AIMS Mathematics, 9(8): 20058-20088.
DOI: 10.3934/math.2024978
ATIMS Mathematics Received: 22 March 2024

Revised: 02 June 2024

Accepted: 12 June 2024
http://www.aimspress.com/journal/Math Published: 20 June 2024

Research article

New results of unified Chebyshev polynomials

Waleed Mohamed Abd-Elhameed*and Omar Mazen Alqubori

Department of Mathematics and Statistics, College of Science, University of Jeddah, Jeddah, Saudi
Arabia; wsaleh@uj.edu.sa, Ommohamad3 @uj.edu.sa

* Correspondence: Email: wsaleh@uj.edu.sa.

Abstract: This paper presents a new approach for the unified Chebyshev polynomials (UCPs). It
is first necessary to introduce the three basic formulas of these polynomials, namely analytic form,
moments, and inversion formulas, which will later be utilized to derive further formulas of the UCPs.
We will prove the basic formula that shows that these polynomials can be expressed as a combination
of three consecutive terms of Chebyshev polynomials (CPs) of the second kind. New derivatives and
connection formulas between two different classes of the UCPs are established. Some other expressions
of the derivatives of UCPs are given in terms of other orthogonal and non-orthogonal polynomials.
The UCPs are also the basis for additional derivative expressions of well-known polynomials. A
new linearization formula (LF) of the UCPs that generalizes some well-known formulas is given in
a simplified form where no hypergeometric forms are present. Other product formulas of the UCPs
with various polynomials are also given. As an application to some of the derived formulas, some
definite and weighted definite integrals are computed in closed forms.
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1. Introduction

Special functions play essential parts in the applied sciences. Quantum mechanics, numerical
analysis, and approximation theory are just a few of the many fields where special functions make an
appearance, making them extremely important; see, for example, [1-3]. Many researchers have
performed investigations regarding the different types of special functions. For example, the authors
of [4-6] have studied some degenerate polynomials. Some other sequences of polynomials were
investigated in [7, 8].

Orthogonal polynomials are more widely used in approximation theory than non-orthogonal
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polynomials. The classical orthogonal polynomials, including Jacobi, Hermite, and Laguerre
polynomials, have essential roles in solving different types of differential equations (DEs); see, for
example, [9-12]. In addition, there are theoretical results concerned with the classical orthogonal
polynomials; see, for example, [13, 14]. Several authors also addressed the non-orthogonal
polynomials from both a theoretical and practical perspective; see, for instance, [15-20].

Chebyshev polynomials (CPs) play essential roles in a wide variety of fields. A trigonometric
expression may be found for each of these polynomials. The recurrence formula is the same for all
four kinds of CPs, even though their initials differ. They are particular ones of the classical Jacobi
polynomials (JPs). All four kinds were extensively utilized in various problems in numerical analysis.
For some contributions that employ these polynomials, one can be referred to [21-27]. Some modified
CPs were constructed to incorporate some initial and boundary conditions imposed on the given DEs.
For example, in [28], the authors introduced new modified second-kind CPs and utilized them to treat
third-order Emden-Fowler singular DEs.

Several articles explore various generalizations of different polynomials and CPs in particular. The
authors in [29] have utilized generalized shifted CPs for a class of fractional DEs. The authors in [30]
studied some generalized CPs. Another type of generalized CPs of the second kind was investigated
in [31]. A novel class of generalized CPs of the first kind was presented by the authors of [32]. In
addition, they employed these polynomials in conjunction with the Galerkin method to treat multi-
term fractional DEs. A type of generalized CPs was theoretically studied in [33]. For other studies on
generalized polynomials, one can read [34-37].

Several particular polynomial formulae are very useful in numerical analysis and approximation
theory. For example, the derivative expressions of given polynomials as combinations of their original
ones are helpful to obtain spectral solutions of various DEs. For example, the authors in [38] used the
derivatives of the generalized third-kind CPs to obtain solutions of even-order DEs. In contrast, the
derivatives of the sixth-kind CPs were utilized in [39] to solve a type of Burger’s DE. In addition, the
operational matrix of derivatives can be constructed from the first-order derivative of a given set of
polynomials. This matrix is the core of many approaches to solving different types of DEs; see, for
example, [40, 41]. Formulas for connecting and linearizing different polynomials are also of
significance. Some nonlinear DEs may be effectively treated using the linearization formulae; see, for
example, [42]. Several efforts were dedicated to deriving these formulae; see, for example, [43—46].

Hypergeometric functions (HGFs) are essential tools in studying special functions. They provide
an expression for nearly all of the well-known functions and polynomials. New formulas for various
special functions can be obtained by performing transformations between HGFs (see, for
example, [44]). It is worthy of mentioning here also that the coefficients of the expressions related to
the derivatives, integrals, moments, connection, and linearization formulas are often expressed in
terms of HGFs of different arguments (see, for example, [47-50]).

The primary objective of this work is to present a class of generalized CPs. The classical JPs are
known to include all four types of CPs. In this paper, the introduced generalized sequence differs
from the class of classical JPs. Some fundamental formulas of these polynomials are first introduced,
and after that, they are utilized to derive other important problems related to special functions, such
as connection and linearization problems. In addition, some definite integrals and weighted definite
integrals are computed based on some introduced formulas. According to our knowledge, the paper
contains many new formulas and a novel approach.
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The current article is structured as follows: Section 2 presents some basic formulas of the UCPs and
some orthogonal and non-orthogonal polynomials. The main objective of Section 3 is to obtain novel
formulas for the derivatives of the UCPs by using combinations of orthogonal and non-orthogonal
polynomials. Section 4 aims to develop the inverse formulae to those provided in Section 3. Section 5
presents some linearization formulas for the UCPs. An application to evaluate some new definite
integrals based on the application to the derived formulas is given in Section 6. We end the paper with
some discussion and suggest some expected future work in Section 7.

2. Some fundamental properties of the UCPs and other well-known polynomials

This section presents some basic characteristics and relations related to the UCPs. Furthermore, an
account of some particular polynomials is provided.

2.1. Some basic formulas concerned with the UCPs

Consider the UCPs that can be generated by using the following recursive formula:
G/ R(x) - 2x Gl + G =0, G =A, G =8Bx+ R 2.1)

It is clear that the polynomial solution of (2.1) G?’B’R(x) is a polynomial that generalizes all the well-
known four kinds of CPs. The following identities hold:
Ti(x) =G, (x), Ui(x) = G; (), (2.2)
Vi) =G> (), Wix) = G (), (23)

where T;(x), U;(x), Vi(x) and W;(x) are respectively the well-known four kinds of CPs.

Remark 2.1. Although the four kinds of CPs are special cases of Giﬂ’B R(x) as seen from (2.2) and (2.3),
they are also special ones of the JPs, but the class of polynomials G;.ﬂ’g R
that differs from the JPs class.

(x) is another generalized class

Remark 2.2. The analytic formula and its inversion formula are widely recognized as fundamental
tools for the theoretical investigation of any collection of polynomials. The following section will
provide the derivation of the fundamental formulae for G?’B’R(x).

Now, we will prove a significant theorem, in which we show that Giﬂ’g R(x) can be represented as a
combination of three consecutive terms of the second-kind CPs.

Theorem 2.1. For all j > 0, we have
¢ 1 B
G (x) = S(2A+ BUja(x) + RU1(x) + 5 Uj(x). (2.4)
Proof. First, assume the polynomial:
1 B
0i(x) = 5(—2?( + B)U;2(x) + RU 1 (x) + 0} U;(x). (2.5)

Noting that U_(x) = —1, U_i(x) = 0. Obviously, 8y(x) = A, 6;(x) = Bx + R. This shows that
0o(x) = Gg?%(x) and 6,(x) = G{***(x). So, to prove that 6(x) = G7***(x), ¥ j 2 2, it is sufficient
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to show that they satisfy the same recurrence relation. So, we are going to show the satisfaction of the
following recurrence relation for all j > 0

9j+2(.X) - 2X9j+1(X) + Hj(x) =0. (2.6)
Now, we have
1 1
0j+2(.X) - 2x9j+1(x) + Hj(x) :E(—Zﬂ + B)UJ(X) + RUJ'_H(X) + EBUj+2(X)
—2x (%(—Zﬂ + B)Uj_l(.X) + RUJ(.X) + %BUjJrl(X) (27)

+ %(—2ﬂ + B)Uj_z(X) + RUj_l(X) + g Uj(X).

If we substitute by the recurrence relation of U;(x) written in the form

xUj(x) = %(U,_l(x) + U (), (2.8)
in the right-hand side of (2.7), then it is not difficult to show that

0j2(x) —2x6;.1(x) +6;(x) = 0. (2.9)
Theorem 2.1 is now proved. O
Giﬂ,B,R

Now, based on the above theorem, an explicit analytic formula of (x) can be deduced.

Theorem 2.2. For every positive number i, the following analytic formula holds:

LéJ _1\ - 1+i-2r s .
G?’B’R(x) _ Z (-2 (B —2r)+ 2Ar)(1 +i-2r),_; Nz
r=0

r!
] (2.10)
LR 2 (_1)r2—1+z—‘2r(i _ 2r)r xi—2r—1_
r=0 r:
Proof. Based on the expression in (2.4) along with the explicit expression of U (x) given by
(x) = x/
! (=20l
Formula (2.10) can be obtained. O

The theorems presented next provide the formulae for calculating the moments and inversion of the
polynomials Giﬂ’B R(x).

Theorem 2.3. For all non-negative integers (NNls) i and m, the following moment formula holds

~ om
2m L\

1 < (m
X" GER(x) = Z( )Gﬁf;’;,(x). 2.11)
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Proof. Easy by applying induction on m based on the recurrence relation (2.1). O
Corollary 2.1. The next formula applies to every non-negative integer (NNI) m.
m __ 1 - m A,B,R
= > (F)Gm_y (x). (2.12)

r=0

Proof. Direct by setting i = 0 in Formula (2.11). O

It is useful to introduce the shifted polynomials for Gf."B R(x) defined as
G (x) = GT¥R@2x - 1).
The recurrence relation that these polynomials fulfill is
G0 -22x-D G0+ =0, G = A, G = R-B+28x. (2.13)
Now, we give the counterparts results for Theorem 2.3 and Corollary 2.1 for the shifted polynomials

ij“’f”‘.

Theorem 2.4. The following moment formula applies for all NNIs r and n

2r
~ 1 2r\ ~
X GIR@) = 55 ) ( . ) GTBR (). (2.14)
=0
Proof. We can proceed with the proof by induction based on the recurrence relation (2.13). m|

Corollary 2.2. The inversion formula of G?’B’R(x) for every NNI r is shown below

2r
r_ | 2r\ ~asr
X = ; ( f)Gr_g (x). (2.15)
Proof. This formula is a direct special case of Formula (2.14) setting n = 0. m|

2.2. An overview on well-known polynomials: both symmetric and nonsymmetric

An introduction to symmetric and nonsymmetric polynomials, both orthogonal and non-orthogonal,
is provided in this section.

Let ¢;(x) and ¢ ;(x) represent, respectively, two sets of symmetric and nonsymmetric polynomials
that have the following expressions:

ki

6i(x)= > Ay X, (2.16)
r=0
J
Wi = By, 2.17)
r=0

where A, ; and B, ; are known coeflicients.
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Assume also that the inverse formulas to (2.16) and (2.17) can be written as

d
W=y A i), (2.18)

—

‘
Il
[«

k\.
Il
-

By jrj-r (), (2.19)

S
I
(=]

with the known coefficients A, ; and B, ;.
Among the nonsymmetric polynomials is the general class of the classical JPs, which includes some
symmetric classes. The JPs have the following hypergeometric expression:

P4 (x) =

(o + 1) r —s,s+p+u+1|1-x
st ! p+1 2 )

The shifted JPs on [0, 1] can be defined as
PP(x) = PPM(2x - 1).

The ultraspherical polynomials are defined as

s!IT(p+ 1 1,1
UP(x) = (’;ﬁ) P70, (2.20)
[(s+p+3)
For a survey on the classical orthogonal polynomials, one can consult [51,52].
Now, we give two classes of non-orthogonal polynomials: generalized Fibonacci and generalized
Lucas polynomials. F “b (%) and L(x) that were studied [53] can be constructed respectively as

Fx) = axF*(x) + bF(x), FP(x)=1, F*'(x)=ax, r=>2, (2.21)

L) = ex L (x0) + d L% (x), L) =2, L'(x) =cx, r>2. (2.22)

Remark 2.3. Important formulas concerning certain polynomials can be derived from their power
form representation and associated inversion formula. The four formulas in (2.16)—(2.19) are
expressions for the analytic forms and their inversion ones for symmetric and nonsymmetric
polynomials. It is clear that these formulas are known if the coefficients A, j, B,;, A, and B,; are
determined. In the following table, we give these coefficients for a group of celebrated polynomials
that we will use in this paper. The coefficients for the shifted Jacobi polynomials (SJPs),
ultraspherical polynomials (UPs), generalized Laguerre polynomials (LGPs), Hermite polynomials
(HPs), generalized Fibonacci polynomials (GFPs), generalized Lucas polynomials (GLuPs), and
Bernoulli polynomials (BPs) will be listed in Table 1.

Note that B, in the last row of the table represents the well-known Bernoulli polynomials, where &,
in the column before the last one is defined as
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Table 1. Coefficients for analytic forms and their inversion formulas.

Polynomial A (B,,j) A, (Br,j)
SIPs DA+ w1 +p+ ), GITA+j+wA+2j-2r+p+wW A+ j—r+p+pu)
=+ A +p+u); T+ j-r+wlQ+2j—r+p+p
UPs (=1 27" JITQL + DI(j—r+ ) 27N (j=2r+ ) JIT( + DT = 2r +20)
20 =20 rIT( + DI + 20) G-20rTQRL+ DI+ j—r+0)
oL 1y ()T + j+p) (=1 IT(1 + j+p)
° JITA+ j—r+p) P =r+j+p)
HPs Jl(=1) 2/ J!
r(j—2r)! 277! (j—2r)!
GEPs a1+ j=2r), (=1)"a /b (1+j-2r) 2+ j—r)i
r! r!
GLuPs A j(1+ j—2r), (D) cdd &1+ j-1),
r! r!
j+1
BPs (g)B, (.“)
r j+1

3. Some formulas for the derivatives of the UCPs

This section aims to develop new derivative formulas of the UCPs using various other
polynomials. The formulae relating the UCPs to other polynomials may be obtained as special cases.
More specifically, we’ll establish the following expressions:

e The derivatives’ expressions of the UCPs in terms of other parameters’ UCPs.
e The derivatives expressions of UCPs in terms of some other orthogonal and non-orthogonal
polynomials.

3.1. Derivatives of UCPs in terms of other UCPs

We consider the two differeng UCPs G;W’B’R(x) and Giﬁ’g’ﬁ(x). For convenience, we will denote
Gi(x) = Giﬂ’B ’R(x) and Gi(x) = G?’B ’R(x). We will derive a novel expression that relates the derivatives
of G;(x) to G(x). To begin, it is necessary to establish the following lemma.

Lemma 3.1. Consider a NNI v. We have

Z”: DN (=Bj = 2AL+2B0) (j— £ - 1)!

= O@=-0'G—C—-v—ys)!

v =DIv+s=DI(2Bv(v + 5) + 2Av(—j+ v+ 5) + Bj2v + 5))
Bl Vsl (j—v—s)! '

3.1

Proof. 1f we let

7 _ZV:(—1)f+1(—Bj—zﬂmzsf)(j—f—1)!
T L Q=01 —C—v—ys) ’
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then based on Zeilberger’s algorithm ( [54]), it is possible to show that Z, ;, fulfills the following
recursive formula

W+ s—D@+s—j—1)(2Aj - 28jv - 2 + 280" — Bjs — 2Avs + 2Bs) Z,_y
+(G-vv (—2ﬂ+ 2B —2Aj +2Bj + 4Av — 4By + 2Ajv — 2Bjv — 2AV* + 2BV + 2As
—28s - Bjs —2Avs +28Bvs) Z, ;, = 0,

with the initial value: Z, ;, = 1. This first-order recursive formula can be solved quickly to produce

7 G=v=DI'@+s=D!(=2Bv(v +s)+2Av(=j+ v+ 5) + Bj(2v + 5))
Vs = .

visl(j—v—ys9)!
This proves the lemma. O

Theorem 3.1. Consider the NNIs j and s with j > s > 1. We have

251 &8 G-v-DIv+s—DI(2Bv@+ )+ 2Av(—j+Vv+s5)+ Bj2v+5)) -
D'Gi(x) = —= G2
) ﬂs!; VG —v—s) r-2e(0)
j—s—1
2R(j - !’ (1 + ), B}
+ = Gi_sop1(x).
A LG —v—sm DG =, O
(3.2)
Proof. From the analytic form in (2.10), it is not difficult to express D*G (x) in the form
15 i : : :
DG (1) - = (=1) 277N (B(j - 2r) + 2Ar) ‘(] —2r+1),(j—s—=2r+1) (-2
r!
=0 (3.3)
L) Cry it (22, (= s— 20,
+ R ' r S x}—2r—s—l'
o r!
Utilizing the inversion formula (2.12), we are able to get the expression
_ [%J . . Jj=s=2r , .
2571 D) (B(G-2r+2Ar)(j—-r—1)! j—s8s-2r\ -
DSG . = — G j—2r—s—
W=z Z;: G—s—2nr ; ¢ r-sai(%)
= - 34
2R B iy oan G- s 20, TS - s—2r— 1 oY
+ A ; iy ; ( p )Gj—2r—s—2t—l(x)-

Following several algebraic calculations, the preceding formula may be written in the following way:

) 21 & & (DB = 2AL + 2BE)(j— € — 1))
DG, :?_{s! ZZ v=-0l(j—€—-v—y1)! Gs2()

v=0 ¢=0

2R IS (1) =€ - 1) i
A Z; ;f!(v—f)!(j—f—v—s—nr(;fS2v1(")'

(3.5)
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Now, to obtain a more simplified formula of (3.5), we make use of the transformation formula:

- (=DfG=-€-1)! 3 G-D! 7 v, 1-j+v+s |
05!(\)—5)!(j—£’—v—s—1)!_v!(j—v—s—l)!2 ! 1-j ’
and accordingly, the Chu-Vandermonde identity ( [51]) can be used to get
: (=D -¢- D! _G+DyG-v=-D!

-0l —C-v—s-DI  v(j-v-s-DI

(3.6)

(3.7)

Thanks to (3.7) along with Lemma 3.1, Formula (3.5) is transformed into the following simplified one:

251 L NG =v=DI W+ 5= DI(=2Bv(v + 5) + 2Av(—j + v + 5) + BjQv + 5))

DG = A s L V(G —v—s)! G j-s-2v(X)
L 2PRG- D! ’ZS:I 1+ s), o
S—2Vv— X
A vov'(J—v—s—l)'(]—v) st
This proves Theorem 3.1. O

Remark 3.1. Since Formula (3.2) expresses the derivatives formula of G ;(x) in terms of G j(x), so many
special formulas can be deduced taking into consideration the four special cases in (2.2) and (2.3). We

will now demonstrate these results.

Corollary 3.1. Forall j > s > 1, the following expressions hold

s G-v-DIv+s—-1)!
DT = 2= _1),2 T e}

_ | |
DSUJ'(X) Z (‘]}‘(JVE f}V_"’;;? Gj—s—zV(x)’
. G =Iv+9)! & W+ G-v-1)!
D'Vj(x) = Z Gy G- Z:;M(J_v_s_1)!G,~_s_2v_1(x),
) G-I+ 9!, 25 L ) (—v— 1)
D*W;(x) = Z oy O+ Z(;V!S!(j_v_s_1)!Gj—s—2v—1(x)-

3.2. Derivatives with some other symmetric and nonsymmetric polynomials

(3.8)

(3.9)

(3.10)

(3.11)

This section is interested in deriving some other derivative expressions of the UCPs but in terms
of various symmetric and nonsymmetric polynomials. Some of these polynomials are orthogonal, and

some others are non-orthogonal.
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Theorem 3.2. Consider the NNIs j and s with j > s, We have the following derivative expressions as
combinations of Uﬁ.‘[)(x)

2]

S 257% [ (—j+2v+s5s-OG-v-DITw+s=OT(G—-2v—s+20)
DG (x) = x : :
F(l+s—§)l“(%+§) oy V(G-2v=9)IT(1+j—-v—-s+)
1+s-2¢ s
X 2BV + 5 =)+ Bj(=2v— s+ )+ 2Av(j —v - s+ D) UL 2V(x)+2 VAR (= 1)
F(%+{)

XL2<121>J(] v=s+L-DICL+j=-2-5+2)(+5-00 o (x).
= MG s - DITG-v—s+ OG-, >

(3.12)

Proof. Starting from the expression of D°G ;(x) along with the inversion formula of the ultraspherical
polynomials leads to the following formula:

2SF(1+§)M( 1) (B(j—2r) + 2Ar) (j—r = 1!
(1 +27) & r!

2]

D'G(x) =

(J=s=2r+0D+DI(G-s-2(r+1t-20)) U©

8 L M1+ j—s=2r=20T(L+j—s—2r—t+{) UjZars-2l®)
_+T“RFU+§)§%GJYU—r—IM
I'aa+29
L3G=s-0]-r . |
% (l+j=-s=2r=2t+ T (=1 +j—s-2r=2t+20) »
ot HI(G-s=-2r+0))I(j—s-2r—t+?) j=2r—s=2t-1\X)-
(3.13)
The above relation can be set in the following form
5 2T+ 1) (j—2v=s5+OI(-2v—s5+20)
D°G; =
G =T Z G—2v— )
Xﬁi(—nﬁuggj—gﬂr+28w(j—r— D! vO ()
v-nr'I'(j-v—-s—-r+¢+1) Jms=2v
(3.14)
[3G-s-D] . .
+OR (=j+22v+s=C+ DI -2v=5+2{-1)
v=0 (j_2v—S—1)!
i OG-0 e o]
L =rrl(j-v-s—r+{) Ui
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Zeilberger’s algorithm aids in finding the following closed forms:

N (=) (=B = 2Ar +28r)(j—r—1)!
e (v_r)vr!l“(j—v—s—r+{+1) (3.15)
( 2Bv(v + s — () + 2Av(— ]+v+s—{)+B](2v+s—§))(]—v—1)'F(v+s—§) .

vII(s=¢+DI(G-v—-—s+C+1)

2 (=D)"'(j—r=1! ___G=v-DITG+s-Z+1) (3.16)
v=nDIrT(j-v—-s-r+{) VIT(s =+ DTG -v—s+0)’ '
and therefore, Formula (3.12) can be obtained. O
Corollary 3.2. The UCPs-ultraspherical connection formula is
2% 7 4]
G(x) = x>
(§+ ) v=0
(—j+22v-DCLA-B)(J—vv+B( -2+ 2Av)(j —v- DI =1 I'(G - 2v + 2{) U9 (x)
G-2v)!ITA+j-v+) =
21 2 VAR —1)! Z 1+j-2v+ ) (J—v-DIIT'(-1+j-2v+20)( - 0), U@) ),
(§+ ) vi(G-2v-DIT(G-v+0) —v-l
j=0.
(3.17)
Proof. Formula (3.17) is a specific formula of (3.12) for s = 0. O

Remark 3.2. Since Legendre polynomials and CPs of the first and second kinds are particular ones
of special cases of U;O(x), we may infer certain particular formulae from (3.12). The following
corollaries display the results.

Corollary 3.3. Let j > s > 1. We have the following formula:

DG = Z gj U=V DI+ s - 1)!(2?("]‘ — VvV + B —2v)s + 2AV(—j + v + 5)) T js—2y(x)
vI(j—v—s)!
N Dl+sR [1G-s-D] Eims1(J—v— D! (v +s)!

s! v=0 vi(-v=-s-1)! j-s—2v-1(%).

(3.18)
In particular, we have:

4 2]

Gj(x) = BT(x) +2(B-A) Z Ejmav Tjov(x) + 2R fj 2v-1 T jo2y-1(0). (3.19)

v=1
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Proof. Setting = 0 in (3.12) and (3.17) yields respectively (3.18) and (3.19). |

Corollary 3.4. Let j > s > 1. We have the following formula:

J

Hs-1 G=v=DI@+s=2D!(1+j—2v-1y)

D°G(x) =
G0 =5 Z WG —v_s+1)

X (28v(=1+v+5)+2Av(=1 = j+v+5)+ Bj(—=1 +2v+5)) Uj_s_2,(x) (3.20)

Liimge
L 2R L) G oy s Gmv= ) vt 5= 1)1 .
(s— DI & vI(—v =) Uit
and in particular:
1 B
Gj(.X) ZE(_Zﬂ + B)Uj_z(X) + RUj_l(X) + 5 Uj(X). (321)

Proof. Setting ¢ = 0in (3.12) and (3.17) yields respectively (3.20) and (3.21). O

Corollary 3.5. Let j > s > 1. We have the following formula:

251y R (142j—4v=25) (= v = DIT (<L +v +5)

F(%+s) s 4V!F(%+j—v—s)

X (2Av +4AV(=j + v +5) + BQv —4v(v +5) + j(=1 + 4v + 25))) P;_;0,(x)  (3.22)
Luzbl (- 2j+4v+29) (4 +5)

DG (x) =

— 25U VAR - 1)!

- P] —s—2v— 1(.X)
v=0 v'F( .] V_S) (]_v)v

and in particular:

UL (14 2j 40— v = DI (=1 +3) (=8) + 2=A + BY(1 +2))v + 4(A - B

G;(x) = Pj2(x)
’ g SV!F(% +j- v) 2
=] (-2 1
1 (1-2j+4v) ;
- 5 \/_ﬂ'R(] - 1)' Z | . (2) Pj—2v—l(x)-
v=0 V‘F(E +.]_V) (.]_V)v
(3.23)
Proof. Setting { = 5 1n (3.12) and (3.17) yields respectively (3.22) and (3.23). O

Remark 3.3. Similar steps to those followed to prove Theorem 3.2 can be used to obtain derivative
expressions for UCPs in terms of other symmetric polynomials. The results of Table 1 are used to
derive the desired formulas. The following four theorems exhibit some derivative expressions.
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Theorem 3.3. Consider the NNIs j and s with j > s. We have

5]
D'Gy(x) =21 - 2)! Y 1

s vI(j—2v—s)!
XQ=A+Byw Fi(1 =v;2 = j; =D+ B(G - DjiFi(=v;1=j;=1) Hj_y»(x) (3.24)
[4=5-1) |
+2'R(j - 1)! | 1Fi(=v; 1= ji=1)Hj__5,_1(x).

— vI(j—-2v—s-1)!

Theorem 3.4. Consider the NNIs j and s with j > s. One has the following derivative expressions:

& (=1)'B" (1 + j—2v —s)
=0

D*G i(x) =272a775(j = 2)!
i) a’(=2) WG—v—s+ 1)

y=

l—v,—j+v+s a>
X | =a*(A - BW(-1 - j+v+5),F, -—
2-j 4b
] ) —V,—j+Vv+s a2 ,
+2bB(j—1)j.F L -1 Fj’_s_ZV(x) (3.25)
—J
L3G-s-1)] vilive s
+ 2—1+jal—j+S(j _ 1)'R ’ (_1) +1b (_.] +2v+ S)
' o vI(G—v—s)!
-V,—j+v+s a)
X o F ( - - E] jlés—zv—l(x)'
Theorem 3.5. Consider the NNIs j and s with j > s. We have
D'G(x) =272 2)'%5‘—8—2” SO
AT L TG )
X |=c* (A= Bw(=j+v+s) o F P=wl=j+vs —i
J 21y 2_ a4
: 2
. . —-V,—J+VvV+s c cd
+2dB(j—1)j,F,; ( I - E)) L3 5, (%) (3.26)

|_l(j—s—l)_] VI,V
+ 277 TR (- 1) ZZ §en(CD70

v=0

vi(j—v—s—-1)!

C2

 4d

—Vv,—j+v+1+s
-

X 2F ( ) L;fis—zv—l(x)'

Remark 3.4. Other expressions of D°G j(x) in terms of nonsymmetric polynomials are expressed as
in (2.17). For example, in the following, we give with proof an expression for D°Gj(x) in terms of
Bernoulli polynomials.
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Theorem 3.6. Consider the NNIs j and s with j > s. We have

|5 LG=s-1)]
DSG}'(X) = Z F,js Bj_s—zv(X) + Z F, s Bj_x_zv_l(x), (3.27)
v=0 v=0
where
(=1 2772 2 — 20 = )IT (4 = j+2v)
e VA2v+ DI — 20— 9)!
X (=2Av(1 +2v) + B(j(=1 + 2j) + 2v — 4jv + 4H7?))
. in1+4v ny 1 .
2-l-j-vg (_l)v+l4j(] —v—-1)! + (_I)JZ i (2] -2v - 1)!F(§ -]+ 2v)
vl V(2v)!
" (Jj—2v—=ys)! ’
27—y =2 (-5 +j - )
Fpjs= _ v
* (j—2v—s—1)!
4(~A@+ DA +20) + B(1 = L+ 2 +3v=2jv +207) +2(=1 + j = v)(v + DR)
g (2v +2)!

(_i)v QAW+ 1)+ B(j - 2(v + 1))

- EEN

Proof. It is possible to express D°G j(x) as a result of (2.10).
4] EH

DSGJ'(X) = Z M, s X Z Sris xj—2r—s—1, (3.28)
r=0 r=0
with
M (=1 2712 (B(j = 2r) + 2AN)(j — 1 — 1)!
nhe r(j—s—2r)! ’
(=D 27TR(j = 2n), (= 5 = 2),
s — 7'! .

The formula for the inversion of Bernoulli polynomials (see, the last column of Table 1) enables one
to get

HJ Jj2r—s
Dst(-x) = Z Mr,j,s Z Rm,j—Zr—s Bj—2r—s—m(-x)
r=0 m=0
_ (3.29)
[%J Jj=2r—s—1
+ Sr,j,s Z Rm,j—2r—s—1 Bj—Zr—s—m—l(x),
r=0 m=0
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where
j+l

Rr’j _ (.4/_")

j+1
This formula results from extensive manipulations
[%SJ v v—1

D'Gj(x) = Z My s Ry 20 j—s—20 + Z Sejs Rov-2e-1, j—s—2[—l] Bi_s5,(x)
y= =0 =0 (330)

0

L3G-s-D] / »

+ Z [Z My s Royopii1,j—s—2¢ + Sejs Rov-oe, j—s—2€—]) B s 5-1(x).
v=0 =0

The last formula is equivalent to

|z v £+ 9= 14j- : :
1 (=) 272 (B - 2AL + 2BE) (j— € — 1)!
DG (x) =
) ;(j—Zv—s)!;:(;( 0'Q2v—2C+1)!
v—1 i .
-1 52—1+]—2€ —f£=1)!
" : R ( ) (.] f ) Bj—S—ZV(x)
(J-2v-s)! & £1(2v = 20)! (3.31)
N Lé(j—zs—l)J 1 2 (=1)r1 1420 (j—€-1)!
e (j-2v-s- DI - {1 (2v =26 +2)!

X (= Bj = 2AL + 2B+ 2(L — v = DR) B, 2,1(x).

Symbolic computation, and in particular Zeilberger’s algorithm [54], helps to find the three simple
forms for the internal sums that appear in (3.31).

v (=127 (- B - 2AL + 2BL)(j - € - 1)!

;; Qv —20+1)!
(=17 2772 (2 = 2v =T (4 = j+2v) (= 2Av(1 +2v) + B(j(=1 + 2j) + 2v — 4jv + 4?) )

) VEQv + 1) ’

(3.32)

O (D2 G- - 1) — o-l1-j-2 (=) 4 —v - 1)

£ £12v - 20)! ol

1y (3.33)
(~1)21#(2j ~ 2v = DT (L~ j + 2v)

' N )
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v (=D)F2T (= B - 2AL + 2B+ 20~ 1 = R)(j— £~ 1)!

e €12y = 2¢ +2)!

sy oy CH) GAO D+ BG =20+ D)

S U )'( v+ D!

. 4(-AV+ DA +20) + B(1 = L+ 2 +3v = 2jv + 202 + 2(=1 + j - V)(v + 1)7{)(—%+j—2v)v)
Q2v +2)! :

(3.34)

Substituting the last three summations from Eqs (3.32)—(3.34) into Formula (3.31), we can derive
Formula (3.27). Consequently, Theorem 3.6 is proved. m|

4. Derivatives’ expressions of various celebrated polynomials in terms of UCPs

This section deals with polynomial expressions based on UCPs. Connection formulas between
different polynomials with the UCPs can be deduced as special cases.

Theorem 4.1. Consider the NNIs j, s with j > s. The following expression holds:

2712 T (§ 4 ¢) Jz TG-v+OT0+s+0)

s77(0) _
DU = TG+ OTGr 204 vG-v-s

Gj—s—2v(x)~ (4 1)

Proof. The formula (4.1) can be obtained using the analytic form of U;D(x) (Table 1, the second
column) along with the inversion formula (2.12). O

Theorem 4.2. Consider the NNIs j, s with j > s. The following expression holds:

S 28 .
DH(x) = —5 3 Fievil 4 = 20 = 1) G (0) (4.2)
v=0

where the notation ,F,(2) is the regularized hypergeometric function, see [44].

Proof. The analytic form of H;(x) can be used in conjunction with the inversion formula (2.12) to
produce (4.2). |

Theorem 4.3. Consider the NNIs j, s with j > s. The following expression holds:

21+Sa/]'jq —V,—j+Vv+s

4b
vi(j —v—s)' 2Fi 1
v=0 J =J

DSFﬁ.a’b)(X) - ;J Gj—s—2v(x)' (43)

Proof. The series expression of F ?’b(x) can be used in conjunction with the inversion formula (2.12) to
produce (4.3). O

Theorem 4.4. Consider the NNIs j, s with j > s. The following expression holds:

4d
- EJ G j—s—2v(x)- 4.4)

e 2+ ol it 5 1 —v,—j+v+s
D‘Lj’d)(x): ) 2 1[

A Ov!(j—v—s 1—j

V=
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Proof. The series expression of L;’d(x) can be used in conjunction with the inversion formula (2.12) to
produce (4.4). O

Theorem 4.5. Consider the NNIs j, s with j > s. The following expression holds:

. X) =
I AG=NITA+j+p+p) & v
= 4.5)
—V,=2j+v+2s,—j—pu
X 3F .. . 1] Gjs20(x).
3= Jts2j-p-p
Proof. The analytic form of Pi.p’“ (%) yields the following formula
- L(l+j+ & CIYTU+2j—r+p+ .
D PR () = LT TTH) COTA+2/=rtp+p) s 4.6)
/ T +j+p+m) ~Hri(G-—s=—nId+j-r+p
We utilize the inversion formula of G;(x), consequently, the next equation can be deduced:
P YRR ALk L) CS (=1 4 T(L+ 2 — r + p + )
. X) =
/ ATA+j+p+w < rl(G-s-nNTA+j-r+p
= 4.7)

2(j—r—s) .
2j—s—
o Z ( (j—s—-r

N ~
¢ )Gj—r—s—t(x)~

=0
Alternatively, it may be expressed as:

T+ j4p) 8 & DA (UM +2j - ¢ AT
A1+ j+p+p) OG—C-—)TA+j-C+p

P(Pll)( ) = ] sop(X). (4.8)

v=0 ¢=0

Accordingly, the last formula can be written in a hypergeometric form as follows:

_ DUBT(L +2j+p+p) (20—
D‘YP(./)#)(X) — . ( J : 1Y% ,Ll) Z (.] S)
! AG=)IT(A+j+p+up)
4.9)
—V,=2j+v+2s,—j—u B
3F2 1 . . 1 ijsfv(x)-
3=+ 2j-p-p
Replacing x by =+ 12 in (4.8), Formula (4.5) can be obtained. O
Corollary 4.1. Let j > 5. For u = p + 1, Formula (4.5) reduces to the following formula
22 (] 4+ 7+ IST(2+j—v+p)T(2+v+s+p
ANTL (3 +5+p)TQ2+j+2p) | vI(j—v—s)!
I3 1F +j—v+p)F(%+v+s+p)
- Z VG —v—s—1) Cis-2-1(2).
(4.10)
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Proof. Setting u = p+ 11in (4.5) yields

Coits : 2-5) 1y
Doty — T+ o) K (2 =)
J AG=NTQ2+j+2p) & v
= (4.11)
—Vv,=2j+v+2s,-1—-j—-p

X 3F, ( 1) Gj—s—v(x)~

%—j+s,—1—2j—2p

Zeibreger’s algorithm ( [54]) can aid us to sum the 3F,(1) that appears in the last formula. Setting
1] ,

—(v=-DO+2p+28)F,0j+2 (j—v—-s+DF,_;+Q2j-v+1-25)2j+2p-v+2)F,;; =0,

—Vv,=2j+v+2s,-1—-j—-p

Zv,j,s:3F2[ | . .
s—Jj+s-1-2j-2p

then M, ; , meets the next recursive formula

accompanied by the initial conditions
FO,j,s =1, Fl,j,s

that can be solved to give

F(%)(% + s +p)L
— — 2 , v even,
v L G+i=3-9),G+i-3+0),
Y —F(l + %3 (% +s +p)1(v_l)
2 , vodd,
(t+i=3-5),,,(1+i=5+p),
and therefore, Formula (4.10) can be obtained. O

5. Linearization formulas of the UCPs

In this section, we will develop a new linearization formula (LF) for the UCPs based on these
polynomials’ analytic form and moments formula. Furthermore, some other linearization formulas for
UCPs with some other polynomials will also be derived. More precisely, the following linearization
problems will be solved:

i+j

Gi(0) Gi(x) = > Lt jGisjal0), (5.1)
k=0

i+j

Gi(x)$/(x) = D Lii; Givja(), (5.2)
k=0

i+j

Gi(x) $;(x) = D Lii j piv (), (5.3)
k=0
for certain polynomials ¢;(x).
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5.1. Linearization formula of the UCPs

The following theorem exhibits the LF of G;(x). This formula generalizes some well-known
formulas.

Theorem 5.1. Consider the two NNIs i and j. The following LF applies:

B -2 i—1
G(NG() = 5 (i) + Gpui@) + (B =) Y Gz + R Y G (). (54)
k=0 k=0

Proof. The analytic form in (2.10) leads to obtaining the following formula

]

D 2721 BG = 2r) + 2Ar) (1 + i —2r),—y .
G()C)G (X) Z ( ) ( ( r)“ )( ) 1 X' ZVGj(x)
LQJ (5.5)
2 ro-1+i-2r ¢
(-1)2 (=21 90y
+R ; . X G,
As a result of the moment formula (2.11), we obtain the following formula
L (=1) 272 (B(i — 2r) + 2Ar)(1 + i — 27),_;
Gi(x)G(x) = Z ,
r!
i-2r _
X Z 2" z+2r( ) t+j—2r—2€(x) (56)
LTJ (1) 272 (= 2), RS oy [~1+i—2r
R Z Y Z 2 ¢ Gitjor2e-1 (x).
r=0 r £=0
The following formula can be derived from a series of computations:
1
Gi()G,(x) =58 (¢j+,-(x> +¢,-1(x))
L (DB =20 + 2A0) () (1 + i = 200
+ L1 L Y4 Gi+j—2v(x) (5.7)
i—1 v ( l)f 1+i-2¢ ( 2[)[
+R Z ( 7 ) Gisj2v-1(2).
v=0 ¢=0 ’
Considering these two identities:
v (=DE(BG = 20) + 2A0 () + i = 20)y
Z 270 =B-A, (5.8)

=0
v ( 1)6( 1+i— 2€)(l 2[)[

2 7 =1, (5.9)

=0
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the next simplified LF be acquired:
B i-2 i-1
G G/(0) = 5 (i) + G o) + (B =A) Y Ganjonn) + R D Goivaen ().
k=0 k=0
This finalizes the proof of Theorem 5.1. O

Remark 5.1. Some well-known LFs can be extracted from the LF (5.4). The following corollary
exhibits these formulas.

Corollary 5.1. Consider two NNIs. The following LFs hold:

|
Ti@) Tj(x) =5 (Tiej(2) + Tiaj(0)) (5.10)
Ux) Uj(x) = ) Ujion(), (5.11)
k=0
i i-1
Vi Vi) = D Va0 = D Viiokn (), (5.12)
k=0 k=0
i i-1
Wix) Wi(x) = D" W) + D" Wi (2). (5.13)
k=0 k=0

Proof. Formulas (5.10)—(5.13) can be easily obtained as special cases of (5.4) noting the specific
classes in (2.2) and (2.3). |

5.2. LFs of the UCPs with some symmetric polynomials

This part is interested in developing other product formulas of the UCPs with some other
polynomials.

Theorem 5.2. Consider the two NNls i and j. The following LF holds

o= (5 S()on "

v=0 J

a2

4b

) Gj+i—2v(x)- (5.14)

Proof. Starting with the analytic form of F f’b (x), we can write

EIRT
a’b"(1 + j - zr)rxj‘eri(x).

Gi(x) F¢"(x) = (5.15)
r!
r=0
Making use of the moment formula (2.11), we get
HE b’(l ¥ =2
D) J 2r)r 2r

G Fi' () = ) o Z (] ) i j-2r-20 (), (5.16)

r=0 =0
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which can be written as

01+ - 20

v 2 /
Gi(x) F (x) = ZJ: (5)

71 Gjyian(x), (5.17)
v=0 ¢=0 :
which is also equivalent to
iy (i —v,—j+Vv| &
Gi(x) F(x) = ( ) ( ) ( - —) G (). (5.18)
J VZ:(; 1% -] 4]9
This finalizes the proof of Theorem 5.2. O

Theorem 5.3. Consider the two NNIs i and j. The following LF holds:

Gi(x) F¢*(x) =27'a "B Fi(x) + 27'a ' (~b) B F(x)

(i-2)12%a" & (b)Y |, , L-vl-i+v| g
+ - B)(i - F - —
b Zii— vyt | A=B)i=vv 21 2_i 4b
‘ ‘ -V, —i+V a2 ab
+2bB(i — 1)i,F, L ~ 1 F]H 5, (%)
i-1 .
o (=b) v, —i+v a? 5
+27a" " RGE- 1) Y ——F—— ,F - —|F% .
a (l ) ;V'(Z—V—l)‘ 2 l( 1—; 4b J+i—2v— ](x)
(5.19)
Proof. Similar to the proof of Theorem 5.2. O
Theorem 5.4. Consider the two NNIs i and j. The following LF holds
27U (L+g)
Gi(x) U(x) = (J)r v+ OTO + ) G rian(). 5.20
() U9 () xfr@)r(ﬁzg); (= v+ DT+ Gaia(x) (5.20)
Proof. Just like the proof of Theorem 5.2. m|
Theorem 5.5. Consider the two NNIs i and j. The following LF holds
J o
G _ ] .
i(x) Hj(x) = Z (V)U(—V, I+ j—=2v,1)Gjsiz2(x), (5.21)
v=0
where U(c,d,y) denotes the confluent hypergeometric function (see, [51]).
Proof. Similar to the proof of Theorem 5.2. O
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5.3. LFs of the UCPs with some nonsymmetric polynomials

Here, we give some LFs of the UCPs with some nonsymmetric polynomials. The product formulas
with the shifted Jacobi and generalized Lageurre polynomials will be developed.

Theorem 5.6. Consider the two NNIs i and j. The following LF holds

1
vVii-WITI'd+i+p+wp

i 1 ’
P (x) G (x) =5 T +2i+p+ ) Z:(;

. ' I _i_H
—v,—i+v, -2 -5 5-Lt-¢
X4F3( 2 b

(ST}

1 .
7l

(5.22)

250 T +i+p+p)

R (i+u)F(2i+p+,u)§ 1
Liyli—v—1)!

. 1 i 1Y i M
v, 1=-i+v,5-5-5 ,1=5-5
><4F3( §l_i_;_)2_/i21_2i_£i;_12 1) Gjricav-1(x).
202 2T 272

Proof. The analytic form of the shifted JPs (presented in Table 1) allows one to write the following
formula:

PP (x)Gi(x) =

(1+ ,U)i Z -DHra +p+ /l)2i—r o Gj(X), (5.23)
0

A +p+wi = G=n)lri(d + i,

which turns into

oy W o C 2 (L p i A (i) L
P60 = A+p+wi = E=DIr(1+ @iy ;‘( s )G’“"‘ZS(X)’ (5.24)

After a series of algebraic computations, (5.24) converts into the following one

(1 + ) Z 272 (721 + p + )icay
0 U

PP (x) G j(x) = G jri-2(X)

(I+p+ )i & 2012 + wi-ar

T(1+i+ & )T — 2 4 p +
+ ( .l 2 ZZ : 1) (@& : p' 2 Gyicav-1(X).
I'd+i+p+wp (i—=v—-—r=-DIv-m'C2r+ DG -2r+u)

v=0 r=0
(5.25)
In virtue of the two identities:
i 272 (2N + p + )i 27T+ (L + 20+ p + o)
L4 (i 20!+ wiar (= ppTA +i+ Wl +p +p) (5.26)
— ,—i+ ,_L_E,l_i_ﬁ
X4F3( f_-_é)_fflfiz_ez_l_tz 1)’
2° 2 222 2 2
Z”: (=D (2i — 25 + p + ) 2T Qi+p+p)
i-p-r=D(p=-NQr+ DITG-2r+u) (—-p-DIpITG+
—i-p )(p )(1 .)( | W (E=p=DIpTG+p) (5.27)
—pl—i+p Ll _ B _L_#
X4F3( p§ l_i_pf_)z_l_tzl_zi_e_zl_l ’ 1)’
222 2 2° 2 2
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Formula (5.25) can be written as in (5.22). |

Remark 5.2. The two terminating 4F5(1) can be reduced for some negative choices of p and yu. The
following corollaries exhibit some of these results: It is worth mentioning here that some authors
investigated the class of JPs whose parameters are certain negative integers (see, [55, 56]).

Corollary 5.2. Consider the two NNIs i and j. We have
2T(%+i)l“(1+i+u)[ i 1

P90 Gj(x) = > G i)
’ al(1 + p) 4 (2i —2v)!2v)!
1 VAL L+ =0 (5.28)
< 1
- Giyiov- .
VZ:; Qi—2v— DIQ2v+ D! 72 1(x)]
Proof. 1f we substitute p = —i into Formula (5.22), it yields
o 2TGi+u+1) (< 1 —v,—i+V
P( i) G = F 1 G'i—v
WG =T [Z_; VG-l 1( ! jri-2o (%)
, " 5.29
il 1 -v,1—-i+v ( )
-2 Z m o Fy 3 1 Gj+i—2v—l(-x) .
v=0 2
Chu-Vandemomne identity leads to the following two identities:
—v,—i+V \/%(i—V+%)V
2F | 1= ! )
3 r (E + V)
v, l—i+v ﬁ(i—v+%)v
oFy 3 1= 3 )
2 2r (E + V)
and hence, Formula (5.29) reduces to Formula (5.28). |

Remark 5.3. Some other special reduced formulas of the general formula in (5.22) can be also
deduced. The details are omitted.

Corollary 5.3. Consider the two NNIs i and j. We have

P (0 Gi(x) =

2T (=4 +0) T+ 2+ p+ 1) (& 1+ i+ 202 — div + 42 — 1 + 2iu
Gjtican(x)

Vr(l+i+ (1 +i+p+ p) (2i = 2v)!(2v)!
22 + 4y + 1) =+ i(—1 — 4y + 2u)

- Z Qi-2v=D!Q2v+ 1) G jricav-1(X) |

v=0

v=0
(5.30)
Corollary 5.4. Consider the two NNIs i and j. We have
o 25T +2i+p + 1) < 1
POHD 0 G (x) = G iy
C W = Z_(; Vi =yt G
"~ (5.31)

» G jHi—2v-1 (x).

21 + )i+ p + ) i 1
Ird+i+p+w Vzov!(i—v—l)
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Corollary 5.5. Consider the two NNIs i and j. We have

. _AG-vy
(i 27T +2i+p+p) t TripCritp
PP (x) G (x) = " Guian
R A (FI YTy Z T TR
(5.32)
255G+ )i+ p + ) 1
_ G irion().
Ird+i+p+pw ZV'(Z—V ri-2v()

6. Closed forms for some integrals and weighted integrals

This section presents new integral and weighted integral formulas based on applying some of the
introduced formulas derived in the previous sections.

6.1. Some definite integrals of products involving the UCPs
Corollary 6.1. For every j > 2, the following identity holds

B2A 8 R(H(_])H%)
: Go g YT J even,
$(0)dx =S5, = N B 6.1)
0 (B—Zﬂ)(l+(—1)7) .’B(l+(—l)T) ®
2G-1) t =gty Jodd.

Proof. In virtue of Formula (2.4), we can write

1 1 1 1
f ¢ (x)dx = Liomq B)f U,p(x) dx + Rf U_i(x)dx + 5 f U (x) dx.
0 2 0 0 2 Jo

But, since the following integral holds for U ;(x) (see, [15])
1 1 i
, jeven,
f Uj(x)dx = {ff o
0 l—+]’ ] odd.

So it is easy to conclude Formula (6.1). O

Corollary 6.2. For every i and j greater than or equal to 2, the following identity holds

i-2

f $i(x) ¢(x) dx = —B(S,H +S;0)+R Z S okt + (B = A) Z Siwakn,  (62)
where S j is given as in (6.1).

Proof. The integral formula can be achieved by using LF (5.4) along with the integral formula (6.1).
O
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6.2. Some weighted integrals of products involving the UCPs

Some weighted integral formulas can be computed based on the derivative expressions of the UCPs
and connection formulas with some orthogonal polynomials. Here are some of these results.

Corollary 6.3. For every j > s, the following identity holds

f ¢ DG {(x) Hyy(x) dx =

i—l+m+s \/7_1.(] _ 2)y
(3G -m=9)
+(B-A)Nj—m—s) 1F1(%(2—j+m+s);2—j;—1)) (j+m+s)even,

1
(B(j - 1)11F1(5(—j Fm+s); - j;—l)
(6.3)

27 NrRm! (j - 1)!
m! (3G -m—s=1)!

1
1F1(§(1—j+m+s);1—j;—1), (j+m+s)odd.

Proof. Formula (3.24) leads to the following integral formula:

. 2]
f e_xzDSGj(x) Hm(x) dx = Z Mv,j,s f e_szm(x)Hj—s—Zv(-x) dx

v=0 -
4
[3G=s-1] ©

+ Z Mv,j,s f e_szm(x)ijszvfl(x) dx,
v=0 -

00

where

2°71(j = 2)! : o :

M, s =.(]—)(2(—ﬂ + B Fi(1-v;i2—ji-D)+B( - Dj1Fi(=v;1-j;-1)),
vI(j—2v—9)!

_ 2R~ 1)!

TG = 2v— s — 1)!

1Fi(=v; 1= j;=1).

The orthogonality relation of Hermite polynomials ( [57]) helps to put (6.4) as

o 1z L3G=s-1)]
f e_xzDst(x) Hm(x) dx = hm Mv,j,s 6m,j—s—2v + Z Mv,j,s é‘m,j—s—2v—l ’ (65)
- v=0 v=0
where ¢, ; is the well-known Kronecker delta functions and #,, is given by
h, = 2™ m! \r.

Simple computations lead to (6.3). O
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Corollary 6.4. For all NNIs j and m, the following identity holds:

f CetG () Hy(x) dx =

2"l \r(j—2)! o 1 ,
1\,/_(] ) (B(J—I)J1F1 (—(—J+m);1—J;—1)
lei_ ! 2
+ (~A+B)(j—m) 1 Fy (32— j+m):2 - ji-1)) (j + m) even,
o I(j— 1! 1
VIRmi(j= DY (—(1 —j+m);1—j;—l), (j +m) odd.
m! (3G —m—1)! 2
Proof. A direct special case of Formula (6.3) for s = 0. O

Corollary 6.5. For every j > s, the following identity holds

1 1 2&-2ﬁr(l +g)
_ 2\ s %) _ 2
L (1 x) D’G(x) U9 (x)dx = i+ -0

(%(j+m+s)—1)!F(%(j—m+s_2§))

(3G -m=-NT (22 +j+m=-5)+{) 6.7)
x X(—ﬂ(j—m—s)(j+m—s+2{)+B(j2—(m+s)(m—s+2{))), (j+m+s) even,

ART (A + j+m+ )T (20 + j—m+s-20)
(AG-m=-9-1)IT (21 +j+m=25)+¢)

(j+m+s)odd.

Proof. Starting with Formula (3.12) and applying the orthogonality relation of the ultraspherical
polynomials [58], we may derive Formula (6.7). O

Corollary 6.6. For every j, the following identity holds
ﬂ (1-2) 7 6,0 UOw dx = }L «/Er(% + g)
(=AG = m)G +m+20) + B( 2 = mm +20)) (52 = 1)1 (1 =),
(BEpr(3@+j+m)+¢)
AR (3G +m= D) (0= Dijomenos
(3G -m=-DNT (3 +j+m)+¢)

, (j+m)even, (6.8)

(j +m) odd.

Proof. Direct from (6.7) setting s = 0. O
7. Conclusions

This research opened new horizons for studying new types of polynomials that satisfy the same
recurrence relation of CPs but with general initials. Thus, the solution of this recurrence relation
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produced generalized polynomials that all four kinds of CPs are special ones of them. We proved an
important result for the generalized polynomials: They can be expressed as three terms of consecutive
terms of the second kind of CPs. This result enabled us to derive some other fundamental formulas
for generalized polynomials. Expressions for the derivatives of these polynomials are given in terms
of some other symmetric and nonsymmetric polynomials. Some connection formulas can also be
deduced. The LF of the generalized polynomials and some triple product formulas were also deduced.
In future work, we aim to investigate other generalized sequences of polynomials and establish some
important formulas concerned with them.
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