The paper presents a new type of generalized Apostol-type Frobenius–Euler polynomials and numbers with specific order $ \kappa $ and level $ m $. We establish fundamental identities and properties using generating function techniques, such as summation formulas, differential and integral relations, and addition theorems. Additionally, we explore the connections between these polynomials and the Stirling numbers of the second kind, as well as other polynomial families. Lastly, we derive a differential equation and a recurrence relation for these new classes of polynomials. Finally, we show applications that can be obtained using these polynomials where the graphs of the zero functions and the meshes are displayed.
Citation: Letelier Castilla, William Ramírez, Clemente Cesarano, Shahid Ahmad Wani, Maria-Fernanda Heredia-Moyano. A new class of generalized Apostol–type Frobenius–Euler polynomials[J]. AIMS Mathematics, 2025, 10(2): 3623-3641. doi: 10.3934/math.2025167
The paper presents a new type of generalized Apostol-type Frobenius–Euler polynomials and numbers with specific order $ \kappa $ and level $ m $. We establish fundamental identities and properties using generating function techniques, such as summation formulas, differential and integral relations, and addition theorems. Additionally, we explore the connections between these polynomials and the Stirling numbers of the second kind, as well as other polynomial families. Lastly, we derive a differential equation and a recurrence relation for these new classes of polynomials. Finally, we show applications that can be obtained using these polynomials where the graphs of the zero functions and the meshes are displayed.
[1] | M. Acikgoz, S. Araci, A study on the integral of the product of several type Bernstein polynomials, IST Trans. Appl. Math.-Modell. Simul., 1 (2010), 10–14. |
[2] |
M. Açikgöz, S. Araci, U. Duran, Some $(p, q)$-analogues of Apostol–type numbers and polynomials, Acta Commentat. Univ. Tartuensis Math., 23 (2019), 37–50. https://doi.org/10.12697/ACUTM.2019.23.04 doi: 10.12697/ACUTM.2019.23.04
![]() |
[3] |
M. Açikgöz, S. Araci, On the generating function for Bernstein polynomials, AIP Conf. Proc., 1281 (2010), 1141–1143. https://doi.org/10.1063/1.3497855 doi: 10.1063/1.3497855
![]() |
[4] |
L. Carlitz, Eulerian numbers and polynomials, Math. Mag., 32 (1959), 247–260. https://doi.org/10.2307/3029225 doi: 10.2307/3029225
![]() |
[5] |
C. Cesarano, W. Ramírez, S. Díaz, New results for degenerated generalized Apostol–Bernoulli, Apostol–Euler and Apostol–Genocchi Polynomials, WSEAS Trans. Math., 21 (2022), 604–608. https://doi.org/10.37394/23206.2022.21.69 doi: 10.37394/23206.2022.21.69
![]() |
[6] |
C. Cesarano, B. Germano, P. E. Ricci, Laguerre-type Bessel functions, Integr. Transf. Spec. Funct., 16 (2005), 315–322. https://doi.org/10.1080/10652460412331270629 doi: 10.1080/10652460412331270629
![]() |
[7] |
C. Cesarano, W. Ramírez, Some new classes of degenerated generalized Apostol–Bernoulli, Apostol–Euler and Apostol–Genocchi polynomials, Carpathian Math. Publ., 14 (2022), 354–363. https://doi.org/10.15330/cmp.14.2.354-363 doi: 10.15330/cmp.14.2.354-363
![]() |
[8] | C. Cesarano, W. Ramírez, S. Khan, A new class of degenerate Apostol–type Hermite polynomials and applications, Dolomites Res. Notes Approx., 15 (2022), 1–10. |
[9] |
C. Cesarano, Y. Quintana, W. Ramírez, Degenerate versions of hypergeometric Bernoulli–Euler polynomials, Lobachevskii J. Math., 45 (2024), 3509–3521. https://doi.org/10.1134/S1995080224604235 doi: 10.1134/S1995080224604235
![]() |
[10] |
G. Dattoli, C. Chiccoli, S. Lorenzutta, G. Maino, A. Torre, Theory of generalized Hermite polynomials, Comput. Math. Appl., 28 (1994), 71–83. https://doi.org/10.1016/0898-1221(94)00128-6 doi: 10.1016/0898-1221(94)00128-6
![]() |
[11] |
R. Dere, Y. Simsek, H. M. Srivastava, A unified presentation of three families of generalized Apostol type polynomials based upon the theory of the umbral calculus and the umbral algebra, J. Number Theory, 133 (2013), 3245–3263. https://doi.org/10.1016/j.jnt.2013.03.004 doi: 10.1016/j.jnt.2013.03.004
![]() |
[12] |
M. X. He, P. E. Ricci, Differential equation of Appell polynomials via the factorization method, J. Comput. Appl. Math., 139 (2022), 231–237. https://doi.org/10.1016/S0377-0427(01)00423-X doi: 10.1016/S0377-0427(01)00423-X
![]() |
[13] | L. Kargin, Some formulae for products of Fubini polynomials with applications, arXiv, 2016. https://doi.org/10.48550/arXiv.1701.01023 |
[14] |
B. Kurt, Y. Simsek, On the generalized Apostol–type Forbenius-Euler polynomials, Adv. Differ. Equ., 2013 (2013), 1. https://doi.org/10.1186/1687-1847-2013-1 doi: 10.1186/1687-1847-2013-1
![]() |
[15] |
B. Kurt, Some relationships between the generalized Apostol–Bernoulli and Apostol–Euler polynomials, Turk. J. Anal. Number Theory, 1 (2013), 54–58. https://doi.org/10.12691/tjant-1-1-11 doi: 10.12691/tjant-1-1-11
![]() |
[16] |
P. Natalini, A. Bernardini, A generalization of the Bernoulli polynomials, J. Appl. Math., 3 (2003), 155–163. https://doi.org/10.1155/S1110757X03204101 doi: 10.1155/S1110757X03204101
![]() |
[17] | Y. Quintana, W. Ramírez, A. Urieles, Euler matrices and their algebraic properties revisited, Appl. Math. Inf. Sci., 14 (2020), 1–14. |
[18] |
W. Ramírez, C. Kızılateş, D. Bedoya, C. Cesarano, C. S. Ryoo, On certain properties of three parametric kinds of Apostol–type unified Bernoulli–Euler polynomials, AIMS Math., 10 (2025), 137–158. https://doi.org/10.3934/math.2025008 doi: 10.3934/math.2025008
![]() |
[19] | H. M. Srivastava, J. Choi, Zeta and $q$-zeta functions and associated series and integrals, Elsevier, 2012. https://doi.org/10.1016/C2010-0-67023-4 |
[20] | H. M. Srivastava, H. L. Manocha, A treatise on generating functions, Halsted Press, 1984. |
[21] |
S. A. Wani, K. S. Nisar, Quasi-monomiality and convergence theorem for the Boas–Buck–Sheffer polynomials, AIMS Math., 5 (2020), 4432–4443. https://doi.org/10.3934/math.2020283 doi: 10.3934/math.2020283
![]() |
[22] | B. Yasar, M. A. Ozarslan, Frobenius–Euler and Frobenius–Genocchi polynomials and their differential equations, New Trends Math. Sci., 3 (2015), 172–180. |