

Let G = (V, E) be a connected graph without loops and multiply edges, where V denotes the set of
vertex and E ⊂ V × V the set of edge. We write x ∼ y if xy ∈ E. In this paper, we allow measures and
weights on G. Let µ : V → R+ be a positive measure on V and ω : V × V → [0,∞) a non-negative
weight, which satisfies ωxy = ωyx and ωxy > 0 if and only if x ∼ y. Throughout this paper, we deal with
locally finite graph, that is, the number of neighbour of each vertex is finite. Let Ω ⊆ V , the boundary
and the interior of Ω are defined by

∂Ω = {x ∈ Ω : ∃y ∈ V \Ω, y ∼ x} and Ω◦ = Ω \ ∂Ω

respectively.
We denote C(V) by the set of real functions on V . For any function f ∈ C(V), the graph Laplace

operator ∆ of f is defined by

∆ f (x) =
1
µ(x)

∑
y∼x

ωxy( f (y) − f (x)).

Given a finite subset Ω ⊆ V , denote by C(Ω) the set of functions Ω → R. The Dirichlet Laplacian
∆Ω is defined as follows: First extend f to the whole V by setting f = 0 outside Ω and then set

∆Ω f = (∆ f )Ω.

We recall the smallest non-zero eigenvalue λ0 of −∆Ω and the corresponding eigenfunction φ0 in Ω,−∆Ωφ0 = λ0φ0 in Ω◦,

φ0|∂Ω = 0.
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We assume φ0 is normalized as
∑
x∈Ω

φ0(x)µ(x) = 1. In particular, 0 < λ0 ≤ 1, see Theorem 4.3 in [24].

In this paper, we deal with the following initial-boundary value problem of nonlinear wave equations
on G. Given a non-empty subset Ω ⊆ V ,

∂2
t u(t, x) = ∆Ωu(t, x) + f (u(t, x)), (t, x) ∈ (0,+∞) ×Ω◦,

u(0, x) = a(x), x ∈ Ω,

∂tu(0, x) = b(x), x ∈ Ω,

u(t, x) = 0, (t, x) ∈ [0,+∞) × ∂Ω,

(2.1)

where f is a nonlinear function, and a(x) and b(x) are sufficiently smooth in Ω with a(x)|∂Ω = b(x)|∂Ω =

0.

Definition 1. A function u = u(t, x) satisfying (2.1) in [0,+∞) × Ω is called a global solution of (2.1)
if u is bounded and twice continuously differentiable with respect to t in [0,+∞) × Ω. Moreover, we
say that the solution of (2.1) blows up in a finite time T , if there exists x ∈ Ω such that

|u(t, x)| → +∞ as t → T−.

In this paper, we establish the blow-up conditions for solutions of (2.1) on locally finite graphs. For
convenience, we use the following notations:

α =
∑
x∈Ω

a(x)φ0(x)µ(x),

and
β =

∑
x∈Ω

b(x)φ0(x)µ(x).

Our main results are stated as follows.

Theorem 1. Let G = (V, E) be a locally finite graph. Suppose that the nonlinear perturbation f and
the initial data a, b in (2.1) satisfy (C.1)–(C.5). Then the solution of (2.1) blows up in a finite time.
Specifically,

(i) when β > 0, the nonlinear function f and the initial data a, b are required to satisfy (C.1)
and (C.2).

(ii) when β = 0, in addition to (C.1) and (C.2), the nonlinear function f and the initial data a, b
need to satisfy (C.3).

(iii) when β < 0, the nonlinear function f and the initial data a, b are supposed to
satisfy (C.1), (C.2)′, (C.4) and (C.5).

Condition (C.1). The non-negative function f is sufficiently smooth and convex in R.
Let

F(σ) = β2 + 2
∫ σ

α

{−λ0s + f (s)}ds,

and
F0(σ) = 2

∫ σ

α

{−λ0s + f (s)}ds.

AIMS Mathematics Volume 8, Issue 8, 18163–18173.



18166

Condition (C.2). The following inequalities hold:

F(σ) > 0 for σ > α, (2.2)

and ∫ ∞

α

F(σ)−
1
2 dσ = T < +∞. (2.3)

Condition (C.2)′. The inequalities (2.2) and (2.3) hold for F0 in the place of F.
Condition (C.3). The following inequality holds:

− λ0α + f (α) > 0. (2.4)

Condition (C.4). The equation
F(σ) = 0, (2.5)

has at least one root with respect to σ < α.
Condition (C.5). The following inequality

−λ0s + f (s) > 0

holds for s ∈ [σm, α], where σm is the largest root (< α) of the Eq (2.5).

Remark 1. Smoothness of f ensures the existence and uniqueness of solution to the nonlinear wave
equation, see [21] in details. If f is non-positive and concave in R, we shall get the same conclusion
under the same conditions as above with f , a and b.

3. Proof of Theorem 1

The following lemma is one of the main tools when proving Theorem 1.

Lemma 1. For any f , g ∈ C(Ω) and f = g = 0 on ∂Ω, we have∑
x∈Ω

∆Ω f (x)g(x)µ(x) =
∑
x∈Ω

f (x)∆Ωg(x)µ(x). (3.1)

Proof. For any function h : V × V → R,∑
x,y∈Ω

ωxyh(x, y) =
∑
x,y∈Ω

ωxyh(y, x),

which follows from the symmetric weight ωxy. Then we have∑
x∈Ω

∆Ω f (x)g(x)µ(x) =
∑
x∈Ω

∑
y∼x

ωxy( f (y) − f (x))g(x)

=
∑
x∈Ω

∑
y∈Ω

ωxy( f (y) − f (x))g(x) +
∑
x∈Ω

∑
y∈∂Ω

ωxy( f (y) − f (x))g(x)

=
∑
x,y∈Ω

ωxy f (x)g(y) −
∑
x,y∈Ω

ωxy f (x)g(x) +
∑
x∈Ω

∑
y∈∂Ω

ωxy( f (y) − f (x))g(x)

=
∑
x,y∈Ω

ωxy(g(y) − g(x)) f (x) +
∑
x∈Ω

∑
y∈∂Ω

ωxy(g(y) − g(x)) f (x)

=
∑
x∈Ω

f (x)∆Ωg(x)µ(x).

In the forth equality, we utilize f (y) = g(y) = 0 for any y ∈ ∂Ω. �
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Proof of Theorem 1. Suppose u is a global solution of (2.1). Let

J = J(t) =
∑
x∈Ω

u(t, x)φ0(x)µ(x).

It is easy to see that
J(0) =

∑
x∈Ω

u(0, x)φ0(x)µ(x) =
∑
x∈Ω

a(x)φ0(x)µ(x) = α.

dJ
dt

(0) =
∑
x∈Ω

∂tu(t, x)
dt

∣∣∣∣
t=0
φ0(x)µ(x) =

∑
x∈Ω

b(x)φ0(x)µ(x) = β.

We claim that for all t > 0,
d2J
dt2 (t) + λ0J(t) ≥ f (J(t)). (3.2)

Indeed, by Lemma 1 and Jensen’s inequality, we have for any t > 0,

d2J
dt2 (t) =

∑
x∈Ω

d2u(t, x)
dt2 φ0(x)µ(x)

=
∑
x∈Ω

(∆Ωu(t, x) + f (u(t, x)))φ0(x)µ(x)

=
∑
x∈Ω

∆Ωφ0(x)u(t, x)µ(x) +
∑
x∈Ω

f (u(t, x))φ0(x)µ(x)

≥ −λ0J(t) + f (J(t)),

which ends the proof of the claim.
Case (i): β > 0. We first show that

dJ
dt

(t) > 0, t ∈ [0,∞). (3.3)

Suppose not, the equation
dJ
dt

(t) = 0 (3.4)

has at least one root for t > 0. Let t1 be the smallest positive root of (3.4). Due to dJ
dt (0) = β > 0, it

follows that dJ
dt (t) > 0 in [0, t1) by the continuity of dJ

dt (t) in [0,+∞). For any t ∈ [0, t1), multiplying
with dJ

ds in the both sides of (3.2) and integrating from 0 to t with respect to s, we obtain∫ t

0

d2J
ds2 ·

dJ
ds

ds ≥ −
∫ t

0
λ0J ·

dJ
ds

ds +

∫ t

0
f (J) ·

dJ
ds

ds.

Rewrite the above inequality to get∫ t

0

dJ
ds

d
(
dJ
ds

)
≥ −

∫ J(t)

α

λ0JdJ +

∫ J(t)

α

f (J)dJ,

which implies
dJ
dt

(t) ≥
√

F(J(t)), t ∈ [0, t1).
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By the continuity of dJ
dt (t) and

√
F(J(t)) in [0,+∞), we thus get

dJ
dt

(t1) ≥
√

F(J(t1)).

And, it is easy to see that J(t1) > J(0) = α by dJ
dt (t) > 0 in [0, t1), which implies that F(J(t1)) > 0

from (2.2) in Condition (C.2). Combining with the above inequality, we get

dJ
dt

(t1) > 0,

which contradicts that t1 is a root of the Eq (3.4). Then (3.3) is proved, which also implies that for all
t ∈ [0,+∞)

dJ
dt

(t) ≥
√

F(J(t)) > 0,

by following the above computations. It can be rewritten to

dt
dJ
≤ F(J(t))−

1
2 .

Integrating the above inequality from α to J(t), we conclude that for all t ≥ 0,∫ J(t)

α

F(σ)−
1
2 dσ ≥ t. (3.5)

However, (2.3) in Condition (C.2) implies the integral in (3.5) converges to a finite value T as J → +∞.
Then J = J(t) goes to infinite in some t ≤ T . This contracts that u is a global solution of (2.1).

Case (ii): β = 0. The inequality (2.4) in Condition (C.3) implies dJ
dt (t) > 0 for t ∈ (0, δ) with

sufficiently small δ. Indeed, according to (3.2) and (2.4), we have d2 J
dt2 (0) > 0. It follows that dJ

dt (t) >
0, t ∈ (0, δ) due to dJ

dt (0) = β = 0. Thus, it is similar to the above arguments, we conclude that J = J(t)
becomes infinite in a finite time. Then u blows up in a finite time.

Case (iii): β < 0. According to the continuity of dJ
dt (t), we can find some t0 > 0 such that dJ

dt (t) < 0
and α > J(t) > σm in [0, t0). By following the computations similar to the Case (i), we thus get

−
√

F(J(t)) ≤
dJ
dt

(t) < 0 in [0, t0). (3.6)

According to whether σm can be reached when J is decreasing, it can be separated into three cases:
(a) dJ

dt (t) < 0 in [0,+∞), J(t)→ σ2, t → +∞ with σm ≤ σ2 < α.
(b) There is some t1(t0 ≤ t1 < +∞) such that dJ

dt (t) < 0 in [0, t1), dJ
dt (t1) = 0 and J(t1) = σ1 with

σm < σ1 < α.
(c) dJ

dt (t) < 0 in [0, t1), J(t1) = σm.
It is easy to see that (a) does not occur. Indeed, since σ2 ≤ J(t) ≤ α and Condition (C.5), we get

d2J
dt2 (t) ≥ −λ0J(t) + f (J(t)) > c > 0,

which contradicts dJ
dt (t) < 0 in [0,+∞). In (c), by virtue of (3.6) and the definition of σm, we conclude

that
dJ
dt

(t1) = 0.
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Thus for (b) and (c), we shall deal with the following initial-boundary value problem for J = J(t):
d2 J
dt2 (t) ≥ −λ0J(t) + f (J(t)), t > t1;
J(t1) = σ′;
dJ
dt (t1) = 0,

(3.7)

where σm ≤ σ
′ < α. Similar as the case β = 0, we can solve the Eq (3.7) by virtue of Condition (C.5).

Indeed, by following the computations of the cases β ≥ 0, the solution J = J(t)(t > t1) is given
implicitly by

t − t1 ≤

∫ J(t)

σ′

[
2
∫ σ

σ′
{−λ0s + f (s)}ds

]− 1
2 dσ (3.8)

for any t ≥ t1. Conditions (C.5) and (C.2)′ imply the integral in (3.8) converges to a finite value as
J(t)→ +∞. In fact,∫ +∞

σ′

[
2
∫ σ

σ′
{−λ0s + f (s)}ds

]− 1
2 dσ =

∫ α

σ′

[
2
∫ σ

σ′
{−λ0s + f (s)}ds

]− 1
2 dσ

+

∫ +∞

α

[
2
∫ σ

σ′
{−λ0s + f (s)}ds

]− 1
2 dσ.

(3.9)

By Conditions (C.5) and (C.2)′, we obtain∫ +∞

α

[
2
∫ σ

σ′
{−λ0s + f (s)}ds

]− 1
2 dσ =

∫ +∞

α

[
2
∫ α

σ′
{−λ0s + f (s)}ds + F0(σ)

]− 1
2 dσ

<

∫ +∞

α

F0(σ)−
1
2 dσ

< +∞,

(3.10)

and ∫ α

σ′

[
2
∫ σ

σ′
{−λ0s + f (s)}ds

]− 1
2 dσ < +∞. (3.11)

From (3.9)–(3.11), we thus get∫ +∞

σ′

[
2
∫ σ

σ′
{−λ0s + f (s)}ds

]− 1
2 dσ < +∞.

From (3.8), J = J(t) goes to infinity in a finite time. This contradicts that u is a global solution
of (2.1). �

4. A numerical simulation

In this section, we take the case of f (u) = eu in (2.1). By Theorem 1, we assert that the solution
of (2.1) blows up with the initial conditions

a(x) = 0, (4.1)

b(x) =

√
2φ0(x)
‖φ0‖

2
`2

. (4.2)
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Indeed, it is obvious that Condition (C.1) is satisfied. The initial conditions (4.1) and (4.2) imply
that α = 0 and β =

√
2. Since 0 < λ0 ≤ 1, we have −λ0s + es > 0 for σ ∈ [0,+∞). It follows that

F(σ) = 2 + 2
∫ σ

0
{−λ0s + es}ds > 0.

For all σ ∈ [L,+∞) with a sufficiently large constant L(> 0), we have

2eσ − λ0σ
2 > eσ,

which implies F(σ) > eσ. We thus get∫ +∞

L
F(σ)−

1
2 dσ <

∫ +∞

L
e−

σ
2 dσ = 2e−

L
2 < +∞.

Since
∫ L

0
F(σ)−

1
2 dσ < +∞, we conclude

∫ +∞

0
F(σ)−

1
2 dσ =

∫ L

0
F(σ)−

1
2 dσ +

∫ +∞

L
F(σ)−

1
2 dσ < +∞.

Thus, we see that Condition (C.2) is satisfied.
A numerical simulation is given to illustrate the effectiveness of Theorem 1. We consider the lattice

graph Z2. Let Ω be the subset of Z2 such that Ω◦ = {x1, x2} with x1 ∼ x2. Take the weights ωxy ≡ 1 for
any x, y ∈ V with x ∼ y and the measure µ(x) = deg(x) = 1

4 for all x ∈ Z2. It is easy to compute that
φ0(x1) = φ0(x2) = 2. It follows that

b(xi) =

√
2φ0(xi)
‖φ0‖

2
`2

=
√

2,

for i = 1, 2. Moreover, we take a(x) = 0 for all x ∈ Ω, which implies α = 0 and β =
√

2. Let f (u) = eu,
the Eq (2.1) can be rewritten as

∂2
t u(t, x1) = 1

4u(t, x2) − u(t, x1) + eu(t,x1), t ∈ (0,+∞),
∂2

t u(t, x2) = 1
4u(t, x1) − u(t, x2) + eu(t,x2), t ∈ (0,+∞),

u(0, x1) = u(0, x2) = 0,
∂tu(0, x1) = ∂tu(0, x2) =

√
2,

u(t, x) = 0, (t, x) ∈ [0,∞) × ∂Ω.

(4.3)

There is no global solution to the Eq (4.3) from the previous discussion. By using the finite
difference method, we give the numerical simulation of the solution to the Eq (4.3). The numerical
simulation result is shown in Figure 1.
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Figure 1. Blow-up phenomenon of the Eq (4.3)
.

Figure 1 shows that there exists x ∈ V , a function u(t, x) satisfying (4.3) and becoming infinite in a
finite time t, which means the solution of (4.3) blows up by Definition 1.

5. Conclusions

In this paper, we have investigated nonexistence of global solutions for nonlinear wave equations
on locally finite graphs. We extended the results of Kawarada onto the graph and enriched the results
of Kawarada. In addition, we have given a numerical simulation to verify our results.
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