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Abstract: Matrix theory is essential for addressing practical problems and executing computational
tasks. Matrices related to Hermite polynomials are essential due to their applications in quantum
mechanics, numerical analysis, probability, and signal processing. Their orthogonality, recurrence
relations, and spectral properties make them a valuable tool for both theoretical research and practical
applications. From a different perspective, we introduced a variant of the Hermite matrix that
incorporates triple factorials and demonstrated that this matrix satisfies various properties. By utilizing
effective matrix algebra techniques, various algebraic properties of this matrix have been determined,
including the product formula, inverse matrix and eigenvalues. Additionally, we extended this matrix
to a more generalized form and derived several identities.
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1. Introduction

In recent times, lower triangular matrices have sparked significant interest in various
investigations. Initially, attention was drawn to the Pascal matrix and several of its generalizations;
see [1, 2, 4–9, 13–17, 20–22, 34, 35, 42, 44–48]. The Pascal matrix, formed from the coefficients

(
n
k

)
,

stands as one of the earliest documented instances of two-dimensional number arrays. Its origins trace
back centuries, likely emerging as a tabular representation of coefficients in the expansion of (x + y)n.
Over time, this matrix has undergone extensive generalization through various mathematical
approaches and interdisciplinary concepts [38–40]. One avenue of generalization involves expanding
upon the fundamental recurrence relation of binomial coefficients. Another method employs divided
differences to construct generalized binomial coefficients. Additionally, Pascal matrices have been
interpreted as representations of linear operators acting on spaces of polynomials or formal power
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series. These diverse approaches illustrate the rich tapestry of mathematical exploration surrounding
Pascal matrices.

Recently, several novel variants of numerous special numbers and polynomials have been
introduced and studied using diverse methodologies [11, 12, 28–30, 36, 37, 41, 43]. Among these
studies, the degenerate forms of Euler, Bernoulli, harmonic, and hyperharmonic numbers, as well as
degenerate forms of Hermite polynomials and Fubini polynomials, have garnered significant
attention [22–25]. Indeed, matrices with entries derived from the coefficients of special polynomials
can offer intriguing insights into both the properties of the polynomials themselves and the structures
of the resulting matrices. Polynomial matrices are widely studied in mathematics and find
applications in various fields such as control theory, signal processing, and cryptography. For
instance, when working with orthogonal polynomials like Legendre, Chebyshev, or Hermite
polynomials, the coefficients of these polynomials possess interesting properties, and matrices
constructed from these coefficients can exhibit certain patterns or symmetries [21, 34, 48]. These
matrices often arise in problems involving approximation theory, numerical analysis, and differential
equations. Exploring the connections between polynomial coefficients and matrix structures can lead
to deeper understanding and applications in diverse areas of mathematics and its applications.

Numerous researchers have explored the wide array of characteristics displayed by these matrices,
particularly focusing on their factorizations while also unveiling numerous combinatorial identities;
see [1–3, 5–9, 13, 20, 26, 27, 30–35, 37, 42, 44–48]. Several of these matrices encompass variations and
generalizations of binomial coefficients, see [4, 15, 26, 48]. Binomial coefficients are defined using
factorials. The double factorial of a non-negative integer m, denoted as m!!, is defined as the product
of all positive integers less than or equal to m that have the same parity (either all odd or all even). In
other words,

m!! =
⌈m

2 ⌉−1∏
k=0

(m − 2k).

Double factorials frequently emerge in integrals and power series, allowing for concise expressions
of equations that would otherwise be verbose [18]. These numbers are also seen in the definition of
modified Hermite polynomials [19]. The modified Hermite polynomials of two variables are defined
by

H∗n (x, y) =
n∑

k=0

{n
k

}
σn−kx

1
2 (n−k)yk (1.1)

where

σk :=
1 + (−1)k

2
,

{n
k

}
:=

 n!
k!(n−k)!! , if n ≥ k ≥ 0

0, otherwise
.

Using these polynomials, a lower triangular matrix Tn(x, y) of order n + 1 is defined with entries

(Tn(x, y))i, j =
{i
j

}
σi− jx((i− j)/2)y j if i ≥ j,

see [48]. Thus, we can rewrite these entries as follows:

(Tn(x, y))i, j =
{i
j

}
x((i− j)/2)y j[i − j ≡ 0(mod 2)] if i ≥ j.
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We can define double factorial binomial coefficients by substituting double factorials for regular
factorials; see [10, 18]. Although these coefficients appear similar to classical binomial coefficients,
they lack many of the properties of the latter. A notable difference is that, while classical binomial
coefficients are always integers, double factorial binomial coefficients do not necessarily share this
property. Consequently, a variant of the matrix Tn(x, y) has been defined using double factorial
binomial coefficients based on this idea, and it has been shown that this matrix satisfies several
properties [26].

Higher factorials, or multifactorials, can indeed be defined. For example, n!!!, the triple factorial
of n, is the product of positive integers less than or equal to n and congruent to n modulo 3. Based on
these observations, it is also fascinating to explore how the results of the matrix might be affected if

we substitute triple factorials for double factorials in the denominators of
{i
j

}
. Inspired by these works,

it seems both instructive and intriguing to embark on research concerning matrices associated with
altered Hermite polynomials. We define altered Hermite polynomials as follows:

Definition 1.1. The altered Hermite polynomial, denoted by Hr(x, y), is a variant of the
polynomial (1.1) defined for nonzero real numbers x and y as

Hr(x, y) =
r∑

i=0

(r
i

)
t
x

r−i
3 yi[r − i = 0(mod 3)],

where
(r
i

)
t

:= r!
i!(r−i)!!! .

In this paper, a square matrix associated with altered Hermite polynomials as its entries has been
defined, and various properties of this matrix have been examined. We derive explicit expressions for
the products, powers, and inverses of the matrices, as well as several factorization formulas.

2. The altered Hermite matrix

Using the definition of altered Hermite polynomial given in Definition 1.1, the ith term of the rth

altered Hermite polynomial Hr(x, y) is denoted as

hr,i(x, y) :=
(r
i

)
t
x

r−i
3 yi[r − i = 0(mod 3)], for r ≥ i ≥ 0.

We construct a matrix Hn(x, y) with entries hi, j(x, y), where hi, j(x, y) = 0 if i < j. Then the matrix
H6(x, y) will look as

H6(x, y) =



1 0 0 0 0 0 0
0 y 0 0 0 0 0
0 0 y2 0 0 0 0
2x 0 0 y3 0 0 0
0 8xy 0 0 y4 0 0
0 0 20xy2 0 0 y5 0

40x2 0 0 40xy3 0 0 y6


.

We will now delve into the properties and applications of the matrix Hn(x, y). The subsequent
theorem elucidates its multiplication properties.
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Theorem 2.1. For positive integer n and real numbers x, y, z and w, we have

Hn(x, y)Hn(w, z) = Hn(x + wy3, yz). (2.1)

Proof. We prove the theorem by induction on n. It clearly holds for n = 1. Suppose it holds for n − 1,
and we want to prove it for n. We writeHn(x, y) in the following form:

Hn(x, y) =
[
Hn−1(x, y) 0
Qn(x, y) yn

]
in which Qn(x, y) is a row matrix

Qn(x, y) =
[(n

0

)
t
x

n
3 [n = 0(mod 3)]

(n
1

)
t
x

n−1
3 y[n − 1 = 0(mod 3)] · · ·

( n
n − 1

)
t
x

1
3 yn−1[1 = 0(mod 3)]

]
.

By matrix product we have,

Hn(x, y)Hn(w, z) =
[
Hn−1(x, y) 0
Qn(x, y) yn

] [
Hn−1(w, z) 0
Qn(w, z) zn

]
=

[
Hn−1(x, y)Hn−1(w, z) 0

Qn(x, y)Hn−1(w, z) + ynQn(w, z) (yz)n

]
.

Using the induction hypothesis, we see that

Hn−1(x, y)Hn−1(w, z) = Hn−1(x + wy3, yz).

It is easy to see that,
Qn(x, y)Hn−1(w, z) + ynQn(w, z) = Qn(x + wy3, yz).

Hence, we obtain,

Hn(x, y)Hn(w, z) =
[

Hn−1(x, y)Hn−1(w, z) 0
Qn(x, y)Hn−1(w, z) + ynQn(w, z) (yz)n

]
=

[
Hn−1(x + wy3, yz) 0
Qn(x + wy3, yz) (yz)n

]
= Hn(x + wy3, yz).

□

For y = z = 1, we obtain
Hn(x, 1)Hn(w, 1) = Hn(x + w, 1).

The inverse and power of matrixHn(x, y) can be derived using Theorem 2.1.

Theorem 2.2. Let y be a nonzero real number. Then we have

H−1
n (x, y) = Hn(−xy−3, y−1). (2.2)

In particular,
H−1

n (1, 1) = Hn(−1, 1). (2.3)
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Proof. By Theorem 2.1, we write

Hn(x, y)Hn(−xy−3, y−1) = Hn(x − xy−3y3, yy−1)
= Hn(0, 1) = In+1.

Therefore, Equation (2.2) holds. By taking x = y = 1 in (2.2), we get (2.3). □

Theorem 2.3. For k > 0, we have

H k
n (x, y) = Hn

x
k−1∑
l=0

y3l, yk

 =
Hn

(
1−y3k

1−y3 x, yk
)
, if y , 1

Hn(kx, yk), if y = 1
. (2.4)

Proof. Taking w = x and z = y in (2.1), we have

H2
n (x, y) = Hn

(
x(1 + y3), y2

)
.

Utilizing formula (2.1) once more, by multiplyingHn

(
x(1 + y3), y2

)
andHn(x, y), we obtain

H3
n (x, y) = Hn

(
x(1 + y3 + y6), y3

)
.

Applying mathematical induction, we derive

H k
n (x, y) = Hn

(
x(1 + y3 + · · · + y3k), yk

)
.

After simplification, we arrive at Eq (2.4). □

We now aim to find the eigenvalues and eigenvectors of the matrixHn(x, y) as defined.

Theorem 2.4. Let y , 1. The eigenvalues ofHn(x, y) are 1, y, y2, . . . , yn−1 and the columns of the matrix
Hn

(
x

1−y3 , 1
)

represent the corresponding eigenvectors.

Proof. The definition of eigenvalues and eigenvectors, along with the identity

Hn(x, y)Hn

( x
1 − y3 , 1

)
= Hn

( x
1 − y3 , y

)
substantiates our claim. □

Corollary 2.5. Let Y = diag{1, y, y2, . . . , yn−1}. Then for y , 1, we have

Hn(x, y) = Hn

( x
1 − y3 , 1

)
YHn

(
−

x
1 − y3 , 1

)
.

Let us consider the factorization of the matrixHn(x, y) and observe some results with the following
matrices: We will represent the matrices with entries as specified. We define (n + 1) × (n + 1) matrices
S n(x, y) and Dn(x, y) with entries

(S n(x, y))i, j =


1 i = j = 0
y i = j , 0
x(i − 1)(i − 2)(S n(x, y))i−3, j, i > j and i ≥ 3
0, i − j = 1 or 2(mod 3) and i < j
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(Dn(x, y))i, j =


1 i = j = 0
1
y i = j , 0

−(i − 1)(i − 2) x
y , for j = i − 3

0, otherwise

.

Additionally, we require the matrices,

H k(x, y) =
[
1 0
0 Hk(x, y)

]
of order k + 2 and

Un(x, y) = S n(x, y), Uk(x, y) =
[
In−k−1 0

0 S k(x, y)

]
, 1 ≤ k ≤ n − 1.

It is easy to see that
S −1

n (x, y) = Dn(x, y).

Example 2.6.

S 6(x, y)D6(x, y) =

1 0 0 0 0 0 0
0 y 0 0 0 0 0
0 0 y 0 0 0 0
2x 0 0 y 0 0 0
0 6xy 0 0 y 0 0
0 0 12xy 0 0 y 0

40x2 0 0 20xy 0 0 y





1 0 0 0 0 0 0
0 1/y 0 0 0 0 0
0 0 1/y 0 0 0 0

−2x/y 0 0 1/y 0 0 0
0 −6x/y 0 0 1/y 0 0
0 0 −12x/y 0 0 1/y 0
0 0 0 −20x/y 0 0 1/y


= I7.

Lemma 2.7. For k > 0, we have

Dk(x, y)Hk(x, y) = H k−1(x, y), (2.5)

or
Hk(x, y) = S k(x, y)H k−1(x, y).

Proof. Verifying Eq (2.5) is quite straightforward using the definition of matrix multiplication. □

Example 2.8.

S 6(x, y)H5(x, y)

=



1 0 0 0 0 0 0
0 y 0 0 0 0 0
0 0 y 0 0 0 0
2x 0 0 y 0 0 0
0 6xy 0 0 y 0 0
0 0 12xy 0 0 y 0

40x2 0 0 20xy 0 0 y





1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 y 0 0 0 0
0 0 0 y2 0 0 0
0 2x 0 0 y3 0 0
0 0 8xy 0 0 y4 0
0 0 0 20xy2 0 0 y5


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=



1 0 0 0 0 0 0
0 y 0 0 0 0 0
0 0 y2 0 0 0 0
2x 0 0 y3 0 0 0
0 8xy 0 0 y4 0 0
0 0 20xy2 0 0 y5 0

40x2 0 0 40xy3 0 0 y6


= H6(x, y).

By employing Lemma 2.7 and the definition of the matrices Uk(x, y), we can factorizeHn(x, y). The
following theorem presents the factorization.

Theorem 2.9. The matrixHn(x, y) can be expressed as

Hn(x, y) = Un(x, y)Un−1(x, y) · · ·U1(x, y).

Specifically,
Hn = UnUn−1 · · ·U1

whereHn := Hn(1, 1) and Uk := Uk(1, 1) for k = 1, 2, . . . , n.

According to Theorem 2.9, the factorization of the inverse of the matrixHn(x, y) is given by

H−1
n (x, y) = U−1

1 (x, y)U−1
2 (x, y) · · ·U−1

n (x, y),

where

U−1
k (x, y) =

[
In−k−1 0

0 Dk(x, y)

]
, k = 1, 2, . . . , n − 1

and
U−1

n (x, y) = Dn(x, y).

Example 2.10. Given that

H5(x, y) =



1 0 0 0 0 0
0 y 0 0 0 0
0 0 y2 0 0 0
2x 0 0 y3 0 0
0 8xy 0 0 y4 0
0 0 20xy2 0 0 y5


,

we can factorize this matrix using the defined matrices Uk(x, y) for k = 5, 4, 3, 2, 1

1 0 0 0 0 0
0 y 0 0 0 0
0 0 y 0 0 0
2x 0 0 y 0 0
0 6xy 0 0 y 0
0 0 12xy 0 0 y





1 0 0 0 0 0
0 1 0 0 0 0
0 0 y 0 0 0
0 0 0 y 0 0
0 2x 0 0 y 0
0 0 6xy 0 0 y





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 y 0 0
0 0 0 0 y 0
0 0 2x 0 0 y


AIMS Mathematics Volume 9, Issue 9, 25360–25375.
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×



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 y 0
0 0 0 0 0 y





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 y


.

The matrices Hn(x3, y) and Hn(−x3, y) have the following factorizations, respectively, where the
variables x and y are separated.

Theorem 2.11. For n > 0, the equations are

Hn(x3, y) = Cn(x)Hn(1, 1)C−1
n (x/y),

Hn(−x3, y) = Cn(x)Hn(−1, 1)C−1
n (x/y),

where Cn(x) := diag{1, x, x2, . . . , xn} is a diagonal matrix.

Moreover, the factorizations of both Hn and H−1
n involve a lower triangular Toeplitz matrix, as

directly implied by their definitions.

Theorem 2.12. The matrixHn can be decomposed as follows:

Hn = JnAnJ−1
n ,

where Jn := diag{0!, 1!, 2!, . . . , n!} and An = [ai j] with ai j = 1/(i− j)!!! for i− j = 0(mod 3) and ai j = 0
otherwise.

After some computations, we have A−1
n = [bi j] where bi j =

(−1)(i− j)/3

(i− j)!!! for i − j = 0(mod 3) and bi j = 0
otherwise.

3. Some applications of the altered Hermite matrix

Let us formulate a relation between the matrixHn(x, 1) and the exponential of a special matrix. For
any square matrix L, the exponential of L is defined as the matrix

eL = I + L +
L2

2!
+

L3

3!
+ · · · +

Lk

k!
+ · · · .

Definition 3.1. The matrix Ln = [li, j] of order n + 1 is defined by

li, j =


(i

j

)
t
, if i = j + 3

0, otherwise

for all 0 ≤ i, j ≤ n.

We aim to prove thatHn(x, 1) = exLn . To establish this, we will demonstrate the following result: Let(i
j

)
(t,k)

:=
∏k−1

n=0

( i − 3n
i − 3n − 3

)
t
for a fixed nonnegative integer j.
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Lemma 3.2. The entries (Lk
n)i, j of the matrix Lk

n for positive integers k are defined as

(Lk
n)i, j =


(i

j

)
(t,k)
, if i = j + 3k

0, otherwise

.

Proof. The proof will proceed by induction on k. The base case is straightforward. Let’s assume the
inductive hypothesis for (Lk+1

n )i, j = (Ln)i, j(Lk
n)i, j. Then for i , j+3k+3, (Lk+1

n )i, j = 0. For i = j+3k+3,
we have

(Lk+1
n )i, j =

(i
r

)
t

(r
j

)
(t,k)
=

( j + 3k + 3
r

)
t

(r
j

)
(t,k)
=

(i
j

)
(t,k+1)
.

□

Theorem 3.3. For n ∈ N, r ∈ Z and x ∈ R, we have

Hn(x, 1) = exLn .

Proof. Assume there exists a matrix Mn such that Hn(x, 1) = exMn . Then, by differentiating both sides
with respect to x and evaluating at x = 0, we obtain H ′n(x, 1) |x=0= Mn. Therefore, there exists at
most one matrix Mn such that Hn(x, 1) = exMn . By calculating the derivative of the matrix Hn(x, 1)
with respect to x at x = 0, we observe that Mn = Ln, where Ln is defined as in Definition 3.1. From
Lemma 3.2, (Lk

n)i, j = 0 for 3k > n, thus

exLn =

⌊ n
3 ⌋∑

k=0

xk

k!
Lk

n.

Notice that (exLn)i, j = 0 for i < j, and (exLn)i,i = 1. For i > j and i = j+3k, we have (exLn)i, j =
xk

k! (Lk
n)i, j =

xk

k!

(i
j

)
(t,k)
= (Hn(x, 1))i, j. □

At the conclusion of this section, we provide the explicit inverse of In − aHn(x, 1) for all | a |< 1.

Theorem 3.4. For | a |< 1, the matrix Rn(x) = (In − aHn(x, 1))−1 is defined as follows

(Rn(x))i,i =
1

1 − a

for the main diagonal entries, and it is defined for i > j as

(Rn(x))i, j = (Hn(x, 1))i, jLi j−i(a)

where Lin(z) is the polylogarithm function.

Proof. For any | a |< 1, we have

Rn(x) = (In − aHn(x, 1))−1 =

∞∑
k=0

akHn(x, 1)k
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and from Theorem 2.3, we can write

(Rn(x))i, j =

∞∑
k=0

ak(Hn(kx, 1))i, j = (Hn(x, 1))i, j

∞∑
k=0

akki− j.

Therefore, the proof can be completed by addressing the cases where i = j and i > j. □

Example 3.5.

I6 − aH6(x, 1) =



1 − a 0 0 0 0 0 0
0 1 − a 0 0 0 0 0
0 0 1 − a 0 0 0 0
−2xa 0 0 1 − a 0 0 0

0 −8xa 0 0 1 − a 0 0
0 0 −20xa 0 0 1 − a 0

−40x2a 0 0 −40xa 0 0 1 − a


.

The inverse of this matrix equals

1
1−a 0 0 0 0 0 0
0 1

1−a 0 0 0 0 0
0 0 1

1−a 0 0 0 0
2xa 1

(1−a)2 0 0 1
1−a 0 0 0

0 8xa 1
(1−a)2 0 0 1

1−a 0 0
0 0 20xa 1

(1−a)2 0 0 1
1−a 0

40x2aa(a+1)
(1−a)3 0 0 40xa 1

(1−a)2 0 0 1
1−a


.

4. A generalization of the altered Hermite matrix

In this section, we introduce a matrix and derive several results from it.

Definition 4.1. Let x and λ be arbitrary real numbers, and let n be a non-negative integer. Then

xn|λ =

x(x + λ) · · · (x + (n − 1)λ) if n > 0
0 if n = 0

.

Therefore, we obtain xn|0 = xn for λ = 0.

Lemma 4.2. ( [5, Lemma 1]) Let x, y, λ be real numbers and n be a positive integer. Then

(x + y)n|λ =

n∑
i=0

(
n
i

)
x(n−i)|λyi|λ.

Proof. See [5]. □

We consider the following matrix, which generalizes the altered Hermite matrix by incorporating
the above lemma.
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Definition 4.3. The matrix Hn,λ(x) is defined by

(
Hn,λ(x)

)
i, j :=

(i
j

)
t
x⌊

i− j
3 ⌋|λ[i − j = 0(mod 3)].

Theorem 4.4. Let n > 0. Then

Hn,λ(x + y) = Hn,λ(x)Hn,λ(y).

Proof. The proof follows a similar approach to Theorem 2.1. □

Corollary 4.5. For integers j and k with k > 0, we have

(i) H j
n,λ(1) = Hn,λ( j).

(ii) Hk
n,λ( j/k) = Hn,λ( j).

Now, we extend Definition 4.3 to two variables, x and y.

Definition 4.6. Let x, y and λ be real numbers, and let n be a positive integer. The matrix Hn,λ(x, y) is
defined by

(Hn,λ(x, y))i, j :=
(i

j

)
t
x⌊

i− j
3 ⌋|λy j|λ[i − j = 0(mod 3)].

The following lemma directly follows from the above definition.

Lemma 4.7. Hn,λ(x, y) can be expressed as

Hn,λ(x, y) = Hn,λ(x)diag{1, y1|λ, · · · , yn|λ}.

Theorem 4.8. For n > 0, we have

Hn,λ(x + y, z) = Hn,λ(x)Hn,λ(y, z) = Hn,λ(y)Hn,λ(x, z).

Proof. By utilizing Theorem 4.4 and Lemma 4.7, we obtain the result. □

Let us generalize the altered Hermite matrix in to two variables associated with a sequence b =
{bn}n≥0.

Definition 4.9. We define

(Hn,λ(x, y,b))i, j := b j

(i
j

)
t
x⌊

i− j
3 ⌋|λy j|λ[i − j = 0(mod 3)].

Lemma 4.10. The matrix Hn,λ(x, y,b) can be factorized as follows:

Hn,λ(x, y,b) = Hn,λ(x, y)diag{b0, b1, · · · , bn}.

Proof. The proof can be straightforwardly accomplished using mathematical induction and
Theorem 4.8. □

Theorem 4.11. We can factorize Hn,λ(x + y, z,b) as follows:
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(i) Hn,λ(x + y, z,b) = Hn,λ(x)Hn,λ(y, z,b).
(ii) Hn,λ(x + y, z,b) = Hn,λ(x)Hn,λ(y, z)diag{b0, b1, · · · , bn}.

Proof. The proof follows by utilizing Theorems 4.4 and 4.8, along with Lemma 4.10. □

Proposition 4.12. For any positive integer n and a real number x, we have

(Hn,λ(x) − In+1)⌊
n
3 ⌋ = Mn

where In+1 is an identity matrix of order n+1 and the matrix Mn is a matrix of order n+1, has elements
defined as follows:

• For n = 0(mod 3),
(Mn)n,0 = n!

( x
3

)n/3
. (4.1)

• For n = 1(mod 3),

(Mn)n−1,0 = (n − 1)!
( x
3

)(n−1)/3
, (Mn)n,1 = (n)!

( x
3

)(n−1)/3
. (4.2)

• For n = 2(mod 3)

(Mn)n−2,0 = (n − 2)!
( x
3

)(n−2)/3
,

(Mn)n−1,1 = (n − 1)!
( x
3

)(n−2)/3
,

(Mn)n,2 =
n!
2

( x
3

)(n−2)/3

with all other elements of Mn being zero.

Proof. We will prove it first for n = 0(mod 3). Let n = 3m. We aim to show that for each 1 ≤ k ≤ m,
all elements of the first 3k rows of the matrix M3k defined as

M3k := (H3m,λ(x) − I3m+1)k (4.3)

are zero, except for the 3k + 1-th row, where the first element is

(M3k)3k,0 =
(3
0

)
t

(6
3

)
t
· · ·

( 3k
3k − 3

)
t
xk = (3k)!

( x
3

)k
. (4.4)

All other elements in this 3k + 1-th row are zero.
The proof will proceed by induction on k. The base case k = 1 is straightforward. Suppose (4.3)

and (4.4) hold for k. Then, using matrix multiplication, we proceed with the inductive step as follows:

(H3m,λ(x) − I3m+1)k+1 = (H3m,λ(x) − I3m+1)M3k

=


00,0 00,1 ··· ··· ··· ··· 0
··· ··· ··· ··· ··· ··· ···
∗3k+2,0 ∗3k+2,1 ··· 0 ··· ··· 0(

3k+3
0

)
t
xk|λ 03k+2,1 ···

(
3k+3

3k

)
x 0 ··· 0

03k+4,0

(
3k+4

1

)
t
x(k+1)|λ ··· 0

(
3k+4
3k+1

)
t
x 0 ···

··· ··· ··· ··· ··· ··· ···

 ×


00,0 00,1 ··· 00,2m

··· ··· ··· ···

03k−1,0 03k−1,1 ··· 03k−1,3m

(M3k)3k,0 0 ··· 0
··· ··· ··· ···


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=


00,0 00,1 · · · 00,2m

· · · · · · · · · · · ·

03k+2,0 03k+2,1 · · · 03k+2,3m

(M3k+3)3k+3,0 0 · · · 0
· · · · · · · · · · · ·


where

(M3k+3)3k+3,0 =
(

3k+3
3k

)
t
x · (M3k)3k,0 =

(3
0

)
t

(6
3

)
t
· · ·

( 3k
3k − 3

)
t

(3k + 3
3k

)
t
xk+1.

Therefore, (4.3) and (4.4) hold for k + 1. By completing the induction up to k = m, we have proven
that (4.1) holds true.

Applying the same procedure yields the results given by (4.2) and (4.3). □

5. Conclusions

Motivated by the works in [4, 26, 48], we have introduced a variant of the Hermite matrix that
incorporates triple factorials and have shown that this matrix exhibits several notable properties.
Through the application of advanced matrix algebra techniques, we have explored various algebraic
characteristics of this matrix. Furthermore, we generalized this matrix and derived several identities
related to it.
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