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1. Introduction

Dual numbers were introduced in the 19th century by Clifford, and their applications to rigid body
kinematics were subsequently generalized by Kafelnikov and study in their principle of transference.
The principle of transference, states that if dual numbers replace real ones (see [2,3]); then all
relations of vector algebra for intersecting lines are also valid for skew lines. In practice, this means
that all rules of vector algebra for the kinematics of a rigid body with a fixed point (spherical
kinematics) also hold for motor algebra of a free rigid body (spatial kinematics). As a result, a general
rigid body motion can be described by only three dual equations rather than six real ones. For several
decades there were attempts to apply dual numbers to rigid body dynamics. Investigators showed that
the momentum of a rigid body can be described as a motor that obeys the motor transformation rule,
hence, its derivative with respect to time yields the dual force. However, in those investigations, while
going from the velocity motor to the momentum motor, there was always a need to expand the
equation to six dimensions and to treat the velocity motor as two separated real vectors. This process
actually diminishes one of the main advantages of dual numbers-namely, compactness of
representation. Screws in the space can be represented by dual vectors at the origin. The components
of a dual vector consisting of a line vector at the origin and the perpendicular moment vector for the
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line vector in the space are equal to Plucker’s line coordinates. Furthermore, the space of lines could
be represented by points on the unit sphere and points in the tangential planes that affiliated to each
point on the sphere (see [1,4]).

1.1. Dual numbers

A dual number x̂ is defined as an ordered pair of real numbers (x, x∗) expressed formally as (see [5]):

x̂ = x + εx∗, (1.1)

where x is referred to the real part and x∗ to the dual part. The symbol ε is a multiplier which has the
property ε2 = 0. The algebra of dual numbers results from (1.1). Two dual numbers are equal if and
only if their real and dual parts are equal, respectively. As in the case of complex numbers, addition of
two dual numbers is defined as (see [4,5])

(x + εx∗) + (y + εy∗) = (x + y) + ε(x∗ + y∗). (1.2)

Multiplication of two dual numbers result in (see [6]):

(x + εx∗)(y + εy∗) = xy + ε(x∗y + xy∗). (1.3)

Division of dual numbers x̂
ŷ is defined as (see [1]):

x̂
ŷ
=

x
y
+ ε(

x∗

y
−

xy∗

y2 ), y , 0. (1.4)

Note that the division is possible and unambiguous only if y , 0.

1.2. Dual function

Dual function of dual number presents a mapping of a space of dual numbers on itself, namely
(see [3,6,7]).

f̂ (x̂) = f (x) + ε f ∗(x, x∗) (1.5)

where x̂ = x + εx∗ is a dual variable, f and f ∗are two, generally different, f ∗ is a function of two
variables. The dual function (1.5) is said to be analytic if it satisfies the following:

f̂ (x + εx∗) = f + ε f ∗ = f (x) + ε(x∗ f ′(x) + f̃ (x)), ′ = d
dx (1.6)

where f̃ (x) is an arbitrary function of a real part of a dual variable. The analytic condition for dual
function is (see [1]):

∂ f ∗

∂x∗
=
∂ f
∂x
. (1.7)

The derivative of such a dual function with respect to a dual variable is

d f̂ (x̂)
dx̂

=
∂ f ∗

∂x∗
+ ε
∂ f ∗

∂x
. (1.8)
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Taking into account (1.7) we have:

d f̂ (x̂)
dx̂

=
∂ f
∂x
+ ε
∂ f ∗

∂x
= f ′(x) + ε(x∗ f ′′(x) + f̃ ′(x)). (1.9)

If a function f (x) has the derivative f ′(x), its value for the dual argument x̂ = x + ε x∗ is denoted by
f̂ (x̂) or f̂ (x). Using the formal Taylor expansion of the function f̂ (x) with the property ε2 = 0; we have
(see [6,8]).

f̂ (x) = f (x + εx∗) = f (x) + εx∗ f ′(x). (1.10)

1.3. Dual space

The set
D3 = D × D × D = {x̂ : x̂ = (x1 + εx∗1, x2 + εx∗2, x3 + εx∗3)
= (x1, x2, x3) + ε(x∗1, x

∗
2, x
∗
3) = x + εx∗, x, x∗ ∈ R3},

is a module on the ring D and is called the dual space (vector space defined on the field of dual
numbers). For any x̂ = x + εx∗, ŷ = y + εy∗ ∈ D3, the scalar or inner product and the vector product
< x̂, ŷ >, x̂ ∧ ŷ of x̂ and ŷ are defined respectively by (see [9,10]):

< x̂, ŷ >=< x, y > +ε(< x, y∗ > + < x∗, y >), (1.11)

x̂ ∧ ŷ = (x2 y3 − x3 y2, x3 y1 − x1 y3, x1 y2 − x2 y1), (1.12)

where x̂ = (xi + εx∗i ), ŷ = (yi + εy∗i ) ∈ D3, 1 ⪯ i ⪯ 3.
If x , 0, the norm∥ x̂ ∥ is defined by (see [11,12])

∥ x̂ ∥=
√
< x̂, x̂ > =∥ x ∥ +ε

< x, x∗ >
∥ x ∥

. (1.13)

A dual vector x̂ = x+ εx∗ is a dual unit vector which satisfies the following < x, x∗ >= 0 and < x, x >=
1. Then, we have that < x̂, x̂ >= 1, also a dual vector x̂ with the unit norm is called a dual unit vector
The subset S2 = {̂x = x + εx∗ :∥ x̂ ∥= (1, 0); x, x∗ ∈ R3} ⊂ D3 is called the dual unit sphere with the
center Ô in D3.

1.4. Dual space curve

If every xi(u) and x∗i (u), 1 ≤ i ≤ n and u ∈ Rn, are differentiable dual valued functions, the dual
vector field x̂(u) is defined as the following:

x̂ : u ⊂ Rn → Dn (see [11]),
x̂(u) = x(u) + εx∗(u).

Dual space curve is a dual vector field of one variable defined as the following:
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x̂ : I ⊂ R→ D3,
where

u→ x̂(u) = (x1(u) + εx∗1(u), x2(u) + εx∗2(u), x3(u) + εx∗3(u))
= x + εx∗ ∈ D3,

is differentiable. The real part x(u) is called the indicatrix of the space curve x̂(u). The dual arc length
of the curve x̂(u) from u1 to u is defined as (see [2,12])

u∫
u1

∥ (̂x)′ ∥ du=
u∫
u1

∥ (x)′ ∥ du +
u
ε
∫

u1

< T , (x∗(u))′ > du=s + εs∗

where T is a unit tangent vector of x(u). From now on, we will take the arc length s of x(u) as the
parameter instead of u.

2. Dual ruled surface

A dual ruled surface results from the motion of line in the dual space D3, similarly to the way a dual
curve represents the motion of a dual point.A dual ruled surface is a surface swept out by a dual straight
line L with moving direction ŵ(u1) along a dual curve α̂. Such a surface always has a parameterization
in the ruled form (see [11,13,14])

σ̂ : R̂(û1, û2) = α̂(û1) + û2ŵ(û1), û1 ∈ Î ⊂ D, û2 ∈ D (2.1)

where, û1 = u1 + εu∗1, û2 = u2 + εu∗2, α̂(û1) = α(û1) + εα∗(û1), ŵ(û1) = w(û1) + εw∗(û1).
The dual ruled surface generated by the family {α̂(û1), ŵ(û1)}, where α̂(û1) is a dual directrix of the

dual surface and ŵ(û1) is the unit dual generator.
Using the formally Taylor expansion and the derivative of a dual function , we can write Eq (2.1) in

the dual representation vector as (see [2]),

R̂(û1, û2) = R(u1, u2) + εR∗(uη, u∗γ) (2.2)

where

σ : R(u1, u2) = α(u1) + u2w(u1) (2.3)

σ∗ : R∗(uη, u∗γ) = α∗(u1) + u∗1α′(u1) + u∗2w(u1) + u2(w∗(u1) + u∗1w′(u1)) (2.4)

where ′ = d
du1 and R∗ = R∗(u1, u2, u∗1, u∗2) is a regular vector function in four variables u1, u2, u∗1, u∗1

This function can be written in the ruled form (see [5]),

R∗(uη, u∗γ) = α∗(u1) + u∗1l(u1) + u∗2w(u1) + u2w∗(u1)
l(u1) = α′(u1) + w′(u1).

(2.5)

From Eqs (2.3)–(2.5) one can see the following:
Theorem 1. (see [5,12]) For any ruled surface defined in the dual space through the vector field
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R̂(̂uβ),there are a real ruled surface R(u1, u2) and 2-parametric family of ruled surfaces given by
R∗(uη, u∗γ).

The 2-parametric family of ruled surface is defined through the function R∗(uη, u∗γ) and this
function depends on 4 independent parameters uη, u∗γ, thus we have:
Corollary 1. (see [5]) The vector valued function R∗(uη, u∗γ) characterizes the space of lines
(4-dimensional Grassmann manifold) or line space attached to the dual ruled surface.

Assume that the dual ruled surface is a non cylindrical with |ŵ(û1)| = 1, û1 ∈ Î. i.e
< ŵ(̂u1), ŵ′(̂u1) >= 0 for all û1 ∈ Î.

First we construct a parameterized dual curve β̂(̂u1) lies on the trace of R̂; such that
< β̂′(̂u1), ŵ′(̂u1) >= 0 , û1 ∈ I that is

β̂(̂u1) = α̂(̂u1) + û2(̂u1)ŵ(̂u1). (2.6)

Using the formally Taylor expansion and the derivative of a dual function, Eq (2.6) can be written in
the dual representation vector as the following (see [2,5]):

β̂(̂u1) = β(u1) + εβ∗(uκ, u∗1), (2.7)

where

β(u1) = α(u1) + u2(u1)w(u1),

β∗(uκ, u∗1) = α∗(u1) + u∗1α′(u1) + u2(u1)(w∗(u1) + u∗1w′(u1)) + w(u1)(u2∗(u1) + u∗1u2′(u1))
(2.8)

for some dual valued function û2 = û2(̂u1).
Assuming the existence of such dual curve β̂, one obtains

β̂′(û1) = α̂′ + û2
′

ŵ + û2ŵ′. (2.9)

Taylor expansion and the derivative of a dual function gives

β̂′(̂u1) = β′(u1) + εβ′∗(u1), (2.10)

where

β′(u1) = α′ + u2′(u1)w + u2(u1)w′,

β′∗(u1, u∗1) = α′∗ + u∗1α′′ + u2′(u1)(w∗ + u∗1w′) + w(u2′∗(u1) + u∗1u2′′)
+u2(u1)(w′∗ + u∗1w′′) + w′(u2∗(u1) + u∗1u2′).

(2.11)

Since < ŵ(̂u1), ŵ′(̂u1) >= 0, we have

û2 = −
< α̂′, ŵ′ >
< ŵ′, ŵ′ >

. (2.12)

Equation (2.12) can be written in the dual representation vector by using Taylor expansion as the
following

û2 = u2(u1) + εu2∗(u1) (2.13)
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where

u2(u1) = −<α
′(u1),w′(u1)>

<w′(u1),w′(u1)> ,

u2∗(u1) = −<α
′,w′∗+u∗1w′′>+<w′,α′∗+u∗1α′′>

<w′,w′> −
<α′,w′><w′,w∗′+u∗1w′′>

<w′,w′>2 .

(2.14)

Thus, if we define β̂(̂u1) by Eqs (2.4) and (2.12),we obtain the required dual curve, which is called the
dual line o f striction and its points are called the central points of the dual ruled surface. Thus the
striction curve on the real ruled surface σ is given by

β(u1) = α(u1) −
< α′(u1),w′(u1) >
< w′(u1),w′(u1) >

w(u1). (2.15)

In this case the line space σ∗ degenerate to 1-parametric family of ruled surfaces is given by

R∗ = R(uη, u∗γ), u∗2 = u∗2(u1)

such function are defined explicitly by (2.4) and(2.14) respectively.
Now we take the line of striction β̂ = β̂(̂u1) as the directrix of the dual ruled surface (2.1) which is

given by

R̂(̂u1, û2) = β̂(̂u1) + û2ŵ(̂u1), (2.16)

where β̂ = β̂(̂u1) is given through (2.7), (2.8), (2.13) and (2.14).
Thus, we have proved the following:

Lemma 1. (see [11,12]) For the dual line of striction on the dual ruled surfaces. There exists a real
line of striction on the real ruled surface attached to the dual ruled surface.

3. Dual invariants

Here, we try to give dual forms for the invariants attached to the dual ruled surface such as, the
parameter of distribution and Gaussian curvature. Using the dual differentiation which is presented in
section one, one can obtain the dual tangent vector R̂α to the dual ruled surface as in the following.

R̂1 = R1(u1, u2) + εR∗1(uκ, u∗γ), R̂2 = R2 + εR∗2, R̂α = ∂R̂
∂̂uα

(3.1)

where

R1(u1, u2) = β′ + u2w′, R∗1(uκ, u∗γ) = (β′∗ + u∗1β′′ + u∗2w∗′ + u∗1w′′),

R2(u1, u∗1) = w, R∗2(u1, u∗1) = w∗ + u∗1w′,
(3.2)

and the dual normal vector field is given as

R̂1 ∧ R̂2 = β̂
′ ∧ ŵ + û2(ŵ′ ∧ ŵ). (3.3)
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The dual representation of (2.18) can be written in the form

R̂1 ∧ R̂2 = ζ(u1, u2) + εζ∗(uη, u∗γ), (3.4)

where

ζ = β′ ∧ w + u2w′ ∧ w,

ζ∗ = (β′ + u2w′) ∧ (w∗ + w′) + (u2(w∗′ + u∗1β′′) + u∗2w′ + β∗ + u∗1β′′) ∧ w.
(3.5)

Since < ŵ′, ŵ >= 0 and < ŵ′, β̂′ >= 0, we conclude that for some dual function λ̂ = λ̂(̂u1), we have

β̂′ ∧ ŵ = λ̂ŵ′, (3.6)

|R̂1 ∧ R̂2|
2 = |̂λŵ′ + û2ŵ′ ∧ ŵ|2 = λ̂2|ŵ′|2 + û2|ŵ′|2 = (̂λ2 + û2)|ŵ′|2. (3.7)

The discriminant ĝ of the first fundamental form can be written as

ĝ = |R̂1 ∧ R̂2|
2 = (̂λ2 + û2)|ŵ′|2

= (λ2 + u2)|w′|2 + 2ε((λ2 + u2)w′w∗′ + w′2(λλ∗ + u2u∗2))
= g + εg∗,

(3.8)

where

g = (λ2 + u2)|w′|2, g∗ = 2((λ2 + u2)w′w∗′ + w′2(λλ∗ + u2u∗2)). (3.9)

It follows that the only singular point on the ruled surface (2.15) is along the line of striction û2 = 0,
and it will occur if and only if λ̂(̂u1) = 0. Then from (2.21) one can see that

λ̂ =
(̂β′, ŵ, ŵ′)
|ŵ′|2

. (3.10)

Remark 1. λ̂ = 0⇒ λ = λ∗ = 0, û2 = 0⇒ u2 = 0, u∗2 = 0.
Equation (2.23) can be written in the dual vector representation as

λ̂(̂u1) = λ(u1) + ελ∗(u1, u∗1), (3.11)

where

λ(u1) = (β′,w,w′)
|w′ |2 ,

λ∗(u1, u∗1) = 2(β′,w,w′)<w′,w∗′+u∗1w′′>
|w′ |4 +

(β′,w′∗+u∗1w′′,w′+w)+(β′∗+u∗1β′′,w,w′)
|w′ |2 .

(3.12)

Definition. The dual function λ̂(̂u1) is called the dual distribution parameter of the dual ruled surface R̂.
The dual unit normal vector field on the dual surface (2.15) is

N̂ =
R̂1 ∧ R̂2

|R̂1 ∧ R̂2|
=

R̂1 ∧ R̂2√
ĝ
, (3.13)
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then from Eqs (3.4) and (3.8) we have

N̂ = ζ(u
1,u2)+εζ∗(uη,u∗γ)
√

g+εg∗

=
ζ

g2 + ε
ζ∗g2−g∗ζ

g3 = N + εN∗.
(3.14)

Thus we have the following interesting results
Lemma 2. The unit dual normal vector field of two parts, one is the real unit normal vector field and
the other is the vector field depends on the line space attached to the dual ruled surface.

The same lemma can be reformulated for the dual parameter of distribution and the line of striction
as shown in the Eqs (2.4), (2.16), (3.11), respectively.

The coefficients of the first fundamental form are given in the following form

ĝ11 =< β̂
′, β̂′ > +(u2)2 < ŵ′, ŵ′ >= (< β′, β′ > +(u2)2 < w′,w′ >)
+ε(2 < β′, β∗′ > +2(u2)2 < ŵ′, ŵ∗

′
>) = g11 + εg∗11,

ĝ12 =< β̂
′, ŵ >=< β′,w > +ε(< β′,w∗ > + < β∗′,w >) = g12 + εg∗12, ĝ22 = 1.

(3.15)

Using the definition of the Gauss curvature K̂ and routine calculations one obtains

K̂ = −
λ̂2|ŵ′|4

(̂λ2 + (̂u2)2)2|ŵ′|4
= −

λ̂2

(̂λ2 + (̂u2)2)2
. (3.16)

From (2.24) we have

K̂ (̂u1, û2) = K(u1, u2) + εK∗(uκ, u∗γ), (3.17)

where

K(u1, u2) = −λ
2

λ
2 , λ = λ

2 + (u2)2, K∗(uκ, u∗γ) = (2λλ∗+2u∗1λλ′)((u2)2−λ2)+2λ2u2u∗2

λ
3 . (3.18)

Remark 2. The function K is the Gauss curvature of the real ruled surface σ.

4. Special cases

The vector valued function (2.5) defines a 2-parametric family of ruled surfaces σ∗. Here we give
a classification to the ruled surfaces belonging to this family, which are called partially dual ruled
surfaces.

(I) Consider u∗1 = 0 and û2 = u2 + εu∗2 and using Eqs (2.3)–(2.5), we have a partially dual ruled
surface σI given by

σ̂I : R̂(u1, û2) = R(u1, u2) + εR∗(u1, u2, u∗2), (4.1)

where

σI : R(u1, u2) = α(u1) + u2w(u1), (4.2)
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σ∗I : R∗(uκ, u∗2) = α∗(u1) + u∗2w(u1) + u2w∗(u1). (4.3)

It is easy to see that the function R∗ defines 3-parametric family of lines σ∗Ii , i = 1, 2, 3. Now, we take
the line of striction as the directrix of the dual ruled surface and using (2.16), (3.1)–(3.10) we have the
following:
Lemma 3. The dual parameter of distribution λ̂1 is given as

λ̂1(̂u1) = λ1(u1) + ελ1
∗(u1), (4.4)

where

λ1(u1) = (β′,w,w′)
|w′ |2 , λ1

∗(u1) = 2(β′,w,w′)<w′,w∗′>
|w′ |4 +

(β′,w′∗,w′+w)+(β′∗,w,w′)
|w′ |2 . (4.5)

Lemma 4. The dual Gaussian curvature K̂2 is given as

K̂1(̂u1, û2) = K1(u1, u2) + εK1
∗(uη, u∗2), (4.6)

K1(u1, u2) = −λ1
2

λ1
, λ = λ1

2 + (u2)2, K1
∗(uη, u∗2) = 2λ1λ1

∗((u2)2−λ1
2)+2λ1

2u2u∗2

λ1
3 . (4.7)

Remark 3. The functions λ1,K1 is defined for the real ruled surface σI .

Geometric interpretation

For the vector valued function R∗ = R∗(u1, u2, u∗2) given by Eq (3.3), we consider the following
cases:
(1) u2 = const = c1, characterizes a dual ruled surface σ∗I1 defined as

σ∗I1 : R̂(u1, u∗2) = r̃(u1) + u∗2r(u1), (4.8)

where

r̃(u1) = α∗(u1) + c1w∗(u1), r(u1) = w(u1). (4.9)

(2) u∗2 = const = c2, define a dual ruled surface σ∗I2 as

R̂(u1, u2) = r̃(u1) + u2r(u1), (4.10)

where

r̃(u1) = α∗(u1) + c2w(u1), r(u1) = w∗(u1). (4.11)

(3) u1 = const = c1, describes a degenerate ruled surface σ∗I3 (plane) passing through the point α(u1)
and contains the fixed directions w∗(u1),w.

(⨿) Consider u∗2 = 0 and û1 = u1 + εu∗1 and using Eqs (2.3)–(2.5) we have a partially dual ruled
surface σ⨿ given as

σ̂⨿ : R̂(û1, u2) = R(u1, u2) + εR∗(uη, u∗1), (4.12)
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where

σ⨿ : R(u1, u2) = α(u1) + u2w(u1), (4.13)

σ∗⨿ : R∗(uη, u∗1) = α∗(u1) + u∗1α′(u1) + u2(w∗(u1) + u∗1w′(u1)). (4.14)

Similarly as in case one, it is easy to see that the function R∗ defines a 3-parametric family of lines
σ∗⨿i , i = 1, 2, 3 as in case I. Thus we have the following:
Lemma 5. The dual parameter of distribution λ̂2 is given as

λ̂2(̂u1) = λ2(u1) + ελ2
∗(u1, u∗1), (4.15)

where

λ2(u1) = (β′,w,w′)
|w′ |2 ,

λ2
∗(u1, u∗1) = 2(β′,w,w′)<w′,w∗′+u∗1w′′>

|w′ |4 +
(β′,w′∗+u∗1w′′,w′+w)+(β′∗+u∗1β′′,w,w′)

|w′ |2 .

(4.16)

Lemma 6. The dual Gaussian curvature K̂2 is given as

K̂2(̂u1, u2) = K2(u1, u2) + εK∗2(uη, u∗1), (4.17)

where

K2(u1, u2) = −λ2
2

λ2
2 , λ2 = λ2

2 + (u2)2, K2
∗(uη, u∗1) = 2λ2λ2

∗+2u∗1λ2λ2
′((u2)2−λ2

2)

λ2
3 . (4.18)

Remark 4. The vector function R represents the real part of the dual ruled surface which coincident
with the well known construction of the ruled surface, while the function R∗(uγ, u∗γ) represents the
dual part of the dual ruled surface.

Remark 5. The dual part R∗(uη, u∗γ) represents 2-parametric family of ruled surfaces (line space)
attached to a given a dual ruled surface

Remark 6. From (3.30), (3.32) one can see that the real parts of the parameter of distribution and the
Gauss curvature have the same values for the partially ruled surface, K1 = K2, λ1 = λ2, λ1 = λ2

(defined on areal ruled surface).

Remark 7. The two partially ruled surfaces σ̂I , σ̂⨿ have the same geometric interpretation, i.e.,
consists of two ruled surface and a plane.

5. Application

As an application to the construction of the dual ruled surfaces we consider the dual helicoid
given by
Example 1. The dual vector function:∑̂

1 : R̂(̂u1, û2) = (̂u2 cos û1, û2 sin û1, û1), û2 , 0. (5.1)
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This vector function can be written in the dual form as

σI : R̂(̂u1, û2) = R(u1, u2) + εR∗(uη, u∗γ), (5.2)

where

σ∗I : R(u1, u2) = (u2 cos u1, u2 sin u1, u1), (5.3)

R∗(uη, u∗γ) = (u∗2 cos u1 − u2u∗1 sin u1, u∗2 sin u1 + u2u∗1 cos u1, u∗1). (5.4)

Also, we can write this equation in the dual ruled surface formula as in the following

R̂(̂u1, û2) = β̂(̂u1) + û2ŵ(û1), (5.5)

where

β̂(̂u1) = (0, 0, û1), ŵ(̂u1) = (cos û1, sin û1, 0). (5.6)

Using Eqs (2.25) and (2.29), we have

λI = 1, λ∗I = 1. (5.7)

From (5.7), (5.8) we have the well known results for the parameter of distibution, and Gaussian
curvature for the helicoid given by

KI =
1

(1+(u2)2)2 , K∗I = 22(u2)2+u2u∗2−1
(1+(u2)2)3 . (5.8)

Example 2. Consider the dual ruled surface:

Σ̂⨿ : R̂(̂u1, û2) = (̂u2 cos û1, û2 sin û1, cosh û1), û2 , 0, (5.9)

or in the dual form:

R̂(̂u1, û2) = R(u1, u2) + εR∗(uη, u∗γ), (5.10)

where

σ⨿ : R(u1, u2) = (u2 cos u1, u2 sin u1, cosh u1), (5.11)

and

σ∗⨿ : R∗(uη, u∗γ) = (u∗2 cos u1 − u2u∗1 sin u1, u∗2 sin u1 + u2u∗1 cos u1, u∗1 sinh u1). (5.12)

As a similar way to example one, we have

λ⨿ = sinh u1, λ∗⨿ = u∗1 cosh u1, (5.13)

K⨿ = sinh u1

(sinh u1+(u2)2)2 , K∗⨿ =
2u∗1 sinh u1((u2)2−sinh u1)+2u∗2u2sinh2

(sinh u1+(u2)2)2 . (5.14)
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6. Conclusions

The vector valued function R∗(uκ, u∗γ), which is defined in Eq (3.4) depends on 4 independent
parametric uκ, u∗γ, thus it characterizes the space of lines (4-dimensional Grassmann manifold). The
space of lines and their subfamilies of ruled surface are constructed and plotted in Figures 1–11, for
the two dual ruled surfaces (4.1) and (4.9) respectively.

Figure 1. Partially dual (pure real) σI .

Figure 2. Partially dual σ∗I1 (a) u∗1 = 1, (b) u∗1 = 0.

Figure 3. Partially dual σ∗I2 (a) u2 = const, (b) u∗1 = const.
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Figure 4. Partially dual σ∗I3 (a) u2 = const, (b) u2 = 0, (u∗1, u∗2) , (0, 0).

Figure 5. Partially dual u2 = const.

Figure 6. Line space σ∗I for dual helicoid.
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Figure 7. Partially dual (pure real) σ⨿.

Figure 8. Partially dual σ∗⨿1 (a) u∗1 = 1, (b) u∗1 = 0.

Figure 9. Partially dual σ∗⨿2 (a) u2 = const, (b) u∗1 = const.
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Figure 10. Partially dual σ∗⨿3 (a) u2 = const, (b) u2 = 0, (u∗1, u∗2) , (0, 0).

Figure 11. Line space σ∗⨿ for the dual ruled surface Σ̂⨿.
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