The aim of this paper is to introduce the notion of $ \delta $-connectedness modulo an ideal in proximity spaces. A sufficient condition for a $ \delta $-connected modulo an ideal proximity space to be connected modulo an ideal is defined. The notion of $ \delta $-connectedness modulo a proximal property is defined, and several results for $ \delta $-connectedness modulo compactness and modulo pseudocompactness are obtained. $ \delta $-perfect map for proximity spaces is defined and it is shown that the class of $ \delta $-perfect maps is properly contained in the class of perfect maps, and some results about $ \delta $-perfect maps are substantiated.
Citation: Beenu Singh, Davinder Singh. $ \delta $-connectedness modulo an ideal[J]. AIMS Mathematics, 2022, 7(10): 17954-17966. doi: 10.3934/math.2022989
The aim of this paper is to introduce the notion of $ \delta $-connectedness modulo an ideal in proximity spaces. A sufficient condition for a $ \delta $-connected modulo an ideal proximity space to be connected modulo an ideal is defined. The notion of $ \delta $-connectedness modulo a proximal property is defined, and several results for $ \delta $-connectedness modulo compactness and modulo pseudocompactness are obtained. $ \delta $-perfect map for proximity spaces is defined and it is shown that the class of $ \delta $-perfect maps is properly contained in the class of perfect maps, and some results about $ \delta $-perfect maps are substantiated.
[1] | R. Dimitrijević, Lj. Kočinac, On connectedness of proximity spaces, Mat. Vesn., 39 (1987), 27–35. |
[2] | V. A. Efremovic, The geometry of proximity, Mat. Sb., 31 (1952), 189–200. |
[3] | E. Hewitt, Rings of real-valued continuous functions. I, Trans. Amer. Math. Soc., 64 (1948), 45–99. https://doi.org/10.1090/S0002-9947-1948-0026239-9 doi: 10.1090/S0002-9947-1948-0026239-9 |
[4] | M. R. Koushesh, Connectedness modulo a topological property, Topol. Appl., 159 (2012), 3417–3425. https://doi.org/10.1016/j.topol.2012.08.001 doi: 10.1016/j.topol.2012.08.001 |
[5] | M. R. Koushesh, Connectedness modulo an ideal, Topol. Appl., 214 (2016), 150–179. https://doi.org/10.1016/j.topol.2016.10.009 doi: 10.1016/j.topol.2016.10.009 |
[6] | K. Kuratowski, Topology, Elsevier, 1966. |
[7] | S. G. Mrówka, W. J. Pervin, On uniform connectedness, P. Am. Math. Soc., 15 (1964), 446–449. https://doi.org/10.2307/2034521 doi: 10.2307/2034521 |
[8] | J. Munkres, Topology, Prentice Hall, 2000. |
[9] | S. Naimpally, Proximity approach to problems in topology and analysis, München: Oldenbourg Wissenschaftsverlag, 2010. https://doi.org/10.1524/9783486598605 |
[10] | S. Naimpally, B. D. Warrack, Proximity spaces, 1970. |
[11] | B. Singh, D. Singh, Sum connectedness in proximity spaces, Appl. Gen. Topol., 22 (2021), 345–354. https://doi.org/10.4995/agt.2021.14809 doi: 10.4995/agt.2021.14809 |
[12] | B. Singh, D. Singh, $S$-$ \delta $-connectedness in $S$-proximity spaces, Commun. Fac. Sci. Univ., 70 (2021), 600–611. https://doi.org/10.31801/cfsuasmas.792265 doi: 10.31801/cfsuasmas.792265 |
[13] | B. Singh, D. Singh, Connectedness in ideal proximity spaces, Honam Math. J., 43 (2021), 123–129. https://doi.org/10.5831/HMJ.2021.43.1.123 doi: 10.5831/HMJ.2021.43.1.123 |
[14] | Y. M. Smirnov, On completeness of proximity spaces I, Amer. Math. Soc. Trans., 38 (1964), 37–73. |
[15] | Y. M. Smirnov, On the completeness of proximity spaces, Tr. Mosk. Mat. Obs., 3 (1954), 271–306. |
[16] | R. Vaidyanathaswamy, The localisation theory in set topology, Proc. Indian Acad. Sci., 20 (1944), 51–61. https://doi.org/10.1007/BF03048958 doi: 10.1007/BF03048958 |
[17] | S. Willard, General topology, Addison-Wesley, 1970. |