Research article Special Issues

A new class of generalized Apostol–type Frobenius–Euler polynomials

  • Received: 20 December 2024 Revised: 12 February 2025 Accepted: 14 February 2025 Published: 25 February 2025
  • MSC : 11B68, 11B83, 11B39, 05A19

  • The paper presents a new type of generalized Apostol-type Frobenius–Euler polynomials and numbers with specific order $ \kappa $ and level $ m $. We establish fundamental identities and properties using generating function techniques, such as summation formulas, differential and integral relations, and addition theorems. Additionally, we explore the connections between these polynomials and the Stirling numbers of the second kind, as well as other polynomial families. Lastly, we derive a differential equation and a recurrence relation for these new classes of polynomials. Finally, we show applications that can be obtained using these polynomials where the graphs of the zero functions and the meshes are displayed.

    Citation: Letelier Castilla, William Ramírez, Clemente Cesarano, Shahid Ahmad Wani, Maria-Fernanda Heredia-Moyano. A new class of generalized Apostol–type Frobenius–Euler polynomials[J]. AIMS Mathematics, 2025, 10(2): 3623-3641. doi: 10.3934/math.2025167

    Related Papers:

  • The paper presents a new type of generalized Apostol-type Frobenius–Euler polynomials and numbers with specific order $ \kappa $ and level $ m $. We establish fundamental identities and properties using generating function techniques, such as summation formulas, differential and integral relations, and addition theorems. Additionally, we explore the connections between these polynomials and the Stirling numbers of the second kind, as well as other polynomial families. Lastly, we derive a differential equation and a recurrence relation for these new classes of polynomials. Finally, we show applications that can be obtained using these polynomials where the graphs of the zero functions and the meshes are displayed.



    加载中


    [1] M. Acikgoz, S. Araci, A study on the integral of the product of several type Bernstein polynomials, IST Trans. Appl. Math.-Modell. Simul., 1 (2010), 10–14.
    [2] M. Açikgöz, S. Araci, U. Duran, Some $(p, q)$-analogues of Apostol–type numbers and polynomials, Acta Commentat. Univ. Tartuensis Math., 23 (2019), 37–50. https://doi.org/10.12697/ACUTM.2019.23.04 doi: 10.12697/ACUTM.2019.23.04
    [3] M. Açikgöz, S. Araci, On the generating function for Bernstein polynomials, AIP Conf. Proc., 1281 (2010), 1141–1143. https://doi.org/10.1063/1.3497855 doi: 10.1063/1.3497855
    [4] L. Carlitz, Eulerian numbers and polynomials, Math. Mag., 32 (1959), 247–260. https://doi.org/10.2307/3029225 doi: 10.2307/3029225
    [5] C. Cesarano, W. Ramírez, S. Díaz, New results for degenerated generalized Apostol–Bernoulli, Apostol–Euler and Apostol–Genocchi Polynomials, WSEAS Trans. Math., 21 (2022), 604–608. https://doi.org/10.37394/23206.2022.21.69 doi: 10.37394/23206.2022.21.69
    [6] C. Cesarano, B. Germano, P. E. Ricci, Laguerre-type Bessel functions, Integr. Transf. Spec. Funct., 16 (2005), 315–322. https://doi.org/10.1080/10652460412331270629 doi: 10.1080/10652460412331270629
    [7] C. Cesarano, W. Ramírez, Some new classes of degenerated generalized Apostol–Bernoulli, Apostol–Euler and Apostol–Genocchi polynomials, Carpathian Math. Publ., 14 (2022), 354–363. https://doi.org/10.15330/cmp.14.2.354-363 doi: 10.15330/cmp.14.2.354-363
    [8] C. Cesarano, W. Ramírez, S. Khan, A new class of degenerate Apostol–type Hermite polynomials and applications, Dolomites Res. Notes Approx., 15 (2022), 1–10.
    [9] C. Cesarano, Y. Quintana, W. Ramírez, Degenerate versions of hypergeometric Bernoulli–Euler polynomials, Lobachevskii J. Math., 45 (2024), 3509–3521. https://doi.org/10.1134/S1995080224604235 doi: 10.1134/S1995080224604235
    [10] G. Dattoli, C. Chiccoli, S. Lorenzutta, G. Maino, A. Torre, Theory of generalized Hermite polynomials, Comput. Math. Appl., 28 (1994), 71–83. https://doi.org/10.1016/0898-1221(94)00128-6 doi: 10.1016/0898-1221(94)00128-6
    [11] R. Dere, Y. Simsek, H. M. Srivastava, A unified presentation of three families of generalized Apostol type polynomials based upon the theory of the umbral calculus and the umbral algebra, J. Number Theory, 133 (2013), 3245–3263. https://doi.org/10.1016/j.jnt.2013.03.004 doi: 10.1016/j.jnt.2013.03.004
    [12] M. X. He, P. E. Ricci, Differential equation of Appell polynomials via the factorization method, J. Comput. Appl. Math., 139 (2022), 231–237. https://doi.org/10.1016/S0377-0427(01)00423-X doi: 10.1016/S0377-0427(01)00423-X
    [13] L. Kargin, Some formulae for products of Fubini polynomials with applications, arXiv, 2016. https://doi.org/10.48550/arXiv.1701.01023
    [14] B. Kurt, Y. Simsek, On the generalized Apostol–type Forbenius-Euler polynomials, Adv. Differ. Equ., 2013 (2013), 1. https://doi.org/10.1186/1687-1847-2013-1 doi: 10.1186/1687-1847-2013-1
    [15] B. Kurt, Some relationships between the generalized Apostol–Bernoulli and Apostol–Euler polynomials, Turk. J. Anal. Number Theory, 1 (2013), 54–58. https://doi.org/10.12691/tjant-1-1-11 doi: 10.12691/tjant-1-1-11
    [16] P. Natalini, A. Bernardini, A generalization of the Bernoulli polynomials, J. Appl. Math., 3 (2003), 155–163. https://doi.org/10.1155/S1110757X03204101 doi: 10.1155/S1110757X03204101
    [17] Y. Quintana, W. Ramírez, A. Urieles, Euler matrices and their algebraic properties revisited, Appl. Math. Inf. Sci., 14 (2020), 1–14.
    [18] W. Ramírez, C. Kızılateş, D. Bedoya, C. Cesarano, C. S. Ryoo, On certain properties of three parametric kinds of Apostol–type unified Bernoulli–Euler polynomials, AIMS Math., 10 (2025), 137–158. https://doi.org/10.3934/math.2025008 doi: 10.3934/math.2025008
    [19] H. M. Srivastava, J. Choi, Zeta and $q$-zeta functions and associated series and integrals, Elsevier, 2012. https://doi.org/10.1016/C2010-0-67023-4
    [20] H. M. Srivastava, H. L. Manocha, A treatise on generating functions, Halsted Press, 1984.
    [21] S. A. Wani, K. S. Nisar, Quasi-monomiality and convergence theorem for the Boas–Buck–Sheffer polynomials, AIMS Math., 5 (2020), 4432–4443. https://doi.org/10.3934/math.2020283 doi: 10.3934/math.2020283
    [22] B. Yasar, M. A. Ozarslan, Frobenius–Euler and Frobenius–Genocchi polynomials and their differential equations, New Trends Math. Sci., 3 (2015), 172–180.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(113) PDF downloads(17) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog