Research article Special Issues

New results of unified Chebyshev polynomials

  • Received: 22 March 2024 Revised: 02 June 2024 Accepted: 12 June 2024 Published: 20 June 2024
  • MSC : 33-XX, 33C20, 33C47

  • This paper presents a new approach for the unified Chebyshev polynomials (UCPs). It is first necessary to introduce the three basic formulas of these polynomials, namely analytic form, moments, and inversion formulas, which will later be utilized to derive further formulas of the UCPs. We will prove the basic formula that shows that these polynomials can be expressed as a combination of three consecutive terms of Chebyshev polynomials (CPs) of the second kind. New derivatives and connection formulas between two different classes of the UCPs are established. Some other expressions of the derivatives of UCPs are given in terms of other orthogonal and non-orthogonal polynomials. The UCPs are also the basis for additional derivative expressions of well-known polynomials. A new linearization formula (LF) of the UCPs that generalizes some well-known formulas is given in a simplified form where no hypergeometric forms are present. Other product formulas of the UCPs with various polynomials are also given. As an application to some of the derived formulas, some definite and weighted definite integrals are computed in closed forms.

    Citation: Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori. New results of unified Chebyshev polynomials[J]. AIMS Mathematics, 2024, 9(8): 20058-20088. doi: 10.3934/math.2024978

    Related Papers:

  • This paper presents a new approach for the unified Chebyshev polynomials (UCPs). It is first necessary to introduce the three basic formulas of these polynomials, namely analytic form, moments, and inversion formulas, which will later be utilized to derive further formulas of the UCPs. We will prove the basic formula that shows that these polynomials can be expressed as a combination of three consecutive terms of Chebyshev polynomials (CPs) of the second kind. New derivatives and connection formulas between two different classes of the UCPs are established. Some other expressions of the derivatives of UCPs are given in terms of other orthogonal and non-orthogonal polynomials. The UCPs are also the basis for additional derivative expressions of well-known polynomials. A new linearization formula (LF) of the UCPs that generalizes some well-known formulas is given in a simplified form where no hypergeometric forms are present. Other product formulas of the UCPs with various polynomials are also given. As an application to some of the derived formulas, some definite and weighted definite integrals are computed in closed forms.



    加载中


    [1] J. P. Boyd. Chebyshev and Fourier Spectral Methods, Chicago: Courier Corporation, 2001.
    [2] J. C. Mason, D. C. Handscomb, Chebyshev Polynomials, Florida: CRC Press, 2002.
    [3] F. Marcellán, Orthogonal Polynomials and Special Functions: Computation and Applications, Berlin: Springer Science & Business Media, 2006.
    [4] T. Kim, D. S. Kim, J. W. Park, J. Kwon, A note on multi-Euler-Genocchi and degenerate multi-Euler-Genocchi polynomials, J. Math., 2023 (2023), 3810046. https://doi.org/10.1155/2023/3810046 doi: 10.1155/2023/3810046
    [5] T. Kim, D. S. Kim, H. K. Kim, On generalized degenerate Euler-Genocchi polynomials, Appl. Math. Sci. Eng., 31 (2023), 2159958. https://doi.org/10.1080/27690911.2022.2159958 doi: 10.1080/27690911.2022.2159958
    [6] T. Kim, D. S. Kim, Some results on degenerate Fubini and degenerate Bell polynomials, Appl. Anal. Discrete Math., 17 (2023), 548–560. https://doi.org/10.2298/aadm200310035k doi: 10.2298/aadm200310035k
    [7] T. Kim, D. S. Kim, Probabilistic Bernoulli and Euler polynomials, Russ. J. Math. Phys., 31 (2024), 94–105. https://doi.org/10.1134/s106192084010072 doi: 10.1134/s106192084010072
    [8] L. Luo, Y. Ma, T. Kim, W. Liu, Some identities on truncated polynomials associated with Lah-Bell polynomials, Appl. Math. Sci. Eng., 31 (2023), 2245539. https://doi.org/10.1080/27690911.2023.2245539 doi: 10.1080/27690911.2023.2245539
    [9] M. A. Abdelkawy, M. E. A. Zaky, M. M. Babatin, A. S. Alnahdi, Jacobi spectral collocation technique for fractional inverse parabolic problem, Alex. Eng. J., 61 (2022), 6221–6236. https://doi.org/10.1016/j.aej.2021.11.050 doi: 10.1016/j.aej.2021.11.050
    [10] M. M. Alsuyuti, E. H. Doha, S. S. Ezz-Eldien, Galerkin operational approach for multi-dimensions fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 114 (2022), 106608. https://doi.org/10.1016/j.cnsns.2022.106608 doi: 10.1016/j.cnsns.2022.106608
    [11] S. Yüzbaşı, G. Yıldırım, Numerical solutions of the Bagley-Torvik equation by using generalized functions with fractional powers of Laguerre polynomials, Int. J. Nonlinear Sci. Numer. Simul., 24 (2023), 1003–1021. https://doi.org/10.1515/ijnsns-2021-0120 doi: 10.1515/ijnsns-2021-0120
    [12] A. Yari, Numerical solution for fractional optimal control problems by Hermite polynomials, J. Vib. Control, 27 (2021), 698–716. https://doi.org/10.1177/1077546320933129 doi: 10.1177/1077546320933129
    [13] R. O. Awonusika, A. G. Ariwayo, Descriptions of fractional coefficients of Jacobi polynomial expansions, J. Anal., 30 (2022), 1567–1608. https://doi.org/10.1007/s41478-022-00419-9 doi: 10.1007/s41478-022-00419-9
    [14] E. Mainar, J. M. Peña, B. Rubio, Accurate computations with collocation and Wronskian matrices of Jacobi polynomials, J. Sci. Comput., 87 (2021), 77. https://doi.org/10.1007/s10915-021-01500-4 doi: 10.1007/s10915-021-01500-4
    [15] W. M. Abd-Elhameed, A. K. Amin, Novel identities of Bernoulli polynomials involving closed forms for some definite integrals, Symmetry, 14 (2022), 2284. https://doi.org/10.3390/sym14112284 doi: 10.3390/sym14112284
    [16] F. A. Costabile, M. I. Gualtieri, A. Napoli, General bivariate Appell polynomials via matrix calculus and related interpolation hints, Mathematics, 9 (2021), 964. https://doi.org/10.3390/math9090964 doi: 10.3390/math9090964
    [17] F. A. Costabile, M. I. Gualtieri, A. Napoli, Lidstone-Euler second-type boundary value problems: theoretical and computational tools, Mediterr. J. Math., 18 (2021), 1–24. https://doi.org/10.1007/s00009-021-01822-5 doi: 10.1007/s00009-021-01822-5
    [18] F. A. Costabile, M. I. Gualtieri, A. Napoli, Recurrence relations and determinant forms for general polynomial sequences. Application to Genocchi polynomials, Integral Transforms Spec. Funct., 30 (2019), 112–127. https://doi.org/10.1080/10652469.2018.1537272 doi: 10.1080/10652469.2018.1537272
    [19] N. Khan, S. Husain, T. Usman, S. Araci, A new family of Apostol-Genocchi polynomials associated with their certain identities, Appl. Math. Sci. Eng., 31 (2023), 1–19. https://doi.org/10.1080/27690911.2022.2155641 doi: 10.1080/27690911.2022.2155641
    [20] U. Duran, S. Araci, M. Acikgoz, Bell-based Bernoulli polynomials with applications, Axioms, 10 (2021), 29. https://doi.org/10.3390/axioms10010029 doi: 10.3390/axioms10010029
    [21] M. M. Khader, M. Adel, Chebyshev wavelet procedure for solving FLDEs, Acta Appl. Math., 158 (2018), 1–10. https://doi.org/10.1007/s10440-018-0171-4 doi: 10.1007/s10440-018-0171-4
    [22] Y. H. Youssri, R. M. Hafez, Chebyshev collocation treatment of Volterra-Fredholm integral equation with error analysis, Arab. J. Math., 9 (2020), 471–480. https://doi.org/10.1007/s40065-019-0243-y doi: 10.1007/s40065-019-0243-y
    [23] M. Abdelhakem, T. Alaa-Eldeen, D. Baleanu, M. G. Alshehri, M. El-Kady, Approximating real-life BVPs via Chebyshev polynomials' first derivative pseudo-Galerkin method, Fractal Fract., 5 (2021), 165. https://doi.org/10.3390/fractalfract5040165 doi: 10.3390/fractalfract5040165
    [24] M. R. A. Sakran, Numerical solutions of integral and integro-differential equations using Chebyshev polynomials of the third kind, Appl. Math. Comput., 351 (2019), 66–82. https://doi.org/10.1016/j.amc.2019.01.030 doi: 10.1016/j.amc.2019.01.030
    [25] A. Babaei, H. Jafari, S. Banihashemi, Numerical solution of variable order fractional nonlinear quadratic integro-differential equations based on the sixth-kind Chebyshev collocation method, J. Comput. Appl. Math., 377 (2020), 112908. https://doi.org/10.1016/j.cam.2020.112908 doi: 10.1016/j.cam.2020.112908
    [26] E. H. Doha, W. M. Abd-Elhameed, M. A. Bassuony, On using third and fourth kinds Chebyshev operational matrices for solving Lane-Emden type equations, Rom. J. Phys., 60 (2015), 281–292.
    [27] M. A. Abdelkawy, S. A. Alyami, Legendre-Chebyshev spectral collocation method for two-dimensional nonlinear reaction-diffusion equation with Riesz space-fractional, Chaos Solitons Fract., 151 (2021), 111279. https://doi.org/10.1016/j.chaos.2021.111279 doi: 10.1016/j.chaos.2021.111279
    [28] W. M. Abd-Elhameed, H. M. Ahmed, Tau and Galerkin operational matrices of derivatives for treating singular and Emden–Fowler third-order-type equations, Int. J. Mod. Phys., 33 (2022), 2250061. https://doi.org/10.1142/s0129183122500619 doi: 10.1142/s0129183122500619
    [29] H. Hassani, J. A. T. Machado, E. Naraghirad, Generalized shifted Chebyshev polynomials for fractional optimal control problems, Commun. Nonlinear Sci. Numer. Simul., 75 (2019), 50–61. https://doi.org/10.1016/j.cnsns.2019.03.013 doi: 10.1016/j.cnsns.2019.03.013
    [30] M. Abchiche, H. Belbachir, Generalized Chebyshev polynomials, Discuss. Math. Gen. Algebra Appl., 38 (2018), 79–90. https://doi.org/10.7151/dmgaa.1278 doi: 10.7151/dmgaa.1278
    [31] M. A. AlQudah, Generalized Chebyshev polynomials of the second kind, Turk. J. Math., 39 (2015), 842–850. https://doi.org/10.3906/mat-1501-44 doi: 10.3906/mat-1501-44
    [32] W. M. Abd-Elhameed, M. M. Alsuyuti, Numerical treatment of multi-term fractional differential equations via new kind of generalized Chebyshev polynomials, Fractal Fract., 7 (2023), 74. https://doi.org/10.3390/fractalfract7010074 doi: 10.3390/fractalfract7010074
    [33] T. P. Laine, The product formula and convolution structure for the generalized Chebyshev polynomials, SIAM J. Math. Anal., 11 (1980), 133–146. https://doi.org/10.1137/0511012 doi: 10.1137/0511012
    [34] S. Kahler, Nonnegative and strictly positive linearization of Jacobi and generalized Chebyshev polynomials, Constr. Approx., 54 (2021), 207–236. https://doi.org/10.1007/s00365-021-09552-3 doi: 10.1007/s00365-021-09552-3
    [35] H. M. Srivastava, W. A. Khan, H. Haroon, Some expansions for a class of generalized Humbert matrix polynomials, Rev. R. Acad. Cienc. Exactas Fís. Nat., 113 (2019), 3619–3634. https://doi.org/10.1007/s13398-019-00720-6 doi: 10.1007/s13398-019-00720-6
    [36] Q. M. Luo, H. M. Srivastava, Some generalizations of the Apostol–Bernoulli and Apostol–Euler polynomials, J. Math. Anal. Appl., 308 (2005), 290–302. https://doi.org/10.1016/j.jmaa.2005.01.020 doi: 10.1016/j.jmaa.2005.01.020
    [37] T. Usman, N. Khan, M. Aman, J. Choi, A family of generalized Legendre-based Apostol-type polynomials, Axioms, 11 (2022), 29. https://doi.org/10.3390/axioms11010029 doi: 10.3390/axioms11010029
    [38] W. M. Abd-Elhameed, A. M. Alkenedri, Spectral solutions of linear and nonlinear BVPs using certain Jacobi polynomials generalizing third-and fourth-kinds of Chebyshev polynomials, CMES Comput. Model. Eng. Sci., 126 (2021), 955–989. https://doi.org/10.32604/cmes.2021.013603 doi: 10.32604/cmes.2021.013603
    [39] W. M. Abd-Elhameed, Novel expressions for the derivatives of sixth kind Chebyshev polynomials: Spectral solution of the non-linear one-dimensional Burgers' equation, Fractal Fract., 5 (2021), 53. https://doi.org/10.3390/fractalfract5020053 doi: 10.3390/fractalfract5020053
    [40] A. Napoli, W. M. Abd-Elhameed, An innovative harmonic numbers operational matrix method for solving initial value problems, Calcolo, 54 (2017), 57–76. https://doi.org/10.1007/s10092-016-0176-1 doi: 10.1007/s10092-016-0176-1
    [41] W. M. Abd-Elhameed, An elegant operational matrix based on harmonic numbers: effective solutions for linear and nonlinear fourth-order two point boundary value problems, Nonlinear Anal. Model. Control, 21 (2016), 448–464. https://doi.org/10.15388/na.2016.4.2 doi: 10.15388/na.2016.4.2
    [42] W. M. Abd-Elhameed, New formulae between Jacobi polynomials and some fractional Jacobi functions generalizing some connection formulae, Anal. Math. Phys., 9 (2019), 73–98. https://doi.org/10.1007/s13324-017-0183-7 doi: 10.1007/s13324-017-0183-7
    [43] H. M. Ahmed, Computing expansions coefficients for Laguerre polynomials, Integral Transforms Spec. Funct., 32 (2021), 271–289. https://doi.org/10.1080/10652469.2020.1815727 doi: 10.1080/10652469.2020.1815727
    [44] W. M. Abd-Elhameed, New product and linearization formulae of Jacobi polynomials of certain parameters, Integral Transforms Spec. Funct., 26 (2015), 586–599. https://doi.org/10.1080/10652469.2015.1029924 doi: 10.1080/10652469.2015.1029924
    [45] H. M. Srivastava, A. W. Niukkanen, Some Clebsch-Gordan type linearization relations and associated families of Dirichlet integrals, Math. Comput. Model., 37 (2003), 245–250. https://doi.org/10.1016/s0895-7177(03)00003-7 doi: 10.1016/s0895-7177(03)00003-7
    [46] H. M. Srivastava, A unified theory of polynomial expansions and their applications involving Clebsch–Gordan type linearization relations and Neumann series, Astrophys. Space Sci., 150 (1988), 251–266. https://doi.org/10.1007/bf00641720 doi: 10.1007/bf00641720
    [47] I. Area, E. Godoy, A. Ronveaux, A. Zarzo, Solving connection and linearization problems within the Askey scheme and its q-analogue via inversion formulas, J. Comput. Appl. Math., 133 (2001), 151–162. https://doi.org/10.1016/s0377-0427(00)00640-3 doi: 10.1016/s0377-0427(00)00640-3
    [48] H. Chaggara, W. Koepf. On linearization and connection coefficients for generalized Hermite polynomials, J. Comput. Appl. Math., 236 (2011), 65–73. https://doi.org/10.1016/j.cam.2011.03.010 doi: 10.1016/j.cam.2011.03.010
    [49] J. Sánchez-Ruiz, Linearization and connection formulae involving squares of Gegenbauer polynomials, Appl. Math. Lett., 14 (2001), 261–267. https://doi.org/10.1016/s0893-9659(00)00146-4 doi: 10.1016/s0893-9659(00)00146-4
    [50] J. Sánchez-Ruiz, P. L. Artés, A. Martínez-Finkelshtein, J. S. Dehesa, General linearization formulae for products of continuous hypergeometric-type polynomials, J. Phys. A: Math. Gen., 32 (1999), 7345. https://doi.org/10.1088/0305-4470/32/42/308 doi: 10.1088/0305-4470/32/42/308
    [51] G. E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge: Cambridge University Press, 1999.
    [52] R. Askey, Orthogonal Polynomials and Special Functions, New York: SIAM, 1975.
    [53] W. M. Abd-Elhameed, A. N. Philippou, N. A. Zeyada, Novel results for two generalized classes of Fibonacci and Lucas polynomials and their uses in the reduction of some radicals, Mathematics, 10 (2022), 2342. https://doi.org/10.3390/math10132342 doi: 10.3390/math10132342
    [54] W. Koepf, Hypergeometric Summation, 2 Eds., Berlin: Springer, 2014.
    [55] B. Y. Guo, J. Shen, L. L. Wang, Generalized Jacobi polynomials/functions and their applications, Appl. Numer. Math., 59 (2009), 1011–1028. https://doi.org/10.1016/j.apnum.2008.04.003 doi: 10.1016/j.apnum.2008.04.003
    [56] B. Y. Guo, J. Shen, L. L. Wang, Optimal spectral-Galerkin methods using generalized Jacobi polynomials, J. Sci. Comput., 27 (2006), 305–322. https://doi.org/10.1007/s10915-005-9055-7 doi: 10.1007/s10915-005-9055-7
    [57] E. D. Rainville, Special Functions, New York: The Maximalan Company, 1960.
    [58] W. M. Abd-Elhameed, S. O. Alkhamisi, New results of the fifth-kind orthogonal Chebyshev polynomials, Symmetry, 13 (2021), 2407. https://doi.org/10.3390/sym13122407 doi: 10.3390/sym13122407
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(149) PDF downloads(28) Cited by(0)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog