This paper deals with the existence of non-empty fixed point sets of newly introduced generalized set-valued $ F $-contractions of $ b $-metric spaces. Some illustrative examples show that the new results in this paper generalize properly, unify and extend some related results in the existing literature. Moreover, we extract some important consequences of the results in $ b $-metric spaces. Particularly, by setting $ b $-metric constant equal to one, we obtain some specific cases showing notable enhancement of existing results yet in metric spaces.
Citation: Basit Ali, Hafiza Aqsa Butt, Manuel De la Sen. Existence of fixed points of generalized set-valued $ F $-contractions of $ b $-metric spaces[J]. AIMS Mathematics, 2022, 7(10): 17967-17988. doi: 10.3934/math.2022990
This paper deals with the existence of non-empty fixed point sets of newly introduced generalized set-valued $ F $-contractions of $ b $-metric spaces. Some illustrative examples show that the new results in this paper generalize properly, unify and extend some related results in the existing literature. Moreover, we extract some important consequences of the results in $ b $-metric spaces. Particularly, by setting $ b $-metric constant equal to one, we obtain some specific cases showing notable enhancement of existing results yet in metric spaces.
[1] | M. Abbas, B. Ali, S. Romaguera, Fixed and periodic points of generalized contractions in metric spaces, Fixed Point Theory Appl., 2013 (2013), 1–11. https://doi.org/10.1186/1687-1812-2013-243 doi: 10.1186/1687-1812-2013-243 |
[2] | M. Abbas, B. Ali, S. Romaguera, Generalized contraction and invariant approximation results on nonconvex subsets of normed spaces, Abstr. Appl. Anal., 2014 (2014), 1–5. https://doi.org/10.1155/2014/391952 doi: 10.1155/2014/391952 |
[3] | M. Abbas, B. Ali, S. Romaguera, Coincidence points of generalized multivalued $(f, L)$-almost $F$-contraction with applications, J. Nonlinear Sci. Appl., 8 (2015), 919–934. |
[4] | M. Abbas, B. Ali, O. Rizzo, C. Vetro, Fuzzy fixed points of generalized $F_2$-Geraghty type fuzzy mappings and complementary results, Nonlinear Anal. Model. Control, 21 (2016), 274–292. https://doi.org/10.15388/NA.2016.2.9 doi: 10.15388/NA.2016.2.9 |
[5] | O. Acar, G. Durmaz, G. Minak, Generalized multivalued $F$-contraction on complete metric spaces, Bull. Iranian Math. Soc., 40 (2014), 1469–1478. |
[6] | I. Altun, G. Durmaz, G. Mınak, S. Romaguera, Multivalued almost $F$-contractions on complete metric spaces, Filomat, 30 (2016), 441–448. https://doi.org/10.2298/FIL1602441A doi: 10.2298/FIL1602441A |
[7] | E. Ameer, M. Arshad, Two new fixed point results for generalized Wardowski type contractions, J. Ana. Num. Theor., 5 (2017), 63–71. |
[8] | T. V. An, N. V. Dung, Z. Kadelburg, S. Radenović, Various generalizations of metric spaces and fixed point theorems, RACSAM, 109 (2015), 175–198. https://doi.org/10.1007/s13398-014-0173-7 doi: 10.1007/s13398-014-0173-7 |
[9] | T. V. An, L. Q. Tuyen, N. V. Dung, Stone-type theorem on $b$-metric spaces and applications, Topology Appl., 185–186 (2015), 50–64. https://doi.org/10.1016/j.topol.2015.02.005 doi: 10.1016/j.topol.2015.02.005 |
[10] | H. Aydi, E. Karapinar, H. Yazidi, Modified $F$-contractions via $\alpha$-admissible mappings and application to integral equations, Filomat, 31 (2017), 1141–1148. https://doi.org/10.2298/FIL1705141A doi: 10.2298/FIL1705141A |
[11] | I. A. Bakhtin, The contraction mapping principle in quasi-metric spaces, Funct. Anal., 30 (1989), 26–37. |
[12] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. |
[13] | V. Berinde, Generalized contractions in quasimetric spaces, In: Seminar on fixed point theory, 3 (1993), 3–9. |
[14] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5–11. |
[15] | S. Czerwik, K. Dłutek, S. L. Singh, Round-off stability of iteration procedures for operators in $b$-metric spaces, J. Natur. Phys. Sci., 11 (1997), 87–94. |
[16] | S. Czerwik, Nonlinear set-valued contraction mappings in $b$-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 263–276. |
[17] | E. Karapınar, A. Fulga, R. P. Agarwal, A survey: $F$-contractions with related fixed point results, J. Fixed Point Theory Appl., 22 (2020), 1–58. https://doi.org/10.1007/s11784-020-00803-7 doi: 10.1007/s11784-020-00803-7 |
[18] | R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in $b$-metric spaces, J. Fixed Point Theory Appl., 19 (2017), 2153–2163. https://doi.org/10.1007/s11784-016-0400-2 doi: 10.1007/s11784-016-0400-2 |
[19] | L. V. Nguyen, L. T. Phuong, N. T. Hong, X. L. Qin, Some fixed point theorems for multivalued mappings concerning $F$-contractions, J. Fixed Point Theory Appl., 20 (2018), 1–13. https://doi.org/10.1007/s11784-018-0621-7 doi: 10.1007/s11784-018-0621-7 |
[20] | H. Piri, P. Kumam, Some fixed point theorems concerning $F$-contraction in complete metric spaces, Fixed Point Theory Appl., 2014 (2014), 1–11. https://doi.org/10.1186/1687-1812-2014-210 doi: 10.1186/1687-1812-2014-210 |
[21] | P. D. Proinov, Fixed point theorems for generalized contractive mappings in metric spaces, J. Fixed Point Theory Appl., 22 (2020), 1–27. https://doi.org/10.1007/s11784-020-0756-1 doi: 10.1007/s11784-020-0756-1 |
[22] | S. L. Singh, B. Prasad, Some coincidence theorems and stability of iterative procedures, Comput. Math. Appl., 55 (2008), 2512–2520. https://doi.org/10.1016/j.camwa.2007.10.026 doi: 10.1016/j.camwa.2007.10.026 |
[23] | F. Skof, Theoremi di punto fisso per applicazioni negli spazi metrici, Atti. Acad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 111 (1977), 323–329. |
[24] | T. Suzuki, Basic inequality on a $b$-metric space and its applications, J. Inequal. Appl., 2017 (2017), 1–11. https://doi.org/10.1186/s13660-017-1528-3 doi: 10.1186/s13660-017-1528-3 |
[25] | T. Suzuki, Fixed point theorems for single- and set-valued $F$-contractions in $b$-metric spaces, J. Fixed Point Theory Appl., 20 (2018), 1–12. https://doi.org/10.1007/s11784-018-0519-4 doi: 10.1007/s11784-018-0519-4 |
[26] | D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 1–6. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94 |