Let $ (M^{2n+1}, \theta) $ be a compact strictly pseudoconvex real hypersurfaces equipped with the pseudohermitian structure $ \theta $, and $ \lambda_{1} $ be the first positive eigenvalue of sub-Laplacian $ \Delta_{b} $ on $ (M^{2n+1}, \theta) $. In this paper, we will give the upper bound of $ \lambda_{1} $ under certain conditions that "$ \text{Re}\Delta_{b}\left(\rho_j+\rho_{\bar{j}}\right)\left(2\tilde{\Delta}_{\rho}\rho_j+ |\partial \rho|_\rho^{2}n^{-1}\rho^{k}\rho_{jk}\right)\leq 0 $ (for some $ j $)" or "$ \rho_{j\bar{k}} = \delta_{jk} $" holds, and apply these results to the ellipsoids furthermore.
Citation: Guijuan Lin, Sujuan Long, Qiqi Zhang. The upper bound for the first positive eigenvalue of Sub-Laplacian on a compact strictly pseudoconvex hypersurface[J]. AIMS Mathematics, 2024, 9(9): 25376-25395. doi: 10.3934/math.20241239
Let $ (M^{2n+1}, \theta) $ be a compact strictly pseudoconvex real hypersurfaces equipped with the pseudohermitian structure $ \theta $, and $ \lambda_{1} $ be the first positive eigenvalue of sub-Laplacian $ \Delta_{b} $ on $ (M^{2n+1}, \theta) $. In this paper, we will give the upper bound of $ \lambda_{1} $ under certain conditions that "$ \text{Re}\Delta_{b}\left(\rho_j+\rho_{\bar{j}}\right)\left(2\tilde{\Delta}_{\rho}\rho_j+ |\partial \rho|_\rho^{2}n^{-1}\rho^{k}\rho_{jk}\right)\leq 0 $ (for some $ j $)" or "$ \rho_{j\bar{k}} = \delta_{jk} $" holds, and apply these results to the ellipsoids furthermore.
[1] | A. Aribi, Spectrum of sublaplacians on strictly pseudoconvex CR manifolds, Differential Geometry [math.DG]. Université François Rabelais-Tours, 2012. Available from: https://theses.hal.science/tel-00960234. |
[2] | A. Aribi, A. E. Soufi, The first positive eigenvalue of the sub-Laplacian on CR spheres, Ann. Glob. Anal. Geom., 51 (2017), 1–9. https://doi.org/10.1007/s10455-016-9519-z doi: 10.1007/s10455-016-9519-z |
[3] | G. M. Dall'Ara, D. N. Son, An upper bound for the first positive eigenvalue of the Kohn Laplacian on Reinhardt real hypersurfaces, Proc. Amer. Math. Soc., 151 (2023), 123–133. https://doi.org/10.1090/proc/16077 doi: 10.1090/proc/16077 |
[4] | A. Aribi, D. N. Son, Eigenvalues of the Kohn Laplacian and deformations of pseudohermitian structures on CR manifolds, J. Spectr. Theory, 13 (2023), 319–345. https://doi.org/10.4171/JST/443 doi: 10.4171/JST/443 |
[5] | D. M. Burns, C. L. Epstein, Embeddability for three-dimensional CR manifolds, J. Amer. Math. Soc., 3 (1990), 809–841. https://doi.org/10.2307/1990904 doi: 10.2307/1990904 |
[6] | R. Beals, P. C. Greiner, Calculus on Heisenberg manifolds, Princeton: Princeton University Press, 1988. https://doi.org/10.1515/9781400882397 |
[7] | J. S. Case, S. Chanillo, P. Yang, The CR Paneitz operator and the stability of CR pluriharmonic functions, Adv. Math., 287 (2016), 109–122. https://doi.org/10.1016/j.aim.2015.10.002 doi: 10.1016/j.aim.2015.10.002 |
[8] | S. C. Chang, H. L. Chiu, On the CR analogue of Obata's theorem in a pseudohermitian 3-manifold, Math. Ann., 345 (2009), 33–51. https://doi.org/10.1007/s00208-009-0339-3 doi: 10.1007/s00208-009-0339-3 |
[9] | S. Chanillo, H. L. Chiu, P. Yang, Embeddability for 3-dimensional Cauchy-Riemann manifolds and CR Yamabe invariants, Duke Math. J., 161 (2012), 2909–2921. https://doi.org/10.1215/00127094-1902154 doi: 10.1215/00127094-1902154 |
[10] | H. L. Chiu, The sharp lower bound for the first positive eigenvalue of the sub-Laplacian on a pseudohermitian 3-manifold, Ann. Glob. Anal. Geom., 30 (2006), 81–96. https://doi.org/10.1007/s10455-006-9033-9 doi: 10.1007/s10455-006-9033-9 |
[11] | F. Du, L. B. Hou, J. Mao, C. X. Wu, Eigenvalue inequalities for the buckling problem of the drifting Laplacian of arbitrary order, Adv. Nonlinear Anal., 12 (2023), 20220278. https://doi.org/10.1515/anona-2022-0278 doi: 10.1515/anona-2022-0278 |
[12] | H. Garcke, P. Hüttl, P. Knopf, Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach, Adv. Nonlinear Anal., 11 (2022), 159–197. https://doi.org/10.1515/anona-2020-0183 doi: 10.1515/anona-2020-0183 |
[13] | C. R. Graham, J. M. Lee, Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains, Duke Math. J., 57 (1988), 697–720. https://doi.org/10.1215/S0012-7094-88-05731-6 doi: 10.1215/S0012-7094-88-05731-6 |
[14] | A. Greenleaf, The first eigenvalue of a sub-Laplacian on a pseudohermitian manifold, Commun. Part. Diff. Eq., 10 (1985), 191–217. https://doi.org/10.1080/03605308508820376 doi: 10.1080/03605308508820376 |
[15] | S. Ivanov, D. Vassilev, An Obata type result for the first eigenvalue of the sub-Laplacian on a CR manifold with a divergence-free torsion, J. Geom., 103 (2012), 475–504. https://doi.org/10.1007/s00022-013-0145-7 doi: 10.1007/s00022-013-0145-7 |
[16] | J. J. Kohn, Boundaries of complex manifolds, In: Proceedings of the conference on complex analysis, Berlin: Springer, 1965, 81–94. https://doi.org/10.1007/978-3-642-48016-4_9 |
[17] | J. R. Kuttler, V. G. Sigillito, Eigenvalues of the Laplacian in two dimensions, SIAM Rev., 26 (1984), 163–193. https://doi.org/10.1137/1026033 doi: 10.1137/1026033 |
[18] | G. J. Lin, Lichnerowicz-Obata theorem for Kohn Laplacian on the real ellipsoid, Acta Math. Sci., 38 (2018), 1903–1911. https://doi.org/10.1016/S0252-9602(18)30854-3 doi: 10.1016/S0252-9602(18)30854-3 |
[19] | S. Y. Li, H. S. Luk, The sharp lower bound for the first positive eigenvalues of sub-Laplacian on the Pseudo-Hermitian manifold, Proc. Amer. Math. Soc., 132 (2004), 789–798. https://doi.org/10.1090/S0002-9939-03-07174-0 doi: 10.1090/S0002-9939-03-07174-0 |
[20] | S. Y. Li, H. S. Luk, An explicit formula for the Webster pseudo-Ricci curvature on real hypersurfaces and its application for characterizing balls in $C^n$, Commun. Anal. Geom., 14 (2006), 673–701. https://doi.org/10.4310/CAG.2006.v14.n4.a4 doi: 10.4310/CAG.2006.v14.n4.a4 |
[21] | S. Y. Li, G. J. Lin, D. N. Son, The sharp upper bounds for the first positive eigenvalue of the Kohn–Laplacian on compact strictly pseudoconvex hypersurfaces, Math. Z., 288 (2018), 949–963. https://doi.org/ 10.1007/s00209-017-1922-z doi: 10.1007/s00209-017-1922-z |
[22] | S. Y. Li, M. Tran, On the CR-Obata Theorem and some extremal problem associated to pseudoscalar curvature on the real ellipsoids in ${\mathbb{C}}^{n+1}$, Trans. Amer. Math. Soc., 363 (2011), 4027–4042. https://doi.org/10.1090/S0002-9947-2011-05396-1 doi: 10.1090/S0002-9947-2011-05396-1 |
[23] | S. Y. Li, D. N. Son, The Webster scalar curvature and sharp upper and lower bounds for the first positive eigenvalue of the Kohn-Laplacian on real hypersurfaces, Acta. Math. Sin.-English Ser., 34 (2018), 1248–1258. https://doi.org/10.1007/s10114-018-7415-0 doi: 10.1007/s10114-018-7415-0 |
[24] | S. Y. Li, D. N. Son, X. D. Wang, A new characterization of the CR sphere and the sharp eigenvalue estimate for the Kohn Laplacian, Adv. Math., 281 (2015), 1285–1305. https://doi.org/10.1016/j.aim.2015.06.008 doi: 10.1016/j.aim.2015.06.008 |
[25] | S. Y. Li, X. D. Wang, Bottom of spectrum of Kähler manifolds with a strongly pseudoconvex boundary, Int. Math. Res. Notices, 2012 (2011), 4351–4371. https://doi.org/10.1093/imrn/rnr185 doi: 10.1093/imrn/rnr185 |
[26] | S. Y. Li, X. D. Wang, An Obata-type theorem in CR geometry, J. Differential Geom., 95 (2013), 483–502. https://doi.org/10.4310/jdg/1381931736 doi: 10.4310/jdg/1381931736 |
[27] | A. M. Matei, First eigenvalue for the p-Laplace operator, Nonlinear Anal.-Theor., 39 (2000), 1051–1068. https://doi.org/10.1016/S0362-546X(98)00266-1 doi: 10.1016/S0362-546X(98)00266-1 |
[28] | A. Menikoff, J. Sjöstrand, On the eigenvalues of a class of hypoelliptic operators, Math. Ann., 235 (1978), 55–85. https://doi.org/10.1007/BF01421593 doi: 10.1007/BF01421593 |
[29] | M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan, 14 (1962), 333–340. https://doi.org/10.2969/jmsj/01430333 doi: 10.2969/jmsj/01430333 |
[30] | R. Petrides, Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces, Geom. Funct. Anal., 24 (2014), 1336–1376. https://doi.org/10.1007/s00039-014-0292-5 doi: 10.1007/s00039-014-0292-5 |
[31] | S. D. Quang, Value distribution theory on angular domains for holomorphic mappings and arbitrary families of moving hypersurfaces, B. Math. Sci., 13 (2023), 2250008. https://doi.org/10.1142/S1664360722500084 doi: 10.1142/S1664360722500084 |
[32] | Z. Q. Shao, J. X. Hong, The eigenvalue problem for the Laplacian equations, Acta Math. Sci., 27 (2007), 329–337. https://doi.org/10.1016/S0252-9602(07)60033-2 doi: 10.1016/S0252-9602(07)60033-2 |
[33] | L. S. Tavares, J. V. C. Sousa, Solutions for a nonhomogeneous p&q-Laplacian problem via variational methods and sub-supersolution technique, Opuscula Math., 43 (2023), 603–613. https://doi.org/10.7494/OpMath.2023.43.4.603 doi: 10.7494/OpMath.2023.43.4.603 |
[34] | S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom., 13 (1978), 25–41. https://doi.org/10.4310/jdg/1214434345 doi: 10.4310/jdg/1214434345 |
[35] | C. D. Xie, Y. T. Shen, Y. X. Yao, Eigenvalue problem of elliptic equations with Hardy potential, Acta Math. Sci., 29 (2009), 1489–1496. https://doi.org/10.1016/S0252-9602(09)60121-1 doi: 10.1016/S0252-9602(09)60121-1 |