Research article

Digital products with $ PN_k $-adjacencies and the almost fixed point property in $ DTC_k^\blacktriangle $

  • Received: 08 June 2021 Accepted: 03 August 2021 Published: 10 August 2021
  • MSC : 54A10, 54C05, 55R15, 54C08, 54F65, 68U05, 68U10

  • Given two digital images $ (X_i, k_i), i \in \{1, 2\} $, first of all we establish a new $ PN_k $-adjacency relation in a digital product $ X_1 \times X_2 $ to obtain a relation set $ (X_1 \times X_2, PN_k) $, where the term $ ''$$ PN $" means $ ''$pseudo-normal". Indeed, a $ PN $-$ k $-adjacency is softer or broader than a normal $ k $-adjacency. Next, the present paper initially develops both $ PN $-$ k $-continuity and $ PN $-$ k $-isomorphism. Furthermore, it proves that these new concepts, the $ PN $-$ k $-continuity and $ PN $-$ k $-isomorphism, need not be equal to the typical $ k $-continuity and a $ k $-isomorphism, respectively. Precisely, we prove that none of the typical $ k $-continuity (resp. typical $ k $-isomorphism) and the $ PN $-$ k $-continuity (resp. $ PN $-$ k $-isomorphism) implies the other. Then we prove that for each $ i \in \{1, 2\} $, the typical projection map $ P_i: X_1 \times X_2 \to X_i $ preserves a $ PN_k $-adjacency relation in $ X_1 \times X_2 $ to the $ k_i $-adjacency relation in $ (X_i, k_i) $. In particular, using a $ PN $-$ k $-isomorphism, we can classify digital products with $ PN_k $-adjacencies. Furthermore, in the category of digital products with $ PN_k $-adjacencies and $ PN $-$ k $-continuous maps between two digital products with $ PN_k $-adjacencies, denoted by $ DTC_k^\blacktriangle $, we finally study the (almost) fixed point property of $ (X_1 \times X_2, PN_k) $.

    Citation: Jeong Min Kang, Sang-Eon Han, Sik Lee. Digital products with $ PN_k $-adjacencies and the almost fixed point property in $ DTC_k^\blacktriangle $[J]. AIMS Mathematics, 2021, 6(10): 11550-11567. doi: 10.3934/math.2021670

    Related Papers:

  • Given two digital images $ (X_i, k_i), i \in \{1, 2\} $, first of all we establish a new $ PN_k $-adjacency relation in a digital product $ X_1 \times X_2 $ to obtain a relation set $ (X_1 \times X_2, PN_k) $, where the term $ ''$$ PN $" means $ ''$pseudo-normal". Indeed, a $ PN $-$ k $-adjacency is softer or broader than a normal $ k $-adjacency. Next, the present paper initially develops both $ PN $-$ k $-continuity and $ PN $-$ k $-isomorphism. Furthermore, it proves that these new concepts, the $ PN $-$ k $-continuity and $ PN $-$ k $-isomorphism, need not be equal to the typical $ k $-continuity and a $ k $-isomorphism, respectively. Precisely, we prove that none of the typical $ k $-continuity (resp. typical $ k $-isomorphism) and the $ PN $-$ k $-continuity (resp. $ PN $-$ k $-isomorphism) implies the other. Then we prove that for each $ i \in \{1, 2\} $, the typical projection map $ P_i: X_1 \times X_2 \to X_i $ preserves a $ PN_k $-adjacency relation in $ X_1 \times X_2 $ to the $ k_i $-adjacency relation in $ (X_i, k_i) $. In particular, using a $ PN $-$ k $-isomorphism, we can classify digital products with $ PN_k $-adjacencies. Furthermore, in the category of digital products with $ PN_k $-adjacencies and $ PN $-$ k $-continuous maps between two digital products with $ PN_k $-adjacencies, denoted by $ DTC_k^\blacktriangle $, we finally study the (almost) fixed point property of $ (X_1 \times X_2, PN_k) $.



    加载中


    [1] C. Berge, Graphs and Hypergraphs, 2nd ed., North-Holland, Amsterdam, 1976.
    [2] L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vis., 10 (1999), 51–62. doi: 10.1023/A:1008370600456
    [3] S.-E. Han, Non-product property of the digital fundamental group, Information Sciences 171(1-3) (2005) 73-91.
    [4] S.-E. Han, On the simplicial complex stemmed from a digital graph, Honam Mathematical Journal, 27 (2005), 115–129.
    [5] S.-E. Han, An equivalent property of a normal adjacency of a digital product, Honam Mathematical Journal, 36 (2014), 199–215. doi: 10.5831/HMJ.2014.36.1.199
    [6] S.-E. Han, Compatible adjacency relations for digital products, Filomat, 31 (2017), 2787–2803. doi: 10.2298/FIL1709787H
    [7] S.-E. Han, Estimation of the complexity of a digital image form the viewpoint of fixed point theory, Appl. Math. Comput. 347 (2019), 236–248.
    [8] S.-E. Han, Digital $k$-contractibility of an $n$-times iterated connected sum of simple closed $k$-surfaces and almost fixed point property, Mathematics, 8 (2020), 345. doi: 10.3390/math8030345
    [9] G. T. Herman, Oriented surfaces in digital spaces, CVGIP: Graphical Models and Image Processing, 55 (1993), 381–396. doi: 10.1006/cgip.1993.1029
    [10] J.-M. Kang, S.-E. Han, The product property of the almost fixed point property, AIMS Math. 6 (2021), 7215–7228.
    [11] T. Y. Kong, A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, 1996.
    [12] A. Rosenfeld, Digital topology, Amer. Math. Monthly, 86 (1979), 76–87.
    [13] A. Rosenfeld, Continuous functions on digital pictures, Pattern Recogn. Lett., 4 (1986), 177–184. doi: 10.1016/0167-8655(86)90017-6
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1779) PDF downloads(45) Cited by(1)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog