As a continuation to our results in [
Citation: Rawya A. Hussein, Ali A. Ali. Geometry of the line space associated to a given dual ruled surface[J]. AIMS Mathematics, 2022, 7(5): 8542-8557. doi: 10.3934/math.2022476
As a continuation to our results in [
[1] | N. H. Abdel-All, M. Soliman, R. A. Huesien, A. A. Ali, Dual construction of developable ruled surface, J. Am. Sci., 7 (2011), 789–793. https://doi.org/10.7537/marsjas070411.109 doi: 10.7537/marsjas070411.109 |
[2] | L. M. Hsia, A. T. Yang, On the principle of transference in three-dimensional kinematics, J. Mech. Des., 103 (1981), 652–656. https://doi.org/10.1115/1.3254966 doi: 10.1115/1.3254966 |
[3] | J. M. Selig, Note on the principle of transference, Am. Soc. Mech. Eng., 1986. |
[4] | V. Brodsky, M. Shoham, Dual numbers representation of rigid body dynamics, Mech. Mach. Theory, 34 (2012), 693–718. https://doi.org/10.1016/S0094-114X(98)00049-4 doi: 10.1016/S0094-114X(98)00049-4 |
[5] | R. Ding, Y. Zhang, Dual space drawing methods for ruled surfaces with particular shapes, Int. J. Comput. Sci. Net., 6 (2006), 1–12. |
[6] | M. K. Karacan, B. Bukcu, N. Yuksel, On the dual Bishop Darboux rotation axis of the dual space curve, APPS. Appl. Sci., 10 (2008), 115–120. |
[7] | A. Y$\ddot{u}$cesan, A. C. C$\ddot{o}$ken, N. Ayyildiz, On the dual Darboux rotation axis of the timelike dual space curve, Balk. J. Geom. Appl., 7 (2002), 137–142. |
[8] | A. Y$\ddot{u}$cesan, N. Ayyildiz, A. C. C$\ddot{o}$ken, On rectifying dual space curves, Rev. Mat. Complut., 20 (2007), 497–506. |
[9] | H. Pottmanna, M. Peternella, B. Ravanib, An introduction to line geometry with applications, Comput.-Aided Design., 31 (1999), 3–16. https://doi.org/10.1016/S0010-4485(98)00076-1 doi: 10.1016/S0010-4485(98)00076-1 |
[10] | J. Mahovsky, B. Wyvill, Fast ray-axis aligned bounding box overlap tests with Plucker coordinates, J. Graphics Tools, 9 (2004), 35–46. https://doi.org/10.1080/10867651.2004.10487597 doi: 10.1080/10867651.2004.10487597 |
[11] | Y. Li, Y. Zhu, Q. Y. Sun, Singularities and dualities of pedal curves in pseudo-hyperbolic and de Sitter space, Int. J. Geom. Methods Mod. Phys., 18 (2021), 1–31. https://doi.org/10.1142/S0219887821500080 doi: 10.1142/S0219887821500080 |
[12] | G. R. Veldkamp, On the use of dual numbers, vectors and matrices in instantaneous spatial kinematics, Mech. Mach. Theory, 11 (1976), 141–156. https://doi.org/10.1016/0094-114X(76)90006-9 doi: 10.1016/0094-114X(76)90006-9 |
[13] | F. Messelmi, Analysis of dual functions, Ann. Rev. Chaos Theory, Bifurcations Dyn. Syst., 4 (2013), 37–54. https://doi.org/10.13140/2.1.1006.4006 doi: 10.13140/2.1.1006.4006 |
[14] | Y. Li, Z. Wang, T. Zhao, Geometric algebra of singular ruled surfaces, Adv. Appl. Clifford Algebras, 31 (2021), 19. https://doi.org/10.1007/s00006-020-01097-1 doi: 10.1007/s00006-020-01097-1 |