Research article

On Opial-Wirtinger type inequalities

  • Received: 24 October 2019 Accepted: 07 January 2020 Published: 19 January 2020
  • MSC : 26D15

  • In the present paper we establish some new Opial-Wirtinger's type inequalities involving Katugampola partial derivatives. These new results in special cases yield Agarwal and Pang's, Traple's and Pachpatte's inequalities and provide new estimates on inequality of this type.

    Citation: Chang-jian Zhao. On Opial-Wirtinger type inequalities[J]. AIMS Mathematics, 2020, 5(2): 1275-1283. doi: 10.3934/math.2020087

    Related Papers:

  • In the present paper we establish some new Opial-Wirtinger's type inequalities involving Katugampola partial derivatives. These new results in special cases yield Agarwal and Pang's, Traple's and Pachpatte's inequalities and provide new estimates on inequality of this type.


    加载中


    [1] R. P. Agarwal, Harp Opial-type inequalities involving r-derivatives and their applications, Tohoku Math. J., 47 (1995), 567-593. doi: 10.2748/tmj/1178225462
    [2] R. P. Agarwal,V. Lakshmikantham, Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations, World Scientific, Singapore, 1993.
    [3] R. P. Agarwal, P. Y. H. Pang, Opial inequalities with applications in differential and difference Equations, Kluwer Academic Publishers, Dordrecht, 2013.
    [4] R. P. Agarwal, P. Y. H. Pang, Sharp opial-type inequalities in two variables, Appl. Anal., 56 (1995), 227-242. doi: 10.1080/00036819508840324
    [5] R. P. Agarwal, E. Thandapani, On some new integrodifferential inequalities, Anal. sti. Univ. "Al. I. Cuza" din Iasi, 28 (1982), 123-126.
    [6] D. Bainov, P. Simeonov, Integral Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, 1992.
    [7] W. S. Cheung, Some generalized Opial-type inequalities, J. Math. Anal. Appl., 162 (1991), 317-321. doi: 10.1016/0022-247X(91)90152-P
    [8] K. M. Das, An inequality similar to Opial's inequality, P. Am. Math. Soc., 22 (1969), 258-261.
    [9] E. K. Godunova, V. I. Levin, On an inequality of Maroni, Mat. Zametki., 2 (1967), 221-224.
    [10] J. D. Li, Opial-type integral inequalities involving several higher order derivatives, J. Math. Anal. Appl., 167 (1992), 98-100. doi: 10.1016/0022-247X(92)90238-9
    [11] D. S. Mitrinovič, Analytic Inequalities, Springer-Verlag, Berlin, New York, 1970.
    [12] Z. Opial, Sur une inégalité, Ann. Polon. Math., 8 (1960), 29-39. doi: 10.4064/ap-8-1-29-32
    [13] B. G. Pachpatte, A note on an inequality ascribed to Wirtinger, Tamkang J. Math., 17 (1986), 69-73.
    [14] J. Traple, On a boundary value problem for systems of ordinary differential equations of second order, Zeszyty Nauk, Uni. Jagiell. Prace Math., 15 (1971), 159-168.
    [15] D. Willett, The existence-uniqueness theorem for an n-th order linear ordinary differential equation, Amer. Math. Monthly, 75 (1968), 174-178.
    [16] G. S. Yang, A note on inequality similar to Opial inequality, Tamkang J. Math.,18 (1987), 101-104.
    [17] G. S. Yang, Inequality of Opial-type in two variables, Tamkang J. Math.,13 (1982), 255-259.
    [18] C. J. Zhao, M. Bencze, On Agarwal-Pang-type inequalities, Ukrainian Math. J., 64 (2012), 200-209.
    [19] C. J. Zhao, W. S. Cheung, Sharp integral inequalities involving high-order partial derivatives, J. Inequal. Appl.,2008 (2008), 1-10.
    [20] C. J. Zhao, W. S. Cheung, Inequalities for Katugampola conformable partial derivatives, J. Inequal. Appl.,2019 (2019), 51.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3127) PDF downloads(370) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog