Processing math: 100%
Research article

Existence of fixed points of generalized set-valued F-contractions of b-metric spaces

  • Received: 28 March 2022 Revised: 14 July 2022 Accepted: 18 July 2022 Published: 05 August 2022
  • MSC : Primary 47H10, 47H04, 54E99, Secondary 54H25

  • This paper deals with the existence of non-empty fixed point sets of newly introduced generalized set-valued F-contractions of b-metric spaces. Some illustrative examples show that the new results in this paper generalize properly, unify and extend some related results in the existing literature. Moreover, we extract some important consequences of the results in b-metric spaces. Particularly, by setting b-metric constant equal to one, we obtain some specific cases showing notable enhancement of existing results yet in metric spaces.

    Citation: Basit Ali, Hafiza Aqsa Butt, Manuel De la Sen. Existence of fixed points of generalized set-valued F-contractions of b-metric spaces[J]. AIMS Mathematics, 2022, 7(10): 17967-17988. doi: 10.3934/math.2022990

    Related Papers:

    [1] Muhammad Nazam, Hijaz Ahmad, Muhammad Waheed, Sameh Askar . On the Perov's type $ (\beta, F) $-contraction principle and an application to delay integro-differential problem. AIMS Mathematics, 2023, 8(10): 23871-23888. doi: 10.3934/math.20231217
    [2] Muhammad Nazam, Aftab Hussain, Asim Asiri . On a common fixed point theorem in vector-valued $ b $-metric spaces: Its consequences and application. AIMS Mathematics, 2023, 8(11): 26021-26044. doi: 10.3934/math.20231326
    [3] Pragati Gautam, Vishnu Narayan Mishra, Rifaqat Ali, Swapnil Verma . Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partial $b$-metric space. AIMS Mathematics, 2021, 6(2): 1727-1742. doi: 10.3934/math.2021103
    [4] Gunaseelan Mani, Arul Joseph Gnanaprakasam, Choonkil Park, Sungsik Yun . Orthogonal $ F $-contractions on $ O $-complete $ b $-metric space. AIMS Mathematics, 2021, 6(8): 8315-8330. doi: 10.3934/math.2021481
    [5] Amer Hassan Albargi . Set-valued mappings and best proximity points: A study in $ \mathcal{F} $-metric spaces. AIMS Mathematics, 2024, 9(12): 33800-33817. doi: 10.3934/math.20241612
    [6] Hasanen A. Hammad, Doha A. Kattan . Strong tripled fixed points under a new class of F-contractive mappings with supportive applications. AIMS Mathematics, 2025, 10(3): 5785-5805. doi: 10.3934/math.2025266
    [7] Qing Yang, Chuanzhi Bai . Fixed point theorem for orthogonal contraction of Hardy-Rogers-type mapping on $O$-complete metric spaces. AIMS Mathematics, 2020, 5(6): 5734-5742. doi: 10.3934/math.2020368
    [8] Hongyan Guan, Jinze Gou, Yan Hao . On some weak contractive mappings of integral type and fixed point results in $ b $-metric spaces. AIMS Mathematics, 2024, 9(2): 4729-4748. doi: 10.3934/math.2024228
    [9] Shaoyuan Xu, Yan Han, Suzana Aleksić, Stojan Radenović . Fixed point results for nonlinear contractions of Perov type in abstract metric spaces with applications. AIMS Mathematics, 2022, 7(8): 14895-14921. doi: 10.3934/math.2022817
    [10] Aftab Hussain . Fractional convex type contraction with solution of fractional differential equation. AIMS Mathematics, 2020, 5(5): 5364-5380. doi: 10.3934/math.2020344
  • This paper deals with the existence of non-empty fixed point sets of newly introduced generalized set-valued F-contractions of b-metric spaces. Some illustrative examples show that the new results in this paper generalize properly, unify and extend some related results in the existing literature. Moreover, we extract some important consequences of the results in b-metric spaces. Particularly, by setting b-metric constant equal to one, we obtain some specific cases showing notable enhancement of existing results yet in metric spaces.



    Axioms of metric have been modified to get more general distance functions (compare [8]). Among the generalizations of metric, b-metric was initially considered by Bakhtin [11], Czerwik [14,15,16] and Berinde [13] to generalize the well known Banach contraction principle (shortly as BCP) [12]. Due to the useful applications of BCP, it has been attempted successfully by a long list of researchers to generalize in various directions. Wardowski [26] set up a contraction termed as F-contraction and obtained a generalization of BCP. After that, several authors have established different versions of F-contractions to generalize the results of Wardowski, for instance, see [1,2,4,5,6,7,10,19,20] and references therein. For self mappings of metric spaces, Proinov [21] proved that some results including Wardowski's result are equivalent to a special case of a well-known fixed point theorem of Skof [23]. Abbas et al. [3] obtained some coincidence point results for generalized set-valued (f,L) -almost F-contractions of metric spaces along with some applications. Recently, Karapınar et al. [17] provided a survey on F- contractions in which a collection of various results of F-contractions are given.

    Miculescu [18] introduced a sufficient condition for a sequence in a b-metric space (shortly as b-MS) to be Cauchy and proved some results involving set-valued contractions of a b-MS. After this, Suzuki [25] provided a sufficient condition (weaker than the one given by Miculescu) for a sequence to be Cauchy in a b-MS and proved some fixed point theorems for set-valued F-contractions.

    We present new generalized set-valued F-contractions of a b-MS and extend results given in [3,25] and in some references therein. We provide with some examples to substantiate the main results and to proclaim that the results in this paper are proper generalizations of some existing results in the literature. We start by fixing some notations to be used in the sequel. The letters N,R,R+ and R+ represent the set of positive integers, real numbers, non-negative and positive real numbers, respectively and X a non-empty set. Now we give some preliminary notions.

    Definition 1.1. [14] Let d:X×X R+ be a function and s1 a real number. Then (X,d) is termed as b-MS if d satisfies

    (1) d(r,w)=0r=w,

    (2) d(r,w)=d(w,r),

    (3) d(r,z)sd(r,w)+sd(w,z),

    for all r,w,zX, where s is a b-metric constant. For s=1, d is a metric.

    Throughout this article, s represent b-metric constant unless otherwise stated. Now consider the following example.

    Example 1.1. [11,13] Consider

    lp={{rj}:{rj}R, and j=1|rj|p<, 0<p<1}.

    For all r={rj} and w={wj} in lp, the mapping d:lp×lpR defined as

    d(r,w)=[j=1|rjwj|p]1p,

    is a b-metric on lp for s=21p as

    d(r,z)21p(d(r,w)+d(w,z)),

    for all r, z, w in lp. $

    Let (X,d) be a b-MS. A sequence {rj} in (X,d) is Cauchy if for any given ϵ>0, there is a JϵN so that d(rj,rm)<ϵ for all m,jJϵ, or equivalently

    limjd(rj+p,rj)=0,

    for all pN. A sequence {rj} in (X,d) is convergent if for any given ϵ>0, there is JϵN and an r in X so that d(rj,r)<ϵ for all jJϵ, or equivalently

    limjd(rj,r)=0,

    and we write rjr as j.

    Further, a subset EX is closed if for every sequence {rj} in E and rjr as j, implies rE and EX is bounded if

    supz,wEd(z,w)

    is finite. A b-MS (X,d) is complete if every Cauchy sequence in X converges. An et al. [9] explored some topological aspects of b-MS (X,d) and asserted that d is not necessarily continuous in both arguments. However, if d is continuous in one variable then it is continuous in the other variable as well. Moreover, the subset

    Bϵ(r0)={rX:d(r0,r)<ϵ},

    in (X,d) is not an open set (in general) but if d is continuous in one variable then Bϵ(r0) is open in X. Throughout in this paper b-metric d is continuous.

    Let (X,d) be a b-MS and CB(X) and P(X) the set of non-empty, closed, bounded, and the set of non-empty subsets of X, respectively. For E,GCB(X), the mapping H:CB(X)×CB(X)R+ defined as

    H(E,G)=max{δ(E,G),δ(G,E)},

    is Hausdorff metric on CB(X) generated by d, where

    δ(E,G)=suprEd(r,G)andd(r,G)=infwGd(r,w).

    The following lemma provides important tools in connection with a b-MS.

    Lemma 1.1. [14,15,16,22] For a b-MS (X,d), r,wX and E,GCB(X), the following statements hold:

    (1) (CB(X),H) is a b-MS.

    (2) For all rE, d(r,G)H(E,G).

    (3) For all r,w in X, d(r,E)sd(r,w)+sd(w,E).

    (4) For k>1 and cE, there is a wG so that d(c,w)kH(E,G).

    (5) For every k>0 and cE, there is a wG so that d(c,w)H(E,G)+k.

    (6) c¯E=E if and only if d(c,E)=0, where ¯E is the closure of E in (X,d).

    (7) For any sequence {rj} in X,

    d(r0,rj)sd(r0,r1)+s2d(r1,r2)++sj1(d(rj2,rj1)+d(rj1,rj)).

    Now consider a mapping F:R+R that satisfies:

    (A1) If λ1<λ2, then F(λ1)<F(λ2), for all λ1,λ2R+;

    (A2) For each sequence {λj}, limjλj=0 if and only if limjF(λj)=;

    (A3) There is k(0,1) such that limλ0+ λkF(λ)=0;

    (A4) F(infE)=infF(E) for all E(0,) and infE(0,);

    (A5) F is upper semicontinuous;

    (A6) F is continuous.

    Note that under (A1), (A4) and (A5) are equivalent (compare [25]). Wardowski [26] initiated the idea of F-contraction.

    Definition 1.2. [26] Let (X,d) be a metric space. A mapping f:XX is F-contraction if

    d(fr,fw)>0impliesτ+F(d(fr,fw))F(d(r,w)),

    for all r,wX and for some τ>0, where F:R+R satisfies A1–A3.

    Further, they obtained the existence and uniqueness of fixed point of the Fcontraction f of a complete metric space (X,d). Throughout this paper, for mappings f:XX and S:XCB(X), we use the notations Fix(f) and Fix(S) for the set of fixed points of f and S, respectively.

    Remark 1.1. For different choices of the function F in Definition 1.2, one can get different contractions, for instance if F(κ)=ln(κ) for κ>0, then the mapping f becomes Banach contraction (compare [26] for details).

    Definition 1.3. [25] Let a sequence {aj} be in R+ and {bj} a sequence in R+. If there is a real number C>0 such that

    ajCbj,

    for all jN, then we say

    {aj}O(bj).

    Lemma 1.2. [24,25] Let {rj} be a sequence in a b-MS (X,d). If for β>1+log2s,

    {d(rj,rj+1)}{O(jβ)}

    holds. Then {rj} is a Cauchy sequence.

    Lemma 1.3. [25] Let {tj} be a sequence in R+. If there is a function F:R+R, a real number c(0,1) and τR+ satisfying (A2), (A3) and

    jτ+F(tj+1)F(t1),

    then

    {tj}O(j1c)

    holds.

    Theorem 1.1. [25] Let (X,d) be a complete b-MS and S:XCB(X) a mapping. Suppose there is a function F:R+R,

    c(0,11+log2s),

    and τR+ satisfying (A2), (A3), and for any r,wX and ηSr, there is μSw such that either η=μ or

    τ+F(d(η,μ))F(d(r,w))

    holds. Then Fix(S) is non-empty.

    Theorem 1.2. [25] Let (X,d) be a complete b-MS and amapping S:XCB(X). Suppose there is a function F:R+R,

    c(0,11+log2s),

    and τR+ satisfying (A1)–(A3), (A5), and for any r,wX with SrSw,

    τ+F(H(Sr,Sw))F(d(r,w))

    holds. Then Fix(S) is non-empty.

    Let f:XX be single valued mapping and S:XCB(X) a set-valued mapping. For r,wX, ηSr and μSw, we use the following notations in the sequel.

    M1(r,w)=max{d(r,w),d(r,η),d(w,η),(d(r,η)d(w,η))},N1(r,w)=min{d(r,η),d(w,μ),d(r,μ),d(w,η)},

    and

    M2(r,w)=max{d(r,w),d(r,Tr),d(w,Tr),(d(r,Tr)d(w,Tr))},M3(r,w)=max{d(r,w),d(r,Tr),d(w,Tw),d(r,Tr)d(w,Tr),d(r,Tw)d(w,Tr)d(r,Tw)+d(w,Tr)2s,[d(r,Tw)+d(w,Tr)s(1+d(r,Tr)+d(w,Tw))]d(r,w)},M4(r,w)=max{d(r,w),d(r,Tr),d(w,Tw),d(r,Tr)d(w,Tr),d(r,Tw)d(w,Tr)d(r,Tw)+d(w,Tr)2,[d(r,Tw)+d(w,Tr)1+d(r,Tr)+d(w,Tw)]d(r,w)},M5(r,w)=max{d(r,w),d(r,Tr),d(w,Tw),d(r,Tw)+d(w,Tr)2},N2(r,w)=min{d(r,Tr),d(w,Tw),d(r,Tw),d(w,Tr)},

    for T{f,S}.

    We start with the following theorem.

    Theorem 2.1. Let (X,d) be a complete b-MS and S:XCB(X). Suppose there is a function F:R+R,

    c(0,11+log2s),

    and τR+ satisfying (A2) and (A3), and for any r,wX and ηSr, there is μSw such that η=μ or

    τ+F(d(η,μ))F(M1(r,w)+LN1(r,w))

    holds for some L0. Then Fix(S) is non-empty.

    Proof. On contrary, consider that Fix(S) is empty. Fix r1X and r2Sr1. From our assumption r1r2 and r2Sr2. We can pick r3Sr2. As r2r3, so

    τ+F(d(r2,r3))F(M1(r1,r2)+LN1(r1,r2))F(max{d(r1,r2),d(r1,r2),d(r2,r2),(d(r1,r2)d(r2,r2))}+Lmin{d(r1,r2),d(r2,r3),d(r1,r3),d(r2,r2)})=F(d(r1,r2)).

    Similarly, we can choose a sequence {rj} in X for any jN satisfying rj+1Srj and

    τ+F(d(rj+1,rj+2))F(M1(rj,rj+1)+LN1(rj,rj+1))=F(max{d(rj,rj+1),d(rj,rj+1),d(rj+1,rj+1),(d(rj,rj+1)d(rj+1,rj+1))}+Lmin{d(rj,rj+1),d(rj+1,rj+2),d(rj,rj+2),d(rj+1,rj+1)})=F(d(rj,rj+1)).

    That is

    F(d(rj+1,rj+2))F(d(rj,rj+1))τF(d(rj1,rj))2τF(d(rj2,rj1))3τ...F(d(r1,r2))jτ,

    implies

    jτ+F(d(rj+1,rj+2))F(d(r1,r2)).

    Now, using Lemma 1.3,

    {d(rj,rj+1)}O(j1c)

    holds. As c(0,11+log2s), so

    1c(1+log2s,+).

    Hence, by Lemma 1.2, {rj} is a Cauchy sequence. Because X is complete, {rj} converges to a zX, there is zjSz such that either zj=rj+1 or

    τ+F(d(rj+1,zj))F(M1(rj,z)+LN1(rj,z))

    holds. Let {j} be a sequence in N and {f(j)} be an arbitrary subsequence of {j}. Here, two cases arise:

    (1) #{jN:zf(j)=rf(j)+1}=,

    (2) #{jN:zf(j)=rf(j)+1}<,

    where #A denotes the cardinality of the set A.

    Case 1: Let {g(j)} be a subsequence of {j} in N which satisfy zfg(j)=rfg(j)+1. Since rjz as j,

    zfg(j)=rfg(j)+1z,

    as j. Hence,

    limjd(zfog(j),z)=0.

    Case 2: Let {g(j)} be a subsequence of {j} in N such that g(j){jN:zf(j)=rf(j)+1}. This implies

    τ+F(d(rfog(j)+1,zfog(j)))F(M1(rfog(j),z)+LN1(rfog(j),z))=F(max{d(rfog(j),z),d(rfog(j),rfog(j)+1),d(z,rfog(j)+1),(d(rfog(j),rfog(j)+1)d(z,rfog(j)+1))}+Lmin{d(rfog(j),rfog(j)+1),d(z,zfog(j)),d(rfog(j),zfog(j)),d(z,rfog(j)+1)})F(max{d(rfog(j),z),sd(rfog(j),z)+sd(z,rfog(j)+1),d(z,rfog(j)+1),(d(rfog(j),rfog(j)+1)d(z,rfog(j)+1))}+Lmin{d(rfog(j),rfog(j)+1),d(z,zfog(j)),d(rfog(j),zfog(j)),d(z,rfog(j)+1)}).

    That is

    τ+F(d(rfog(j)+1,zfog(j)))F(uj), (2.1)

    where

    uj=max{d(rfog(j),z),sd(rfog(j),z)+sd(z,rfog(j)+1),d(z,rfog(j)+1),(d(rfog(j),rfog(j)+1)d(z,rfog(j)+1))}+Lmin{d(rfog(j),rfog(j)+1),d(z,zfog(j)),d(rfog(j),zfog(j)),d(z,rfog(j)+1)}.

    Since rjz as j, therefore, uj0 as j. Hence, by (A2), we get

    limjF(uj)=. (2.2)

    From (2.1) and (2.2), we obtain

    τ+limjF(d(rfog(j)+1,zfog(j))).

    Again by (A2), we get

    limjd(rfog(j)+1,zfog(j))=0.

    Hence,

    limjd(zfog(j),z)limjs(d(zfog(j),rfog(j)+1)+d(rfog(j)+1,z))=0.

    Consequently, both cases imply

    limjd(zfog(j),z)=0.

    As f was taken to be arbitrary, so

    limjd(zj,z)=0.

    As Sz is closed, we get zSz, a contradiction. Thus Fix(S) is non-empty.

    Consider an example to illustrate the Theorem 2.1 and to show that it is a proper generalization of some results in the literature.

    Example 2.1. Let X={1,2,3} be a set and d:X×XR+ a mapping defined as

    d(1,2)=d(2,1)=3, d(1,3)=d(3,1)=1.5,d(2,3)=d(3,2)=5, d(r,r)=0, for all rX, and d(r,w)=d(w,r), for all r,wX.

    As

    d(2,3)=5d(2,1)+d(1,3)=4.5,

    so d is not a metric on X but for s=1.12, d is a complete b- metric. Define S:XCB(X) and F:R+R as

    Sr={{1,2}, if r=3,{1}, if r=1,2, and F(r)=ln(r).

    Note that

    11+log21.120.859>0.

    If r=3 and w=1, then Sr={1,2}, for η=1S3, there is μ=1S1 such that η=μ. For η=2, there is μ=1 such that

    F(d(2,1))=ln(3)1.099, and F(M1(3,1)+LN1(3,1))=F(max{d(3,1),d(3,2),d(1,2),(d(3,2)d(1,2))}++Lmin{d(3,2),d(1,1),d(3,1),d(1,2)})=F(max{1.5,5,3,(5)(3)}+Lmin{5,0,1.5,3})=ln(15+0)=ln(15)2.708.

    If r=3 and w=2, then Sr={1,2}, for η=1, there exists μ=1S2 such that η=μ. For η=2, there is μ=1S2 such that

    F(d(2,1))=ln(3)1.099 and F(M1(3,2)+LN1(3,2))=F(max{d(3,2),d(3,2),d(2,2),(d(3,2)d(2,2))}+Lmin{d(3,2),d(2,1),d(3,1),d(2,2)})=F(max{5,5,0,0}+Lmin{5,3,1.5,0})=ln(5+0)=ln(5)1.609.

    Hence, for any τ(0,0.51), r,wX and ηSr, there exists μSw such that either η=μ or

    τ+F(d(η,μ))F(M1(r,w)+LN1(r,w))

    holds for all r,wX and for any L0. Hence, all the assumptions of Theorem 2.1 are met and 1S(1). $

    Remark 2.1. In the above example, if r=3 and w=1, then Sr={1,2}, for η=2, there does not exist μS1 such that either η=μ or

    τ+F(d(η,μ))Fd(r,w),

    for any τ>0, because for η=2, and for all μS1={1}, we have

    F(d(2,1))=ln(3)=1.0990.405ln(1.5)=F(d(3,1)),

    that is Theorem 1.1 is not applicable in this example. Hence, Theorem 2.1 is a proper extension of Theorem 1.1.

    In the following, we obtain some corollaries of Theorem 2.1.

    Corollary 2.1. Let (X,d) be a complete b-MS and S:XCB(X) a mapping. Suppose there is a function F:R+R,

    c(0,11+log2s),

    τR+ satisfying (A2) and (A3), and for any r,wX and ηSr, there is μSw such that either η=μ or

    τ+F(d(η,μ))F(M1(r,w))

    holds. Then Fix(S) is non-empty.

    Corollary 2.2. Let (X,d) be a complete b-MS and S:XCB(X) a mapping. Suppose there is a function F:R+R,

    c(0,11+log2s),

    τR+ satisfying A2, A3, and for any r,wX and ηSr, there is μSw such that either η=μ or

    τ+F(d(η,μ))F(max{d(r,w),d(r,η),d(w,η)})

    holds. Then Fix(S) is non-empty.

    Following result is the corollary of Theorem 2.1 for single valued mapping.

    Corollary 2.3. Let (X,d) be a complete b-MS and a mapping f:XX. Suppose there is a function F:R+R,

    c(0,11+log2s),

    τR+ satisfying (A2) and (A3), and for any r,wX and either fr=fw or

    τ+F(d(fr,fw))F(M2(r,w)+LN2(r,w))

    holds for some L0. Then Fix(f) is singleton.

    Proof. From Theorem 2.1, Fix(f) is non-empty. To check the uniqueness, assume κ and ϖ be fixed points of f with κϖ, that is fκfϖ. Hence, from given condition, we get

    τ+F(d(κ,ϖ))=τ+F(d(fκ,fϖ))F(M2(κ,ϖ)+LN2(κ,ϖ))=F(max{d(κ,ϖ),d(κ,fκ),d(ϖ,fκ),(d(κ,fκ)d(ϖ,fκ))}+min{d(κ,fκ),d(ϖ,fϖ),d(κ,fϖ),d(ϖ,fκ)})=F(max{d(κ,ϖ),d(κ,κ),d(ϖ,κ),(d(κ,κ)d(ϖ,κ))}+min{d(κ,κ),d(ϖ,ϖ),d(κ,ϖ),d(ϖ,κ)})=F(max{d(κ,ϖ),0,d(ϖ,κ),0}+min{0,0,d(κ,ϖ),d(ϖ,κ)})=F(d(κ,ϖ)),

    implies τ0, a contradiction. Hence, Fix(f) is singleton.

    The following result is an extension of a result given in [25, Theorem 14].

    Theorem 2.2. Let (X,d) be a complete b-MS and S:XCB(X) a mapping. Suppose there is a function F:R+R,

    c(0,11+log2s),

    and τR+ satisfying (A1)–(A3) and (A5), and for any r,wX, rw with SrSw,

    τ+F(H(Sr,Sw))F(M2(r,w)+LN2(r,w))

    holds for some L0. Then Fix(S) is non-empty.

    Proof. Let αSr where r,wX. We have following two cases:

    (1) d(α,Sw)=0,

    (2) d(α,Sw)>0.

    If d(α,Sw)=0 then αSw, because Sw is closed. In the second case SrSw. So

    τ+F(H(Sr,Sw))F(M2(r,w)+LN2(r,w))

    holds as given. As

    d(α,Sw)H(Sr,Sw),

    so using (A1) we get

    τ+F(d(α,Sw))τ+F(H(Sr,Sw))F(M2(r,w)+LN2(r,w)).

    From (A5),

    inf{F(d(α,γ)):γSw}=F(d(α,Sw))F(M2(r,w)+LN2(r,w))τ<F(M2(r,w)+LN2(r,w))τ2.

    So, we can pick βSw fulfilling

    τ2+F(d(α,β))F(M2(r,w)+LN2(r,w)).

    If we replace τ with τ2 in Theorem 2.1, then we get the desired result.

    Here, we obtain some corollaries of Theorem 2.2.

    Corollary 2.4. Let (X,d) be a complete b-MS and a mapping S:XCB(X). Suppose there is a function F:R+R,

    c(0,11+log2s),

    and τR+ satisfying (A1)–(A3) and (A5), and for any r,wX, rw with SrSw,

    τ+F(H(Sr,Sw))F(M2(r,w))

    holds. Then Fix(S) is non-empty.

    Corollary 2.5. Let (X,d) be a complete b-MS and a mapping S:XCB(X). Suppose there is a function F:R+R,

    c(0,11+log2s),

    and τR+ satisfying (A1)–(A3) and (A5), and for any r,wX, rw with SrSw,

    τ+F(H(Sr,Sw))F(max{d(r,w),d(r,Sr),d(w,Sr)})

    holds. Then Fix(S) is non-empty.

    In the following, we obtain another result for a new set-valued F- contractions of a b-MS.

    Theorem 2.3. Let (X,d) be a complete b-MS and S:XCB(X) a set-valued mapping. Suppose there is a function F:R+R,

    c(0,11+log2s),

    τR+ satisfying (A1)–(A3), (A6) and

    2τ+F(H(Sr,Sw))F(M3(r,w)+LN2(r,w)), (2.3)

    for all r,wX with SrSw and for some L0. Then Fix(S) is non-empty.

    Proof. Let r0X and rj+1Srj for all jN. If rj=rj+1 for some jN, then rjSrj and there is nothing to prove further. Now suppose rjrj+1 for all jN. As F is right continuous at H(Srj,Srj+1) for each jN, so there is a k>1 such that

    F(kH(Srj,Srj+1))<F(H(Srj,Srj+1))+τ. (2.4)

    Moreover, there exists rj+2Srj+1 such that

    d(rj+1,rj+2)kH(Srj,Srj+1). (2.5)

    Now, from (2.3)–(2.5) and (A1) we get

    F(d(rj+1,rj+2))F(kH(Srj,Srj+1))<F(H(Srj,Srj+1))+τF(M3(rj,rj+1)+LN2(rj,rj+1))2τ+τ=F(max{d(rj,rj+1),d(rj,Srj),d(rj+1,Srj+1),d(rj,Srj)d(rj+1,Srj),d(rj,Srj+1)d(rj+1,Srj),d(rj,Srj+1)+d(rj+1,Srj)2s,[d(rj,Srj+1)+d(rj+1,Srj)s(1+d(rj,Srj)+d(rj+1,Srj+1))]d(rj,rj+1)}+Lmin{d(rj,Srj),d(rj+1,Srj+1),d(rj,Srj+1),d(rj+1,Srj)})τF(max{d(rj,rj+1),d(rj,rj+1),d(rj+1,rj+2),d(rj,rj+1)d(rj+1,rj+1),d(rj,rj+2)d(rj+1,rj+1),d(rj,rj+2)+d(rj+1,rj+1)2s,[d(rj,rj+2)+d(rj+1,rj+1)s(1+d(rj,rj+1)+d(rj+1,rj+2))]d(rj,rj+1)}+Lmin{d(rj,Srj),d(rj+1,rj+2),d(rj,rj+2),d(rj+1,rj+1)})τ=F(max{d(rj,rj+1),d(rj+1,rj+2),sd(rj,rj+1)+sd(rj+1,rj+2)2s,[sd(rj,rj+1)+sd(rj+1,rj+2)s(1+d(rj,rj+1)+d(rj+1,rj+2))]d(rj,rj+1)})τF(max{d(rj,rj+1),d(rj+1,rj+2)})τ.

    If

    max{d(rj,rj+1),d(rj+1,rj+2)}=d(rj+1,rj+2),

    then

    τ+F(d(rj+1,rj+2))F(d(rj+1,rj+2)),

    implies τ0, a contradiction. So

    τ+F(d(rj+1,rj+2))F(d(rj,rj+1)),

    which further implies

    F(d(rj+1,rj+2))F(d(rj,rj+1))τF(d(rj1,rj))2τF(d(rj2,rj1))3τF(d(r1,r2))jτ,

    we get

    jτ+F(d(rj+1,rj+2))F(d(r1,r2)),

    for any jN. By Lemma 1.3,

    {d(rj,rj+1)}O(j1c)

    holds. Since

    1c(1+log2s,),

    by Lemma 1.2, {rj} is a Cauchy sequence. Since X is complete, {rj} converges to some wX.

    limjrj=w.

    Now we will show that wSw. On contrary assume that wSw, that is d(w,Sw)>0. As

    d(rj+1,Sw)H(Srj,Sw).

    By (A1), we get

    2τ+F(d(rj+1,Sw))2τ+F(H(Srj,Sw))F(M3(rj,w)+LN2(rj,w))=F(max{d(rj,w),d(rj,Srj),d(w,Sw),d(rj,Srj)d(w,Srj),d(rj,Sw)d(w,Srj),d(rj,Sw)+d(w,Srj)2s,[d(rj,Sw)+d(w,Srj)s(1+d(rj,Srj)+d(w,Sw))]d(rj,w)}+Lmin{d(rj,Srj),d(w,Sw),d(rj,Sw),d(w,Srj)})F(max{d(rj,w),d(rj,rj+1),d(w,Sw),d(rj,rj+1)d(w,rj+1),d(rj,Sw)d(w,rj+1),d(rj,Sw)+d(w,rj+1)2s,[d(rj,Sw)+d(w,rj+1)s(1+d(rj,rj+1)+d(w,Sw))]d(rj,w)}+Lmin{d(rj,rj+1),d(w,Sw),d(rj,Sw),d(w,rj+1)}).

    On taking limit as j tends to and by the continuity of F, we get

    2τ+F(d(w,Sw))F(d(w,Sw)),

    implies 2τ0, a contradiction. Hence, S has a fixed point.

    Here is an example to explain the Theorem 2.3.

    Example 2.2. Let X={a,b,c,ρ,e} and set a mapping d:X×XR+ by

    d(a,b)=d(a,c)=3,d(b,e)=d(c,ρ)=d(c,e)=9,d(a,ρ)=d(a,e)=12,d(b,ρ)=8,d(b,c)=6,d(ρ,e)=2,d(r,r)=0forallrXandd(r,w)=d(w,r)forallr,wX.

    As

    d(a,ρ)=12d(a,b)+d(b,ρ)=11,

    so d is not a metric on X. For any s1211, d is a complete b-metric. Set L=2 and define a mapping S:XCB(X) as

    Sr={{a},ifr=a,b,{b},ifr=c,ρ,{c,ρ},ifr=e.

    For r{a,b} and w{c,ρ,e}, there are following cases:

    If r=a, w=c, then

    F(H(Sa,Sc))=F(d(a,b))=ln(3)1.0986andF(M3(a,c)+LN2(a,c))=F(max{d(a,c),d(a,Sa),d(c,Sc),d(a,Sa)d(c,Sa),d(a,Sc)d(c,Sa),d(a,Sc)+d(c,Sa)2s,[d(a,Sc)+d(c,Sa)s(1+d(a,Sa)+d(c,Sc))]d(a,c)}+Lmin{d(a,Sa),d(c,Sc),d(a,Sc),d(c,Sa)})=F(max{3,0,6,0,9,6624,(6684)3}+Lmin{0,6,3,3})=F(max{3,0,6,0,9,2.75,2.36}+L(0))=F(9)=ln(9)2.197.

    If r=a, w=ρ, then

    F(H(Sa,Sρ))=F(d(a,b))=ln(3)1.0986andF(M3(a,ρ)+LN2(a,ρ))=F(max{d(a,ρ),d(a,Sa),d(ρ,Sρ),d(a,Sa)d(ρ,Sa),d(a,Sρ)d(ρ,Sa),d(a,Sρ)+d(ρ,Sa)2s,[d(a,Sρ)+d(ρ,Sa)s(1+d(a,Sa)+d(ρ,Sρ))]d(a,ρ)}+Lmin{d(a,Sa),d(ρ,Sρ),d(a,Sρ),d(ρ,Sa)})=F(max{12,0,8,0,36,16524,[165108]12}+Lmin{0,8,3,12})=F(max{12,0,8,0,36,6.875,18.33}+L(0))=F(36)=ln(36)3.5835.

    If r=a, w=e, then

    F(H(Sa,Se))=F(H(a,{c,ρ}))=F(12)=ln(12)2.4849andF(M3(a,e)+LN2(a,e))=F(max{d(a,e),d(a,Sa),d(e,Se),d(a,Sa)d(e,Sa),d(a,Se)d(e,Sa),d(a,Se)+d(e,Sa)2s,[d(a,Se)+d(e,Sa)s(1+d(a,Sa)+d(e,Se))]d(a,e)}+Lmin{d(a,Sa),d(e,Se),d(a,Se),d(e,Sa)})=F(max{12,0,9,0,12(12),26424,[264120]12}+Lmin{0,9,12,12})=F(max{12,0,9,0,144,11,26.4}+L(0))=F(144)=ln(144)4.9698.

    If r=b, w=c, then

    F(H(Sb,Sc))=F(d(a,b))=ln(3)1.0986andF(M3(b,c)+LN2(b,c))=F(max{d(b,c),d(b,Sb),d(c,Sc),d(b,Sb)d(c,Sb),d(b,Sc)d(c,Sb),d(b,Sc)+d(c,Sb)2s,[d(b,Sc)+d(c,Sb)s(1+d(b,Sb)+d(c,Sc))]d(b,c)}+Lmin{d(b,Sb),d(c,Sc),d(b,Sc),d(c,Sb)})=F(max{6,3,6,9,0,[3324],[33120]6}+L(0))=F(max{6,3,6,9,0,1.38,1.65})=F(9)=ln(9)2.197.

    If r=b, w=ρ, then

    F(H(Sb,Sρ))=F(d(a,b))=ln(3)1.0986andF(M3(b,ρ)+LN2(b,ρ))=F(max{d(b,ρ),d(b,Sb),d(ρ,Sρ),d(b,Sb)d(ρ,Sb),d(b,Sρ)d(ρ,Sb),d(b,Sρ)+d(ρ,Sb)2s,[d(b,Sρ)+d(ρ,Sb)s(1+d(b,Sb)+d(ρ,Sρ))]d(b,ρ)}+Lmin{d(b,Sb),d(ρ,Sρ),d(b,Sρ),d(ρ,Sb)})=F(max{8,3,8,36,0,13224,[132144]8}+L{3,8,0,12})=F(36)=ln(36)3.584.

    If r=b, w=e, then

    F(H(Sb,Se))=F(H(a,{c,ρ}))=ln(12)2.4849andF(M3(b,e)+LN2(b,e))=F(max{d(b,e),d(b,Sb),d(e,Se),d(b,Sb)d(e,Sb),d(b,Se)d(e,Sb),d(b,Se)+d(e,Sb)2s,[d(b,Se)+d(e,Sb)s(1+d(b,Sb)+d(e,Se))]d(b,e)}+Lmin{d(b,Sb),d(e,Se),d(b,Se),d(e,Sb)})=F(max{9,3,9,3(12),96,22024,[220156]9}+Lmin{3,9,8,12})=F(96+2(3))=ln(102)4.625.

    Hence, for any τ(0,0.5492),

    2τ+F(H(Sr,Sw))F(M3(r,w)+LN2(r,w))

    holds for all r,wX and for any L=2. That is, all the assumptions of Theorem 2.3 are met, so there exists a fixed point aS(a).

    Following result is the metric version of Theorem 2.3.

    Corollary 2.6. Let (X,d) be a complete metric space and S:XCB(X) a set-valued mapping. Suppose there is a function F:R+R, c(0,1), τR+ satisfying (A1)–(A3), (A6) and

    2τ+F(H(Sr,Sw))F(M4(r,w)+LN2(r,w)),

    for all r,wX with SrSw and for some L0. Then Fix(S) is non-empty.

    Proof. Take s=1 in Theorem 2.3.

    Abbas et al. [3] proved a coincidence point theorem for generalized set-valued (f,L)-almost F-contraction and the following is one of the corollary of their main result.

    Corollary 2.7. [3] Let (X,d) be a complete metric space and F:R+R be a function with τ(0,) satisfying (A1)–(A3) and (A6). There is a mapping S:XCB(X) with L0, satisfying

    2τ+F(H(Sr,Sw))F(M5(r,w)+LN2(r,w)),

    for every r,wX with SrSw. Then Fix(S) is non-empty.

    Remark 2.2. Note that the Corollary 2.7 is the corollary of Corollary 2.6.

    In the next example, we show that the Corollary 2.6 properly generalize the Corollary 2.7.

    Example 2.3. Let X={1,2,3,4,5} and set a mapping d:X×XR+ as

    d(r,r)=0,forallrX,d(r,w)=d(w,r),forallr,wX,d(1,2)=d(1,3)=d(1,4)=d(2,3)=d(2,4)=2,d(1,5)=d(2,4)=d(2,5)=d(3,4)=3,d(3,5)=d(4,5)=1.5,

    so d is a metric on X and it is a complete metric. Set L=2 and define a mapping S:XCL(X) as

    Sr={{1},ifr=1,2,{5},ifr=3,4,{3,4},ifr=5.

    For r{1,2} and w{3,4,5}, there is following cases: $

    If r=1, w=3, then

    F(H(S1,S3))=F(d(1,5))=ln(3)1.0986, and F(M4(1,3)+LN2(1,3))=F(max{d(1,3),d(1,S1),d(3,S3),d(1,S1)d(3,S1),d(1,S3)d(3,S1),d(1,S3)+d(3,S1)2,[d(1,S3)+d(3,S1)1+d(1,S1)+d(3,S3)]d(1,3)}+Lmin{d(1,S1),d(3,S3),d(1,S3),d(3,S1)})=F(max{2,0,1.5,0,6,2.5,2(2)}+Lmin{0,1.5,3,2})=F(6+L(0))=F(6)=ln(6)1.792.

    If r=1, w=4, then

    F(H(S1,S4))=F(d(1,5))=ln(3)1.0986, and F(M4(1,4)+LN2(1,4))=F(max{d(1,4),d(1,S1),d(4,S4),d(1,S1)d(4,S1),d(1,S4)d(4,S1),d(1,S4)+d(4,S1)2,[d(1,S4)+d(4,S1)1+d(1,S1)+d(4,S4)]d(1,4)}+Lmin{d(1,S1),d(4,S4),d(1,S4),d(4,S1)})=F(max{2,0,1.5,0,3(2),2.5,2(2)}+Lmin{0,1.5,3,2})=F(6+L(0))=F(6)=ln(6)1.792.

    If r=1, w=5, then

    F(H(S1,S5))=F(d(1,{3,4}))=ln(2)0.693, and F(M4(1,5)+LN2(1,5))=F(max{d(1,5),d(1,S1),d(5,S5),d(1,S1)d(5,S1),d(1,S5)d(5,S1),d(1,S5)+d(5,S1)2,[d(1,S5)+d(5,S1)1+d(1,S1)+d(5,S5)]d(1,5)}+Lmin{d(1,S1),d(5,S5),d(1,S5),d(5,S1)})=F(max{3,0,1.5,0,2(3),2.5,2(3)}+Lmin{0,1.5,2,3})=F(6+L(0))=F(6)=ln(6)1.792.

    If r=2, w=3, then

    F(H(S2,S3))=F(d(1,5))=ln(3)1.0986, and F(M4(2,3)+LN2(2,3))=F(max{d(2,3),d(2,S2),d(3,S3),d(2,S2)d(3,S2),d(2,S3)d(3,S2),d(2,S3)+d(3,S2)2,[d(2,S3)+d(3,S2)1+d(2,S2)+d(3,S3)]d(2,3)}+Lmin{d(2,S2),d(3,S3),d(2,S3),d(3,S2)})=F(max{2,2,1.5,4,6,2.5,(1.11)2}+Lmin{2,1.5,3,2})=F(6+L(1.5))=F(9)=ln(9)2.197.

    If r=2, w=4, then

    F(H(S2,S4))=F(d(1,5))=ln(3)1.0986, and F(M4(2,4)+LN2(2,4))=F(max{d(2,4),d(2,S2),d(4,S4),d(2,S2)d(4,S2),d(2,S4)d(4,S2),d(2,S4)+d(4,S2)2,[d(2,S4)+d(4,S2)1+d(2,S2)+d(4,S4)]d(2,4)}+Lmin{d(2,S2),d(4,S4),d(2,S4),d(4,S2)})=F(max{3,2,1.5,4,6,2.5,(1.11)3}+Lmin{2,1.5,3,2})=F(6+L(1.5))=F(9)=ln(9)2.197.

    If r=2, w=5, then

    F(H(S2,S5))=F(d(1,{3,4}))=ln(2)0.693, and F(M4(2,5)+LN2(2,5))=F(max{d(2,5),d(2,S2),d(5,S5),d(2,S2)d(5,S2),d(2,S5)d(5,S2),d(2,S5)+d(5,S2)2,[d(2,S5)+d(5,S2)1+d(2,S2)+d(5,S5)]d(2,5)}+Lmin{d(2,S2),d(5,S5),d(2,S5),d(5,S2)})=F(max{3,2,1.5,6,6,2.5,(1.11)3}+Lmin{2,1.5,2,3})=F(6+L(1.5))=F(9)=ln(9)2.197.

    Hence, for all τ(0,0.3467],

    2τ+F(H(Sr,Sw))F(M4(r,w)+LN2(r,w))

    holds for all r,wX and for any L=2. Hence, all the assumptions of Corollary 2.6 are satisfied, so there exist a fixed point 1S(1). On the other hand, if r=1 and w=3, then

    F(H(S1,S3))=F(d(1,5))=ln(3)1.0986, and F(M5(1,3)+LN2(1,3))=F(max{d(1,3),d(1,S1),d(3,S3),d(1,S3)+d(3,S1)2}+Lmin{d(1,S1),d(3,S3),d(1,S3),d(3,S1)})=F(max{2,0,1.5,2.5}+Lmin{0,1.5,3,2})=F(2.5)=ln(2.5)0.916.

    Hence, there is no τ>0 and L0 such that

    2τ+F(H(S1,S3))F(M5(1,3)+LN2(1,3)).

    That is

    2τ+F(H(S1,S3))F(M5(1,3)+LN2(1,3)),

    for all τ>0 and L0. Hence, Corollary 2.7 is not applicable in this example.

    Remark 2.3. Above example provides a situation where Corollary 2.7 is not applicable while Corollary 2.6 is applicable. Note that Corollary 2.6 is a consequence of our main result (Theorem 2.3).

    In this paper, we have introduced generalized set-valued F-contractions of b-metric spaces and presented the results about the existence of non-empty fixed point sets of newly introduced mappings. Our results improve some already existing very important results in the literature. Examples show that the new results offer proper generalizations. It is worth noting that by setting b-metric constant equal to one, we obtain some specific cases showing notable enhancement of existing results yet in metric spaces (see Corollary 2.6 and Example 2.3 above). It would be interesting to investigate these results in the framework of asymmetric distance spaces.

    The authors are grateful for the funding provided by Basque Government for the grant number IT1207-19.

    The authors declare that they have no conflicts of interest.



    [1] M. Abbas, B. Ali, S. Romaguera, Fixed and periodic points of generalized contractions in metric spaces, Fixed Point Theory Appl., 2013 (2013), 1–11. https://doi.org/10.1186/1687-1812-2013-243 doi: 10.1186/1687-1812-2013-243
    [2] M. Abbas, B. Ali, S. Romaguera, Generalized contraction and invariant approximation results on nonconvex subsets of normed spaces, Abstr. Appl. Anal., 2014 (2014), 1–5. https://doi.org/10.1155/2014/391952 doi: 10.1155/2014/391952
    [3] M. Abbas, B. Ali, S. Romaguera, Coincidence points of generalized multivalued (f,L)-almost F-contraction with applications, J. Nonlinear Sci. Appl., 8 (2015), 919–934.
    [4] M. Abbas, B. Ali, O. Rizzo, C. Vetro, Fuzzy fixed points of generalized F2-Geraghty type fuzzy mappings and complementary results, Nonlinear Anal. Model. Control, 21 (2016), 274–292. https://doi.org/10.15388/NA.2016.2.9 doi: 10.15388/NA.2016.2.9
    [5] O. Acar, G. Durmaz, G. Minak, Generalized multivalued F-contraction on complete metric spaces, Bull. Iranian Math. Soc., 40 (2014), 1469–1478.
    [6] I. Altun, G. Durmaz, G. Mınak, S. Romaguera, Multivalued almost F-contractions on complete metric spaces, Filomat, 30 (2016), 441–448. https://doi.org/10.2298/FIL1602441A doi: 10.2298/FIL1602441A
    [7] E. Ameer, M. Arshad, Two new fixed point results for generalized Wardowski type contractions, J. Ana. Num. Theor., 5 (2017), 63–71.
    [8] T. V. An, N. V. Dung, Z. Kadelburg, S. Radenović, Various generalizations of metric spaces and fixed point theorems, RACSAM, 109 (2015), 175–198. https://doi.org/10.1007/s13398-014-0173-7 doi: 10.1007/s13398-014-0173-7
    [9] T. V. An, L. Q. Tuyen, N. V. Dung, Stone-type theorem on b-metric spaces and applications, Topology Appl., 185–186 (2015), 50–64. https://doi.org/10.1016/j.topol.2015.02.005 doi: 10.1016/j.topol.2015.02.005
    [10] H. Aydi, E. Karapinar, H. Yazidi, Modified F-contractions via α-admissible mappings and application to integral equations, Filomat, 31 (2017), 1141–1148. https://doi.org/10.2298/FIL1705141A doi: 10.2298/FIL1705141A
    [11] I. A. Bakhtin, The contraction mapping principle in quasi-metric spaces, Funct. Anal., 30 (1989), 26–37.
    [12] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181.
    [13] V. Berinde, Generalized contractions in quasimetric spaces, In: Seminar on fixed point theory, 3 (1993), 3–9.
    [14] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5–11.
    [15] S. Czerwik, K. Dłutek, S. L. Singh, Round-off stability of iteration procedures for operators in b-metric spaces, J. Natur. Phys. Sci., 11 (1997), 87–94.
    [16] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 263–276.
    [17] E. Karapınar, A. Fulga, R. P. Agarwal, A survey: F-contractions with related fixed point results, J. Fixed Point Theory Appl., 22 (2020), 1–58. https://doi.org/10.1007/s11784-020-00803-7 doi: 10.1007/s11784-020-00803-7
    [18] R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in b-metric spaces, J. Fixed Point Theory Appl., 19 (2017), 2153–2163. https://doi.org/10.1007/s11784-016-0400-2 doi: 10.1007/s11784-016-0400-2
    [19] L. V. Nguyen, L. T. Phuong, N. T. Hong, X. L. Qin, Some fixed point theorems for multivalued mappings concerning F-contractions, J. Fixed Point Theory Appl., 20 (2018), 1–13. https://doi.org/10.1007/s11784-018-0621-7 doi: 10.1007/s11784-018-0621-7
    [20] H. Piri, P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl., 2014 (2014), 1–11. https://doi.org/10.1186/1687-1812-2014-210 doi: 10.1186/1687-1812-2014-210
    [21] P. D. Proinov, Fixed point theorems for generalized contractive mappings in metric spaces, J. Fixed Point Theory Appl., 22 (2020), 1–27. https://doi.org/10.1007/s11784-020-0756-1 doi: 10.1007/s11784-020-0756-1
    [22] S. L. Singh, B. Prasad, Some coincidence theorems and stability of iterative procedures, Comput. Math. Appl., 55 (2008), 2512–2520. https://doi.org/10.1016/j.camwa.2007.10.026 doi: 10.1016/j.camwa.2007.10.026
    [23] F. Skof, Theoremi di punto fisso per applicazioni negli spazi metrici, Atti. Acad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 111 (1977), 323–329.
    [24] T. Suzuki, Basic inequality on a b-metric space and its applications, J. Inequal. Appl., 2017 (2017), 1–11. https://doi.org/10.1186/s13660-017-1528-3 doi: 10.1186/s13660-017-1528-3
    [25] T. Suzuki, Fixed point theorems for single- and set-valued F-contractions in b-metric spaces, J. Fixed Point Theory Appl., 20 (2018), 1–12. https://doi.org/10.1007/s11784-018-0519-4 doi: 10.1007/s11784-018-0519-4
    [26] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 1–6. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94
  • This article has been cited by:

    1. Wasfi Shatanawi, Taqi A. M. Shatnawi, Some fixed point results based on contractions of new types for extended $ b $-metric spaces, 2023, 8, 2473-6988, 10929, 10.3934/math.2023554
    2. Alexander J. Zaslavski, Convergence Results for Contractive Type Set-Valued Mappings, 2024, 13, 2075-1680, 112, 10.3390/axioms13020112
    3. Amer Hassan Albargi, Jamshaid Ahmad, Integral Equations: New Solutions via Generalized Best Proximity Methods, 2024, 13, 2075-1680, 467, 10.3390/axioms13070467
    4. Amer Hassan Albargi, Set-valued mappings and best proximity points: A study in $ \mathcal{F} $-metric spaces, 2024, 9, 2473-6988, 33800, 10.3934/math.20241612
    5. Neeraj Kumar, Seema Mehra, Dania Santina, Nabil Mlaiki, Some fixed point results concerning various contractions in extended b- metric space endowed with a graph, 2025, 25, 25900374, 100524, 10.1016/j.rinam.2024.100524
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1777) PDF downloads(110) Cited by(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog