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1. Introduction

Metric fixed point theory is one of the distinguished and traditional theories in the area of
functional analysis which has broad applications in various fields of mathematics. The Banach
contraction principle (BCP) [1] is a fundamental and pioneering result for this theory. It is a
prominent and an outstanding tool to use to solve the existence problems in pure and applied sciences.
Kannan [2] gave an analogous variety of contractive type conditions that endorsed the existence of
fixed points. The elementary difference between the Banach contraction principle and Kannan’s fixed
point theorem is the contractive condition and continuity of mapping. In Kannan’s fixed point
theorem, the contractive mapping is not necessarily continuous. Later on, Chatterjea [3] commuted
the terms for the contractive condition used by Kannan and proved an analogue fixed point result. In
1969, Nadler [4] used the notion of the Hausdorff metric to obtain fixed points of multivalued
mappings. In all of these results, the metric space plays a significant role. Over the past few decades,
different interesting generalizations of metric space have been invented by several researchers. Some
of these well-known generalizations of metric space are the partial metric space constructed by
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Mathew [5], b-metric space constructed by Czerwik [6] and extended b-metric space constructed by
Kamran et al. [7]. After this such generalizations, Azam et al. [8] introduced the study of a complex
valued metric space (CVMS) and generalized the classical metric space by replacing a set of real
numbers R with the set of complex numbers C in the range. Rouzkard and Imdad [9] employed this
idea of new space and manifested a result by adding more terms in the inequality to generalize
Azam’s results. In due course, Sitthikul and Saejung [10] extended the contractive condition of
Rouzkard and Imdad [9] and established some new common fixed point theorems for self-mappings.
Ahmad et al. [11, 12] gave the notion of generalized Housdorff metric function in the background of
CVMS and proved common fixed points of multivalued mappings. In [13], Mukheimer extended the
concept of CVMS to complex valued b-metric space (CVbMS) by using a constant π ≥ 1 in the
triangle inequality. Later on, Ullah et al. [14] gave the study of complex valued extended b-metric
space (CVEbMS) and replaced that constant π ≥ 1 with a control function φ(x, y) in 2019. The notion
of CVEbMS is an up-to-date and contemporary generalization of CVbMS and CVMS. Subsequently,
Mohammed and Ullah [15] used the notion of a CVEbMS to obtain the common fixed points of two
self mappings.

Alternatively, Zadeh [16] gave the theory of a fuzzy set (FS) to deal with irregularity which
happens because of inaccuracy or ambiguity in preference to the abstraction in 1960. Heilpern [17]
used this notion of a FS to give the concept of fuzzy mappings (FMs) in the context of a metric space
and broadened the Nadler’s fixed point theorem [4]. Several generalizations of Heilpern’s fixed point
theorem have been derived by researchers in different spaces. Kutbi et al. [18] obtained α-fuzzy fixed
point theorems for CVMS and derived some results in the metric space and CVMS. Humaira
et al. [19, 20] utilized the notion of a CVMS to prove fixed and common fixed points of FMs.
Recently, Shammaky et al. [21] and Albargi and Ahmad [22] defined Banach and Kannan type
contractions including rational expressions in CVEbMS and proved common α-fuzzy fixed point
results. The results given by Shammaky et al. [21] and Albargi and Ahmad [22] are generalizations of
Banach and Kannan type contractions results in CVbMS and CVMS. For further characteristics in
this order, we refer the researchers to [23–29].

In this work, we utilize the concept of a CVEbMS and establish common α-fuzzy fixed point
theorems for Chatterjea type contractions involving rational expressions. In this way, we generalize
Chatterjea type contraction results in CVEbMS, CVbMS and CVMS. As outcomes of our main result,
we derive the leading results of Azam et al. [8], Rouzkard and Imdad [9], Ahmad et al. [11] and Kutbi
et al. [18] from our results. We investigate the solution of Fredholm integral inclusion as an
application.

2. Preliminaries

In 1922, Banach [1] proved the following well-known fixed point result:

Theorem 1. ([1]) Let (X, d) be a CMS and T: X → X. If there exists ℓ ∈ [0, 1) such that

d(T x,Ty) ≤ ℓd (x, y) ,

for all x, y ∈ X; then, there exists a unique point x∗ ∈ X such that x∗ = T x∗.

Kannan [2] established the following fixed point result:
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Theorem 2. ([2]) Let (X, d) be a CMS and T: X → X. If there exists ℓ ∈ [0, 1
2 ) such that

d(T x,Ty) ≤ ℓ (d (x,T x) + d (y,Ty)) ,

for all x, y ∈ X; then, there exists a unique point x∗ ∈ X such that x∗ = T x∗.

Chatterjea [3] presented a fixed point result in this aspect.

Theorem 3. ([3]) Let (X, d) be a CMS and T: X → X. If there exists ℓ ∈ [0, 1
2 ) such that

d(T x,Ty) ≤ ℓ (d (y,T x) + d (x,Ty)) ,

for all x, y ∈ X; then, there exists a unique point x∗ ∈ X such that x∗ = T x∗.

In 1969, Nadler [4] introduced the concept of multivalued mapping and generalized single valued
mapping.

Theorem 4. ([4]) Let (X, d) be a CMS and T: X → CB(X). If there exists ℓ ∈ (0, 1) such that

H(T x,Ty) ≤ ℓd (x, y) ,

for all x, y ∈ X; then, there exists a unique point x∗ ∈ X such that x∗ ∈ T x∗.

Azam et al. [8] defined the notion of a CVMS in this manner.

Definition 1. ([8]) A partial order ≾ on C (set of complex numbers) is given as follows:

ϱ1 ≾ ϱ2 ⇔ R (ϱ1) ⩽ R (ϱ2) , I (ϱ1) ⩽ I (ϱ2) ,

for all ϱ1, ϱ2 ∈ C.

It follows that ϱ1 ≾ ϱ2 if one of these assertions is satisfied:

(a) R (ϱ1) = R (ϱ2) , I (ϱ1) < I (ϱ2) ,
(b) R (ϱ1) < R (ϱ2) , I (ϱ1) = I (ϱ2) ,
(c) R (ϱ1) < R (ϱ2) , I (ϱ1) < I (ϱ2) ,
(d) R (ϱ1) = R (ϱ2) , I (ϱ1) = I (ϱ2) ,

where R (ϱ) and I (ϱ) denote the real and imaginary parts of ϱ ∈ C respectively.

Definition 2. ([8]) Let X , ∅. A mapping d: X × X → C is called a CVM if the following conditions
hold:

(i) 0 ≾ d(x, y) and d(x, y) = 0⇐⇒ x = y.
(ii) d(x, y) = d(y, x).

(iii) d(x, y) ≾ d(x, ν) + d(ν, y).

For all x, y, ν ∈ X; then, (X, d) is called a CVMS.
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Example 1. ([8]) Let X = [0, 1] and x, y ∈ X. Define d: X × X → C by

d(x, y) =
{

0, if x = y,
i
2 , if x , y.

Then (X, d) is a CVMS.

In [13], Mukheimer gave the notion of a CVbMS as follows:

Definition 3. ([13]) Let X , ∅ and π ≥ 1. A mapping d: X × X → C is said to be a CVbMS if the
following conditions hold:

(i) 0 ≾ d(x, y) and d(x, y) = 0 if and only if x = y.
(ii) d(x, y) = d(y, x).

(iii) d(x, y) ≾ π
[
d(x, ν) + d(ν, y)

]
.

For all x, y, ν ∈ X; then, (X, d) is called a CVbMS.

Example 2. ([13]) Let X = [0, 1]. Define d: X × X → C by

d(x, y) = |x − y|2 + i|x − y|2,

for all x, y ∈ X. Then (X, d) is a CVbMS with π = 2.

Ullah et al. [14] conducted the study of the CVEbMS and replaced the constant π ≥ 1 with a control
function φ(x, y) in 2014.

Definition 4. ([14]) Let X , ∅ and φ: X×X → [1,+∞). A mapping d: X×X → C is called a CVEbMS
if the following conditions hold:

(i) 0 ≾ d(x, y) and d(x, y) = 0 if and only if x = y.
(ii) d(x, y) = d(y, x).

(iii) d(x, y) ≾ φ(x, y)
[
d(x, ν) + d(ν, y)

]
.

For all x, y, ν ∈ X; then, (X, d) is called a CVEbMS.

Example 3. ([14]) Let X , ∅ and φ: X × X → [1,+∞) be defined by

φ(x, y) =
1 + x + y

x + y
,

and d: X × X → C by

(i) d(x, y) = i
xy , ∀0 < x, y ≤ 1.

(ii) d(x, y) = 0⇔ x = y, ∀0 ≤ x, y ≤ 1.
(iii) d(x, 0) = d(0, x) = i

x ,∀0 < x ≤ 1.

Then (X, d) is a CVEbMS.
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Example 4. Let X = [0,+∞) and φ: X × X → [1,+∞) be a function defined by φ(x, y) = 1+ x + y and
d: X × X → C by

d(x, y) =
{

0, if x = y,
i, if x , y.

Then (X, d) is a CVEbMS.

Lemma 1. ([14]) Let (X, d) be a CVEbMS and {xn} ⊆ X. Then {xn} converges to x if and only if
|d(xn, x)| → 0 as n→ +∞.

Lemma 2. ([14]) Let (X, d) be a CVEbMS and {xn} ⊆ X. Then {xn} is a Cauchy sequence if and only if
|d(xn, xm)| → 0, as n,m→ +∞.

Let (X, d) be a CVEbMS; then, CB (X) represents the class of all non-empty, bounded and closed
subsets of X.

We apply s (x1) = {x2 ∈ C: x1 ⪯ x2} for x1 ∈ C, and

s
(
x1,ℜ2

)
= ∪

x2∈ℜ2

s (d (x1, x2)) = ∪
x2∈ℜ2

{x ∈ C : d (x1, x2) ⪯ x},

for a ∈ X andℜ2 ∈ CB (X).
Forℜ1,ℜ2 ∈ CB (X), we denote

s
(
ℜ1,ℜ2

)
=

(
∩

x1∈ℜ1

s
(
x1,ℜ2

))
∩

(
∩

x2∈ℜ2

s
(
x2,ℜ1

))
.

Lemma 3. ([14]) Let (X, d) be a CVEbMS.

(i) Let x1, x2 ∈ C. If x1 ⪯ x2, then s(x2) ⊂ s(x1).
(ii) Let x ∈ X andℜ ∈ N(X). If θ ∈ s(x,ℜ), then it follows that x ∈ ℜ.

(iii) Let x ∈ C,ℜ1,ℜ2 ∈ CB (X) and x1 ∈ ℜ1. If x ∈ s(ℜ1,ℜ2), then x ∈ s(x1,ℜ2) for all x1 ∈ ℜ1 or
x ∈ s(ℜ1, x2) for all x2 ∈ ℜ2.

Let T : X → CB (X) be a multivalued mapping. For x ∈ X andℜ ∈ CB (X), define

Wx(ℜ) = {d(x, x1) : x1 ∈ ℜ}.

Thus for x, y ∈ X
Wx(Ty) = {d(x, x1) : x1 ∈ Ty}.

Definition 5. ([14]) Let (X, d) be a CVEbMS. A subsetℜ of X is referred to as bounded below if there
exists x ∈ X such that x ⪯ x1, for all x1 ∈ ℜ.

Definition 6. ([14]) Let (X, d) be a CVEbMS. A mapping T : X → 2C is said to be bounded from below
if for all x ∈ X, there exists xx ∈ C such that

xx ⪯ u,

for all u ∈ T x.
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On the other hand, Heilpern [17] used the notion of a FS and gave the concept of FMs in metric
space. A FS in X is a function with domain X and range [0, 1] and IX is the family of all FSs in X. If
the set ℜ is a FS and x ∈ X, then ℜ(x) is said to be the grade of membership of x in ℜ. We express[
ℜ

]
α as the α-level set ofℜ and define it in the following way:[

ℜ
]
α = {x : ℜ(x) ≥ α}, if α ∈ (0, 1],[

ℜ
]
0 = {x : ℜ(x) > 0}.

Kutbi et al. [18] proved the following result for FMs in CVMS in this manner:

Theorem 5. ([18]) Let (X, d) be a complete CVMS and S ,T: X → F(X) satisfy the g.l.b property.
Suppose that there exists α ∈ (0, 1], such that for each x ∈ X, [S x]α , [T x]α ∈ CB(X) and there exist
0 ≤ ℓ1, ℓ2 with

2ℓ1 + ℓ2 < 1,

such that

ℓ1
(
d (y, [S x]α) + d

(
x,

[
Ty

]
α

))
+ ℓ2

d (x, [S x]α) d
(
y,

[
Ty

]
α

)
1 + d (x, y)

∈ s
(
[S x]α ,

[
Ty

]
α

)
,

for all x, y ∈ X; then, there exists x∗ ∈ X such that

x∗ ∈ [S x∗]α ∩ [T x∗]α .

Definition 7. ([17]) Let X1 be a non empty set and (X2, d) be a metric space. A mapping T is called
a FM if T is a mapping from X1 into F(X2). A FM T is a fuzzy subset on X1 × X2 with membership
function T (x)(y). The function T (x)(y) is the grade of membership of y in T (x).

Definition 8. ([17]) Let (X, d) be a metric space and S ,T : X → F(X).A point x ∈ X is called a common
α-fuzzy fixed point of S and T if and only if x ∈ [S x]α ∩ [T x]α , for some α ∈ [0, 1].

Ahmad et al. [11, 12] gave the notion of a generalized Hausdorff metric function for a CVMS and
Kutbi et al. [18] used this study to prove fuzzy fixed point results in CVMS.

In this article, we utilize the notion of a CVEbMS and establish common α-fuzzy fixed point results
for Chatterjea type contractions involving rational expressions. We implement our results to derive
some well-known results in the literature.

3. Main results

Definition 9. Let (X, d) be a CVEbMS. A mapping T : X → F(X) is said to satisfy g.l.b. property on
(X, d) if for any x ∈ X and α ∈ (0, 1], the greatest lower bound of Wx(

[
Ty

]
α) exists in C for all y ∈ X.

We represent the greatest lower bound of Wx(
[
Ty

]
α) as d(x,

[
Ty

]
α) which is defined as follows:

d(x,
[
Ty

]
α) = inf{d(x, ν) : ν ∈

[
Ty

]
α}.

Theorem 6. Let (X, d) be a complete CVEbMS, φ: X × X → [1,+∞) and S ,T: X → F(X) satisfy the
g.l.b property. Suppose that there exists α ∈ (0, 1] such that for each x ∈ X, [S x]α , [T x]α ∈ CB(X) and
there exist non-negative constants ℓ1 and ℓ2 with

2φ(x, y)ℓ1 + ℓ2 < 1
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and
λ(1 − φ(x, y)ℓ1 − ℓ2) = φ(x, y)ℓ1,

where λ ∈ [0, 1) such that

ℓ1
(
d (y, [S x]α) + d

(
x,

[
Ty

]
α

))
+ ℓ2

d (x, [S x]α) d
(
y,

[
Ty

]
α

)
1 + d (x, y)

∈ s
(
[S x]α ,

[
Ty

]
α

)
, (3.1)

for all x, y ∈ X. If for each x0 ∈ X, limn,m→+∞ φ (xn, xm) λ < 1, then S and T have a common α-fuzzy
fixed point.

Proof. Let x0 be an arbitrary point in X. By assumption, we can find that x1 ∈ [S x0]α. So, we have

ℓ1
(
d
(
x1,,

[
S x0,

]
α

)
+ d

(
x0,

[
T x1,

]
α

))
+ ℓ2

d (x0, [S x0]α) d(x1, [T x1]α)
1 + d (x0, x1)

∈ s ([S x0]α , [T x1]α) ,

that is,

ℓ1
(
d
(
x1,,

[
S x0,

]
α

)
+ d

(
x0,

[
T x1,

]
α

))
+ ℓ2

d (x0, [S x0]α) d(x1, [T x1]α)
1 + d (x0, x1)

∈
⋂

ω∈[S x0]α

s (ω, [T x1]α) .

Since x1 ∈ [S x0]α , we have

ℓ1
(
d
(
x1,,

[
S x0,

]
α

)
+ d

(
x0,

[
T x1,

]
α

))
+ ℓ2

d (x0, [S x0]α) d(x1, [T x1]α)
1 + d (x0, x1)

∈ s (x1, [T x1]α) .

By definition

ℓ1
(
d
(
x1,,

[
S x0,

]
α

)
+ d

(
x0,

[
T x1,

]
α

))
+ ℓ2

d (x0, [S x0]α) d(x1, [T x1]α)
1 + d (x0, x1)

∈
⋃

x∈[T x1]α

s (d(x1, x)).

This implies that there exists x = x2 ∈ [T x1]α such that

ℓ1
(
d
(
x1,,

[
S x0,

]
α

)
+ d

(
x0,

[
T x1,

]
α

))
+ ℓ2

d (x0, [S x0]α) d(x1, [T x1]α)
1 + d (x0, x1)

∈ s (d(x1, x2)),

that is,

d(x1, x2) ⪯ ℓ1
(
d
(
x1,,

[
S x0,

]
α

)
+ d

(
x0,

[
T x1,

]
α

))
+ ℓ2

d (x0, [S x0]α) d(x1, [T x1]α)
1 + d (x0, x1)

.

By the definitions of Wx(
[
Ty

]
α) and Wx(

[
S y

]
α) for x, y ∈ X, we get

d(x1, x2) ⪯ ℓ1
(
d(x0,x2)

)
+
ℓ2d (x0, x1) d

(
x1,x2

)
+ ℓ3d (x1, x1) d

(
x0,x2

)
1 + d (x0, x1)

= φ(x0, x1)ℓ1
(
d (x0, x1) + d(x1,x2)

)
+
ℓ2d (x0, x1) d

(
x1,x2

)
1 + d (x0, x1)

= φ(x0, x1)ℓ1
(
d (x0, x1) + d(x1,x2)

)
+ ℓ2d

(
x1,x2

) ( d (x0, x1)
1 + d (x0, x1)

)
.

This implies that
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|d(x1, x2)| ≤ φ(x0, x1)ℓ1|d (x0, x1) | + φ(x0, x1)ℓ1|d(x1,x2)| + ℓ2|d
(
x1,x2

)
|

∣∣∣∣∣ d (x0, x1)
1 + d (x0, x1)

∣∣∣∣∣
≤ φ(x0, x1)ℓ1|d (x0, x1) | + φ(x, y)ℓ1|d(x1,x2)| + ℓ2|d

(
x1,x2

)
|,

which further implies that

|d(x1, x2)| ≤
(

φ(x0, x1)ℓ1
1 − φ(x0, x1)ℓ1 − ℓ2

)
|d (x0, x1) |

= λ|d (x0, x1) |. (3.2)

Similarly, for x2 ∈ [T x1]α , we have

ℓ1
(
d
(
x2, [T x1]α

)
+ d (x1, [S x2]α)

)
+ ℓ2

d
(
x1, [T x1]α

)
d (x2, [S x2]α)

1 + d (x2, x1)
∈ s ([T x1]α , [S x2]α) ,

that is,

ℓ1
(
d
(
x2, [T x1]α

)
+ d (x1, [S x2]α)

)
+ ℓ2

d
(
x1, [T x1]α

)
d (x2, [S x2]α)

1 + d (x2, x1)
∈

⋂
ω∈[T x1]α

s (ω, [S x2]α) .

Since x2 ∈ [T x1]α , we have

ℓ1
(
d
(
x2, [T x1]α

)
+ d (x1, [S x2]α)

)
+ ℓ2

d
(
x1, [T x1]α

)
d (x2, [S x2]α)

1 + d (x2, x1)
∈ s (x2, [S x2]α) .

By definition, we have

ℓ1
(
d
(
x2, [T x1]α

)
+ d (x1, [S x2]α)

)
+ ℓ2

d
(
x1, [T x1]α

)
d (x2, [S x2]α)

1 + d (x2, x1)
∈

⋃
d∈[S x2]α

s (d(x2, d)).

By the definition of the “s” function, there exists x3 ∈ [S x2]α , such that

ℓ1
(
d
(
x2, [T x1]α

)
+ d (x1, [S x2]α)

)
+ ℓ2

d
(
x1, [T x1]α

)
d (x2, [S x2]α)

1 + d (x2, x1)
∈ s (d(x2, x3)),

that is,

d(x2, x3) ⪯ ℓ1
(
d
(
x2, [T x1]α

)
+ d (x1, [S x2]α)

)
+ ℓ2

d
(
x1, [T x1]α

)
d (x2, [S x2]α)

1 + d (x2, x1)
.

By the definitions of Wx(
[
Ty

]
α) and Wx(

[
S y

]
α) for x, y ∈ X, we get

d(x2, x3) ⪯ ℓ1 (d (x1, x3)) +
ℓ2d (x1, x2) d (x2, x3)

1 + d (x2, x1)

= φ(x1, x2)ℓ1
(
d
(
x1,x2

)
+ φ(x1, x2)d (x2, x3)

)
+ ℓ2

d (x1, x2) d (x2, x3)
1 + d (x1, x2)

,

which implies that

|d(x2, x3)| ≤ φ(x1, x2)ℓ1|d (x1, x2) | + φ(x1, x2)ℓ1|d (x2, x3) | + ℓ2d (x2, x3)
|d (x1, x2) |
|1 + d (x1, x2) |

.
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This yields

|d(x2, x3)| ≤
(

φ(x1, x2)ℓ1
1 − φ(x1, x2)ℓ1 − ℓ2

)
|d (x1, x2) |

= λ|d (x1, x2) |. (3.3)

Continuing in this way, we get a sequence of points {xn} in X such that

|d(x1, x2)| ≤ λ|d (x0, x1) |,
|d(x2, x3)| ≤ λ2|d (x0, x1) |,

·

·

·

d (xn, xn+1) ≤ λnd (x0, x1) ,

for all n ∈ N. Now for m > n and by the triangle inequality, we have

d (xn, xm) ⪯ φ (xn, xm) λnd (x0, x1)

+ φ (xn, xm)φ (xn+1, xm) λn+1d (x0, x1)

+ · · ·

+ φ (xn, xm)φ (xn+1, xm) · · · φ (xm−2, xm)φ (xm−1, xm) λm−1d (x0, x1)

⪯ d (x0, x1)


φ (xn, xm) λn

+φ (xn, xm)φ (xn+1, xm) λn+1 + · · ·+

φ (xn, xm)φ (xn+1, xm) · · · φ (xm−2, xm)φ (xm−1, xm) λm−1

 .
Since

lim
n,m→+∞

φ (xn, xm) λ < 1,

the series
∞∑

n=1
λn

p∏
i=1
φ (xi, xm) converges, according to the ratio test for each m ∈ N. Let

S =
∞∑

n=1

λn
p∏

i=1

φ (xi, xm) , S n =

n∑
j=1

λ j
p∏

i=1

φ (xi, xm) .

Hence, the above inequality for m > n can be written as

d (xn, xm) ⪯ d (x0, x1) [S m−1 − S n] .

Letting n→ +∞, we have
|d (xn, xm)| → 0.

Thus the sequence {xn} is Cauchy in X according to Lemma 2. Because X is complete, there exists x∗

such that xn → x∗ ∈ X as n→ +∞. Now, we show that x∗ ∈ S x∗ and x∗ ∈ T x∗. By inequality (3.1), we
have

ℓ1 (d (x∗, [S x2n]α) + d (x2n, [T x∗]α)) + ℓ2
d (x2n, [S x2n]α) d (x∗, [T x∗]α)

1 + d (x2n, x∗)
∈ s ([S x2n]α , [T x∗]α) ,
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that is,

ℓ1 (d (x∗, [S x2n]α) + d (x2n, [T x∗]α)) + ℓ2
d (x2n, [S x2n]α) d (d∗, [T x∗]α)

1 + d (x2n, x∗)
∈

⋂
ω∈[S x2n]α

s (ω, [T x∗]α) .

Since x2n+1 ∈ [S x2n]α, we have

ℓ1 (d (x∗, [S x2n]α) + d (x2n, [T x∗]α)) + ℓ2
d (x2n, [S x2n]α) d (x∗, [T x∗]α)

1 + d (x2n, x∗)
∈ s (x2n+1, [T x∗]α) ,

ℓ1 (d (x∗, [S x2n]α) + d (x2n, [T x∗]α)) + ℓ2
d (x2n, [S x2n]α) d (x∗, [T x∗]α)

1 + d (x2n, x∗)
∈

⋃
x/∈[T x∗]α

s
(
d
(
x2n+1, x/

))
.

This implies that there exists ςn ∈ [T x∗]α such that

ℓ1 (d (x∗, [S x2n]α) + d (x2n, [T x∗]α)) + ℓ2
d (x2n, [S x2n]α) d (x∗, [T x∗]α)

1 + d (x2n, x∗)
∈ s (d (x2n+1, ςn)) ,

that is,

d (x2n+1, ςn) ⪯ ℓ1 (d (x∗, [S x2n]α) + d (x2n, [T x∗]α)) + ℓ2
d (x2n, [S x2n]α) d (x∗, [T x∗]α)

1 + d (x2n, x∗)
.

The g.l.b property of T yields

d (x2n+1, ςn) ⪯ ℓ1 (d (x∗, x2n+1) + d (x2n, ςn)) + ℓ2
d (x2n, x2n+1) d (x∗, ςn)

1 + d (x2n, x∗)
.

From the triangle inequality, we have

d (x∗, ςn) ⪯ θ (x∗, ςn) [d (x∗, x2n+1) + d (x2n+1, ςn)] .

Hence

d (x∗, ςn) ⪯ θ (x∗, ςn) d (x∗, x2n+1) + ℓ1θ (x∗, ςn) (d (x∗, x2n+1) + d (x2n, ςn)) + +ℓ2
d (x2n, x2n+1) d (x∗, ςn)

1 + d (x2n, x∗)
.

It follows that

|d (x∗, ςn) | ≤ θ (x∗, ςn) |d (x∗, x2n+1) | + ℓ1θ (x∗, ςn) |d (x∗, x2n+1) | + ℓ1θ (x∗, ςn) |d (x2n, ςn) |

+ ℓ2θ (x∗, ςn)
|d (x2n, x2n+1) ||d (x∗, ςn) |
|1 + d (x2n, x∗) |

.

Letting n → +∞, we get that |d (x∗, ςn) | → 0. Thus, ςn → x∗ according to Lemma 1. Because [T x]α
is closed, x∗ ∈ [T x]α. Similarly, we can show that x∗ ∈ [S x]α. Thus there exists x∗ ∈ X such that
x∗ ∈ [S x]α ∩ [T x]α . □

By taking S = T in Theorem 6, we derive the following result:
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Corollary 1. Let (X, d) be a complete CVEbMS, φ: X × X → [1,+∞) and T: X → F(X) satisfy the
g.l.b property. Suppose that there exists α ∈ (0, 1], such that for each x ∈ X, [T x] ∈ CB(X) and there
exist non-negative constants ℓ1 and ℓ2 with

2φ(x, y)ℓ1 + ℓ2 < 1

and
λ(1 − φ(x, y)ℓ1 − ℓ2) = φ(x, y)ℓ1,

where λ ∈ [0, 1) such that

ℓ1
(
d (y, [T x]α) + d

(
x,

[
Ty

]
α

))
+
ℓ2d (x, [T x]α) d

(
y,

[
Ty

]
α

)
1 + d (x, y)

∈ s
(
[T x]α ,

[
Ty

]
α

)
,

for all x, y ∈ X. If for each x0 ∈ X,
lim

n,m→+∞
φ (xn, xm) λ < 1,

then T has an α-fuzzy fixed point.

Taking φ: X × X → [1,+∞) by φ(x, y) = s ≥ 1 in Theorem 6, we get the following result:

Corollary 2. Let (X, d) be a complete CVbMS with the coefficient s ≥ 1, and S ,T: X → F(X) satisfy
the g.l.b property. Suppose that there exists α ∈ (0, 1], such that for each x ∈ X, [S x]α , [T x]α ∈ CB(X)
and there exist non-negative constants ℓ1 and ℓ2 with

2ℓ1 + ℓ2 < 1

and

ℓ1
(
d (y, [S x]α) + d

(
x,

[
Ty

]
α

))
+ ℓ2

d (x, [S x]α) d
(
y,

[
Ty

]
α

)
1 + d (x, y)

∈ s
(
[S x]α ,

[
Ty

]
α

)
,

for all x, y ∈ X; then, S and T have a common α-fuzzy fixed point.

By taking S = T in the above corollary, we get the following result:

Corollary 3. Let (X, d) be a complete CVbMS with the coefficient s ≥ 1, and T: X → F(X) satisfy the
g.l.b property. Suppose that there exists α ∈ (0, 1], such that for each x ∈ X, [T x]α ∈ CB(X) and there
exist non-negative constants ℓ1 and ℓ2 with

2ℓ1 + ℓ2 < 1

and

ℓ1
(
d (y, [T x]α) + d

(
x,

[
Ty

]
α

))
+ ℓ2

d (x, [T x]α) d
(
y,

[
Ty

]
α

)
1 + d (x, y)

∈ s
(
[T x]α ,

[
Ty

]
α

)
,

for all x, y ∈ X; then, there exists x∗ ∈ X such that x∗ ∈ [T x∗]α .

Taking φ: X × X → [1,+∞) by φ(x, y) = 1 in Theorem 6, we get the following result:
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Corollary 4. ([18]) Let (X, d) be a complete CVMS, and let S ,T: X → F(X) satisfy the g.l.b property.
Suppose that there exists α ∈ (0, 1] such that for each x ∈ X, [S x]α , [T x]α ∈ CB(X) and there exist
non-negative constants ℓ1 and ℓ2 with

2ℓ1 + ℓ2 < 1

and

ℓ1
(
d (y, [S x]α) + d

(
x,

[
Ty

]
α

))
+ ℓ2

d (x, [S x]α) d
(
y,

[
Ty

]
α

)
1 + d (x, y)

∈ s
(
[S x]α ,

[
Ty

]
α

)
,

for all x, y ∈ X; then, S and T have a common α-fuzzy fixed point.

By taking S = T in the above corollary, we get the following result:

Corollary 5. ([18]) Let (X, d) be a complete CVMS, and T: X → F(X) satisfy the g.l.b property.
Suppose that there exists α ∈ (0, 1] such that for each x ∈ X, [T x]α ∈ CB(X) and there exist non-
negative constants ℓ1 and ℓ2 with

2ℓ1 + ℓ2 < 1

and

ℓ1
(
d (y, [T x]α) + d

(
x,

[
Ty

]
α

))
+ ℓ2

d (x, [T x]α) d
(
y,

[
Ty

]
α

)
1 + d (x, y)

∈ s
(
[T x]α ,

[
Ty

]
α

)
,

for all x, y ∈ X; then, there exists x∗ ∈ X such that x∗ ∈ [T x∗]α .

4. Application

4.1. Multivalued mappings results

Theorem 7. Let (X, d) be a complete CVEbMS, φ: X × X → [1,+∞) and ⅁1,⅁2: X → CB(X) satisfy
the g.l.b property. Suppose that there exist non-negative constants ℓ1 and ℓ2 with

2φ(x, y)ℓ1 + ℓ2 < 1

and
λ(1 − φ(x, y)ℓ1 − ℓ2) = φ(x, y)ℓ1,

where λ ∈ [0, 1) such that

ℓ1 (d (y,⅁1x) + d (x,⅁2y)) +
ℓ2d (x,⅁1x) d (y,⅁2y)

1 + d (x, y)
∈ s (⅁1x,⅁2y) ,

for all x, y ∈ X. If for each x0 ∈ X,
lim

n,m→+∞
φ (xn, xm) λ < 1,

then there exists x∗ ∈ X such that x∗ ∈ ⅁1x∗ ∩ ⅁2x∗.

Proof. Consider that S ,T : X → F(X) is defined by

S (x)(t) =
{
α, t ∈ ⅁1x
0, t < ⅁1x

,
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T (x)(t) =
{
α, t ∈ ⅁2x
0, t < ⅁2x

,

where α ∈ (0, 1]. Then

[S x]α = {t : S (x)(t) ≥ α} = ⅁1x, [T x]α = ⅁2x.

Hence, we can get x∗ ∈ X by Theorem 6 such that

x∗ ∈ [S x∗]α ∩ [T x∗]α = ⅁1x∗ ∩ ⅁2x∗.

□
Corollary 6. Let (X, d) be a complete CVEbMS, φ: X × X → [1,+∞) and ⅁: X → CB(X) satisfy the
g.l.b property. Suppose that there exist non-negative constants ℓ1 and ℓ2 with

2φ(x, y)ℓ1 + ℓ2 < 1

and
λ(1 − φ(x, y)ℓ1 − ℓ2) = φ(x, y)ℓ1,

where λ ∈ [0, 1) such that

ℓ1 (d (y,⅁x) + d (x,⅁y)) +
ℓ2d (x,⅁x) d (y,⅁y)

1 + d (x, y)
∈ s (⅁x,⅁y) ,

for all x, y ∈ X. If for each x0 ∈ X,
lim

n,m→+∞
φ (xn, xm) λ < 1,

then there exists x∗ ∈ X such that x∗ ∈ ⅁x∗.

Proof. Take ⅁1 = ⅁2 = ⅁ in Theorem 7. □

Corollary 7. Let (X, d) be a complete CVEbMS, φ: X × X → [1,+∞) and ⅁1,⅁2: X → CB(X) satisfy
the g.l.b property. Suppose that there exists a non-negative constant ℓ1 such that 2φ(x, y)ℓ1 ∈ [0, 1) and

ℓ1 (d (y,⅁1x) + d (x,⅁2y)) ∈ s (⅁1x,⅁2y) ,

for all x, y ∈ X. If for each x0 ∈ X,
lim

n,m→+∞
φ (xn, xm) ℓ1 < 1,

then there exists x∗ ∈ X such that x∗ ∈ ⅁1x∗ ∩ ⅁2x∗.

Proof. Take ℓ2 = 0 in Theorem 7. □

Taking φ(x, y) = 1 in the above Theorem 7, then one can obtain the fundamental theorem of Ahmad
et al. [11] in the following manner:

Corollary 8. ([11]) Let (X, d) be a complete CVMS and ⅁1,⅁2: X → CB(X) satisfy the g.l.b property.
Suppose that there exist non-negative constants ℓ1 and ℓ2 with

2ℓ1 + ℓ2 < 1

such that
ℓ1 (d (y,⅁1x) + d (x,⅁2y)) + ℓ2

d (x,⅁1x) d (y,⅁2y)
1 + d (x, y)

∈ s (⅁1x,⅁2y) ,

for all x, y ∈ X; then, there exists x∗ ∈ X such that x∗ ∈ ⅁1x∗ ∩ ⅁2x∗.
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4.2. Self mapping results

Theorem 8. Let (X, d) be a complete CVEbMS, φ: X × X → [1,+∞) and ⅁1,⅁2: X → X. Suppose
that there exist non-negative constants ℓ1 and ℓ2 with

2φ(x, y)ℓ1 + ℓ2 < 1

and
λ(1 − φ(x, y)ℓ1 − ℓ2) = φ(x, y)ℓ1,

where λ ∈ [0, 1) such that

d (⅁1x,⅁2y) ⪯ ℓ1 (d (y,⅁1x) + d (x,⅁2y)) + ℓ2
d (x,⅁1x) d (y,⅁2y)

1 + d (x, y)
,

for all x, y ∈ X. If for each x0 ∈ X,
lim

n,m→+∞
φ (xn, xm) λ < 1,

then there exists x∗ ∈ X such that x∗ = ⅁1x∗ = ⅁2x∗.

Taking φ(x, y) = 1 in the above Theorem 8, then one can establish the following corollary which is
main result of Rouzkard and Imdad [9]:

Corollary 9. ([9]) Let (X, d) be a complete CVMS and ⅁1,⅁2: X → X. Suppose that there exist
non-negative constants ℓ1 and ℓ2 with 2ℓ1 + ℓ2 < 1 such that

d (⅁1x,⅁2y) ⪯ ℓ1 (d (y,⅁1x) + d (x,⅁2y)) + ℓ2
d (x,⅁1x) d (y,⅁2y)

1 + d (x, y)
,

for all x, y ∈ X; then, there exists x∗ ∈ X such that x∗ = ⅁1x∗ = ⅁2x∗.

Taking φ(x, y) = 1 and ℓ1 = 0 in the above Theorem 8, then one can establish the following corollary
which is one of the results of Azam et al. [8].

Corollary 10. ([8]) Let (X, d) be a complete CVMS and ⅁1,⅁2: X → X. Suppose that there exists a
non-negative constant ℓ2 ∈ [0, 1) such that

d (⅁1x,⅁2y) ⪯ ℓ2
d (x,⅁1x) d (y,⅁2y)

1 + d (x, y)
,

for all x, y ∈ X; then, there exists x∗ ∈ X such that x∗ = ⅁1x∗ = ⅁2x∗.

5. Application

In this section, we investigate Fredholm type integral inclusion

x(t) ∈ g(t) +
∫ b

a
K(t, s, x(s))ds, t ∈ [a, b], (5.1)

where K: [a, b] ×[a, b] ×R → Kcv(R) (non-empty convex and compact subsets of R), g ∈ C[a, b] is
given continuous function.
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Define the complex valued extended b-metric d on C[a, b] by

d(x, y) = max
t∈[a,b]
|x(t) − y(t)|eit, (5.2)

for all x, y ∈ C[a, b]. Then (C[a, b], d, φ) is a complete CVEbMS with φ (x, y) = |x(t)| + |y(t)| + 2.
The following conditions will be assumed in our next theorem:

(a) ∀ x ∈ C[a, b], the function K: [a, b] ×[a, b] ×R→ Kcv(R) is lower semicontinuous.
(b) There exist continuous functions O,P: [a, b] × [a, b]→ [0,+∞) such that

d(K(t, s, x) − K(t, s, y) ⪯ O(t, s)A (x, y) +P(t, s)B (x, y)

∀ t, s ∈ [a, b], x, y ∈ C[a, b], where

A (x, y) = max
t∈[a,b]

(
|x −

[
Ty

]
α | + |y − [T x]α |

)
eit,

B (x, y) =
maxt∈[a,b]

∣∣∣x − [
Ty

]
α

∣∣∣ eit maxt∈[a,b] |y − [T x]α || eit

1 +maxt∈[a,b] |x − y| eit

and T : C[a, b]→ F(X) is an FM given by

[T x]α =
{

y ∈ X : y(t) ∈ g(t) +
∫ b

a
K(t, s, x(s))ds, t ∈ [a, b]

}
,

for α ∈ (0, 1],
(c) There exists some non-negative constants ℓ1 and ℓ2 such that

max
t∈[a,b]

(∫ b

a
O(t, s)ds

)
≤ ℓ1

and

max
t∈[a,b]

(∫ b

a
P(t, s)ds

)
≤ ℓ2

with
2φ(x, y)ℓ1 + ℓ2 < 1.

Theorem 9. Under the assumptions (a)–(c), the integral inclusion (5.1) has a solution in C[a, b].

Proof. Let X=C[a, b] and x ∈ X be any arbitrary point. By Michael’s selection theorem, there exists a
continuous operator kx(t, s): [a, b] × [a, b] → R such that kx(t, s) ∈ Kx(t, s) for every t, s ∈ [a, b] and
set-valued function Kx(t, s): [a, b] × [a, b]→ Kcv(R). This yields that

g(t) +
∫ b

a
kx(t, s)ds ∈ [T x]α .

Thus, [T x]α , ∅. It is very simple to manifest that [T x]α is closed. Moreover, since the functions g and
Kx(t, s) are continuous, the ranges of both functions are bounded. It also follows that [T x]α is bounded.
Thus [T x]α ∈ Pcb(X). □
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For this, let x, y ∈ X; then, there exist [T x]α and
[
Ty

]
α such that [T x]α,

[
Ty

]
α ∈ Pcb(X). Let u ∈ [T x]α

be an arbitrary point such that

u(t) ∈ g(t) +
∫ b

a
K(t, s, x(s))ds

for t ∈ [a, b] holds. It means that ∀ t, s ∈ [a, b] and ∃ kx(t, s) ∈ Kx(t, s) = K(t, s, x(s)) such that

u(t) = g(t) +
∫ b

a
kx(t, s)ds

for t ∈ [a, b]. From (b), we have

d(K(t, s, x) − K(t, s, y) ⪯ O(t, s)A (x(s), y(s)) +P(t, s)B (x(s), y(s)) ,

for all x, y ∈ X, where

A (x(s), y(s)) = max
t∈[a,b]

(
|x(s) −

[
Ty(s)

]
α | + |y(s) − [T x(s)]α |

)
eit,

B (x(s), y(s)) =
maxt∈[a,b]

∣∣∣x(s) −
[
Ty(s))

]
α

∣∣∣ eit maxt∈[a,b]

∣∣∣y(s) − [T x(s)]α |
∣∣∣ eit

1 +maxt∈[a,b] |x(s) − y(s)| eit .

This implies that ∃ z(t, s) ∈ Ky(t, s) such that

|kx(t, s) − z(t, s)|2 ⪯ O(t, s)A (x(s), y(s)) +P(t, s)B (x(s), y(s)) ,

for all t, s ∈ [a, b] and

A (x(s), y(s)) = max
t∈[a,b]

(
|x(s) −

[
Ty(s)

]
α | + |y(s) − [T x(s)]α |

)
eit,

B (x(s), y(s)) =
maxt∈[a,b]

∣∣∣x(s) −
[
Ty(s))

]
α

∣∣∣ eit maxt∈[a,b]

∣∣∣y(s) − [T x(s)]α |
∣∣∣ eit

1 +maxt∈[a,b] |x(s) − y(s)| eit .

Now we consider U given as

U(t, s) = Ky(t, s) ∩ {w ∈ R : |kx(t, s) − w| ⪯ O(t, s)A (x(s), y(s)) +P(t, s)B (x(s), y(s))},

which is a multivalued function. Thus, by (a), the multivalued function U is lower semicontinuous.
This yields that there exists a continuous operator

ky(t, s) : [a, b] × [a, b]→ R

such that ky(t, s) ∈ U(t, s) for t, s ∈ [a, b]. Then

v(t) = g(t) +
∫ b

a
kx(t, s)ds

satisfies that

v(t) ∈ g(t) +
∫ b

a
K(t, s, y(s))ds, t ∈ [a, b],
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t ∈ [a, b]. That is v ∈
[
Ty

]
α and

|u(t) − v(t)| eit ⪯

(∫ b

a

∣∣∣kx(t, s) − ky(t, s)
∣∣∣ eitds

)
⪯

(∫ b

a
O(t, s)A (x(s), y(s)) +P(t, s)B (x(s), y(s))

)
⪯

(∫ b

a
O(t, s)A (x(s), y(s))

)
ds +

(∫ b

a
P(t, s)B (x(s), y(s))

)
ds

⪯ max
t∈[a,b]

(∫ b

a
O(t, s)A (x(s), y(s))

)
ds + max

t∈[a,b]

(∫ b

a
P(t, s)B (x(s), y(s))

)
ds

⪯ ℓ1
(
d(x,

[
Ty

]
α) + d(y, [T x]α)

)
+ ℓ2

d(x,
[
Ty

]
α)d(y, [T x]α)

1 + d(x, y)
,

∀t, s ∈ [a, b]. Hence, we get

d(u, v) ⪯ ℓ1
(
d(x,

[
Ty

]
α) + d(y, [T x]α)

)
+ ℓ2

d(x,
[
Ty

]
α)d(y, [T x]α)

1 + d(x, y)
.

Interchanging the roles of u and v, we obtain that

d([T x]α ,
[
Ty

]
α) ⪯ ℓ1

(
d(x,

[
Ty

]
α) + d(y, [T x]α)

)
+ ℓ2

d(x,
[
Ty

]
α)d(y, [T x]α)

1 + d(x, y)
,

by the definition of “s”, we have

ℓ1
(
d(x,

[
Ty

]
α) + d(y, [T x]α)

)
+ ℓ2

d(x,
[
Ty

]
α)d(y, [T x]α)

1 + d(x, y)
∈ s

(
[T x]α ,

[
Ty

]
α

)
.

Hence all assumptions of Corollary 1 are fulfilled. Thus, there exists a solution of integral
inclusion (5.1) by Corollary 1.

6. Conclusions

In this article, we utilized the notion of a CVEbMS and set up common α-fuzzy fixed point results
for Chatterjea type contractions involving rational expressions. Some common α- fixed point theorems
for self mappings and multivalued mappings have been established for CVEbMS as consequences
of our leading results. In this way, we derived the leading results of Azam et al. [8], Rouzkard and
Imdad [9], Ahmad et al. [11] and Kutbi et al. [18] from our results. As an application, we investigated
the solution of Fredholm integral inclusion.

The study of L-FMs and common L-fuzzy fixed point results for CVEbMS can be the focus of our
future work in this way.
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