This paper is devoted to generalizing $ \Xi $-metric spaces and $ b $- metric-like spaces to present the structure of generalized $ \Xi $ -metric-like spaces. The topological properties of this space and examples to support it are being investigated. Moreover, as demonstrated in the previous literature, the concept of Lipschitz mappings is presented more generally and some results of fixed points are derived in the aforementioned space. Finally, some theoretical results have been implicated in the discussion of the existence and uniqueness of the solution to the Fredholm integral equation.
Citation: Hasanen A. Hammad, Maryam G. Alshehri. Generalized $ \Xi $-metric-like space and new fixed point results with an application[J]. AIMS Mathematics, 2023, 8(2): 2453-2472. doi: 10.3934/math.2023127
This paper is devoted to generalizing $ \Xi $-metric spaces and $ b $- metric-like spaces to present the structure of generalized $ \Xi $ -metric-like spaces. The topological properties of this space and examples to support it are being investigated. Moreover, as demonstrated in the previous literature, the concept of Lipschitz mappings is presented more generally and some results of fixed points are derived in the aforementioned space. Finally, some theoretical results have been implicated in the discussion of the existence and uniqueness of the solution to the Fredholm integral equation.
[1] | S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund. Math., 3 (1922), 133–181. |
[2] | L. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087 |
[3] | L. Cirić, H. Lakzian, V. Rakočević, Fixed point theorems for $w$-cone distance contraction mappings in $tvs$-cone metric spaces, Fixed Point Theory Appl., 2012 (2012), 3. https://doi.org/10.1186/1687-1812-2012-3 doi: 10.1186/1687-1812-2012-3 |
[4] | W. S. Du, A note on cone metric fixed point theory and its equivalence, Nonlinear Anal., 72 (2010), 2259–2261. https://doi.org/10.1016/j.na.2009.10.026 doi: 10.1016/j.na.2009.10.026 |
[5] | S. Janković, Z. Kadelburg, S. Radenović, On cone metric spaces: a survey, Nonlinear Anal., 74 (2011), 2591–2601. https://doi.org/10.1016/j.na.2010.12.014 doi: 10.1016/j.na.2010.12.014 |
[6] | H. A. Hammad, H. Aydi, C. Park, Fixed point approach for solving a system of Volterra integral equations and Lebesgue integral concept in $ F_CM$-spaces, AIMS Math., 7 (2021), 9003–9022. https://doi.org/10.3934/math.2022501 doi: 10.3934/math.2022501 |
[7] | H. A. Hammad, M. De la Sen, Application to Lipschitzian and integral systems via a quadruple coincidence point in fuzzy metric spaces, Mathematics, 10 (2022), 1905. https://doi.org/10.21203/rs.3.rs-976766/v1 doi: 10.21203/rs.3.rs-976766/v1 |
[8] | A. A. Rawashdeh, W. Shatanawi, M. Khandaqji, N. Shahzad, Normed ordered and $\Xi$-metric spaces, Int. J. Math. Math. Sci., 2012 (2012), 272137. https://doi.org/10.1155/2012/272137 doi: 10.1155/2012/272137 |
[9] | C. Cevik, I. Altun, Vector metric spaces and some properties, Topol. Meth. Nonlinear Anal., 34 (2009), 375–382. |
[10] | R. Cristescu, Order structures in normed vector spaces, Editura Ştiinţifică Enciclopedică, 1983. |
[11] | J. Matkowski, Integrable solutions of functional equations, Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1975. |
[12] | R. Wegrzyk, Fixed point theorems for multifunctions and their applications to functional equations, Diss. Math., 201 (1982), 1–28. |
[13] | Z. Pales, I. R. Petre, Iterative fixed point theorems in $\Xi$-metric spaces, Acta. Math. Hungarica, 140 (2013), 134–144. |
[14] | R. Wang, B. Jiang, H. Huang, Fixed point theorem for Hardy-Rogers type contraction mapping in $\Xi$-metric spaces, Acta. Anal. Funct. Appl., 21 (2019), 362–368. |
[15] | L. Cirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267–273. https://doi.org/10.2307/2040075 doi: 10.2307/2040075 |
[16] | A. Basile, M. Graziano, M. Papadaki, I. Polyrakis, Cones with semi-interior points and equilibrium, J. Math. Econ., 71 (2017), 36–48. https://doi.org/10.1016/j.jmateco.2017.03.002 doi: 10.1016/j.jmateco.2017.03.002 |
[17] | N. Mehmood, A. A. Rawashdeh, S. Radenović, New fixed point results for $\Xi$-metric spaces, Positivity, 23 (2019), 1101–1111. |
[18] | H. Huang, Topological properties of $\Xi$-metric spaces withapplications to fixed point theory, Mathematics, 7 (2019), 1222. https://doi.org/10.3390/math7121222 doi: 10.3390/math7121222 |
[19] | R. A. Rashwan, H. A. Hammad, M. G. Mahmoud, Common fixed point results for weakly compatible mappings under implicit relations in complex valued g-metric spaces, Inf. Sci. Lett., 8 (2019), 111–119. http://dx.doi.org/10.18576/isl/080305 doi: 10.18576/isl/080305 |
[20] | B. Vetro, P. Vetro, Fixed point theorems for $\eta $-$\wp $ contractive type mappings, Nonlinear Anal., 75 (2011), 2154–2165. |
[21] | H. A. Hammad, H. Aydi, M. De la Sen, Analytical solution for differential and nonlinear integral equations via $F_{\varpi _{e}}$-Suzuki contractions in modified $\varpi _{e}$-metric-like spaces, J. Func. Spaces, 2021 (2021), 6128586. https://doi.org/10.1155/2021/6128586 doi: 10.1155/2021/6128586 |
[22] | M. A. Alghmandi, N. Hussain, P. Salimi, Fixed point and coupled fixed point theorems on $b$-metric-like spaces, J. Inequal. Appl., 2013 (2013), 402. https://doi.org/10.1186/1029-242X-2013-402 doi: 10.1186/1029-242X-2013-402 |
[23] | N. Hussain, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Fixed points of contractive mappings in $b$-metric-like spaces, Sci. World J., 2014 (2014), 471827. https://doi.org/10.1155/2014/471827 doi: 10.1155/2014/471827 |
[24] | H. Aydi, A. Felhi, S. Sahmim, Common fixed points via implicit contractions on $b$-metric-like spaces, J. Nonlinear Sci. Appl., 10 (2017), 1524–1537. https://doi.org/10.22436/jnsa.010.04.20 doi: 10.22436/jnsa.010.04.20 |
[25] | H. K. Nashine, Z. Kadelburg, Existence of solutions of cantilever beam problem via $\alpha $-$\beta$-$FG$-contractions in $b$-metric-like spaces, Filomat, 31 (2017), 3057–3074. https://doi.org/10.2298/FIL1711057N doi: 10.2298/FIL1711057N |
[26] | H. A. Hammad, M. De la Sen, Generalized contractive mappings and related results in $b$-metric-like spaces with an application, Symmetry, 11 (2019), 667. https://doi.org/10.3390/sym11050667 doi: 10.3390/sym11050667 |
[27] | H. A. Hammad, M. D. la Sen, Fixed-point results for a generalized almost $(s, q)$-Jaggi $F$-contraction-type on $b$-metric-like spaces, Mathematics, 8 (2020), 63. https://doi.org/10.3390/math8010063 doi: 10.3390/math8010063 |
[28] | M. Aslantaş, H. Sahin, U. Sadullah, Some generalizations for mixed multivalued mappings, Appl. General Topol., 23 (2022), 169–178. https://doi.org/10.4995/agt.2022.15214 doi: 10.4995/agt.2022.15214 |
[29] | M. Aslantas, H. Sahin, D. Turkoglu, Some Caristi type fixed point theorems, J. Anal., 29 (2021), 89–103. https://doi.org/10.1007/s41478-020-00248-8 doi: 10.1007/s41478-020-00248-8 |
[30] | J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei, W. Shatanawi, Common fixed points of almost generalized $(\psi, \varphi)_s$- contractive mappings in ordered $b$-metric spaces, Fixed Point Theory Appl., 2013 (2013), 159. https://doi.org/10.1186/1687-1812-2013-159 doi: 10.1186/1687-1812-2013-159 |