Citation: Chang-jian Zhao. On Opial-Wirtinger type inequalities[J]. AIMS Mathematics, 2020, 5(2): 1275-1283. doi: 10.3934/math.2020087
[1] | R. P. Agarwal, Harp Opial-type inequalities involving r-derivatives and their applications, Tohoku Math. J., 47 (1995), 567-593. doi: 10.2748/tmj/1178225462 |
[2] | R. P. Agarwal,V. Lakshmikantham, Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations, World Scientific, Singapore, 1993. |
[3] | R. P. Agarwal, P. Y. H. Pang, Opial inequalities with applications in differential and difference Equations, Kluwer Academic Publishers, Dordrecht, 2013. |
[4] | R. P. Agarwal, P. Y. H. Pang, Sharp opial-type inequalities in two variables, Appl. Anal., 56 (1995), 227-242. doi: 10.1080/00036819508840324 |
[5] | R. P. Agarwal, E. Thandapani, On some new integrodifferential inequalities, Anal. sti. Univ. "Al. I. Cuza" din Iasi, 28 (1982), 123-126. |
[6] | D. Bainov, P. Simeonov, Integral Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, 1992. |
[7] | W. S. Cheung, Some generalized Opial-type inequalities, J. Math. Anal. Appl., 162 (1991), 317-321. doi: 10.1016/0022-247X(91)90152-P |
[8] | K. M. Das, An inequality similar to Opial's inequality, P. Am. Math. Soc., 22 (1969), 258-261. |
[9] | E. K. Godunova, V. I. Levin, On an inequality of Maroni, Mat. Zametki., 2 (1967), 221-224. |
[10] | J. D. Li, Opial-type integral inequalities involving several higher order derivatives, J. Math. Anal. Appl., 167 (1992), 98-100. doi: 10.1016/0022-247X(92)90238-9 |
[11] | D. S. Mitrinovič, Analytic Inequalities, Springer-Verlag, Berlin, New York, 1970. |
[12] | Z. Opial, Sur une inégalité, Ann. Polon. Math., 8 (1960), 29-39. doi: 10.4064/ap-8-1-29-32 |
[13] | B. G. Pachpatte, A note on an inequality ascribed to Wirtinger, Tamkang J. Math., 17 (1986), 69-73. |
[14] | J. Traple, On a boundary value problem for systems of ordinary differential equations of second order, Zeszyty Nauk, Uni. Jagiell. Prace Math., 15 (1971), 159-168. |
[15] | D. Willett, The existence-uniqueness theorem for an n-th order linear ordinary differential equation, Amer. Math. Monthly, 75 (1968), 174-178. |
[16] | G. S. Yang, A note on inequality similar to Opial inequality, Tamkang J. Math.,18 (1987), 101-104. |
[17] | G. S. Yang, Inequality of Opial-type in two variables, Tamkang J. Math.,13 (1982), 255-259. |
[18] | C. J. Zhao, M. Bencze, On Agarwal-Pang-type inequalities, Ukrainian Math. J., 64 (2012), 200-209. |
[19] | C. J. Zhao, W. S. Cheung, Sharp integral inequalities involving high-order partial derivatives, J. Inequal. Appl.,2008 (2008), 1-10. |
[20] | C. J. Zhao, W. S. Cheung, Inequalities for Katugampola conformable partial derivatives, J. Inequal. Appl.,2019 (2019), 51. |