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1. Introduction

Some of the topics in geometric function theory are based on g-calculus operator and differential
subordinations. Ismail et al. defined the class of g-starlike functions in 1990 [1], presenting the first
uses of g-calculus in geometric function theory. Several authors focused on the g-analogue of the
Ruscheweyh differential operators established in [2] and the g-analogue of the Saldgean differential


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024886

18144

operators defined in [3]. Examples include the investigation of differential subordinations using a
specific g-Ruscheweyh type derivative operator in [4].

In what follows, we recall the main concepts used in this research.

We denote by H the class of analytic functions in the open unit disc U := {£ € C : |£| < 1}. Also,
Hla, n] denotes the subclass of H, containing the functions f € H given by

&) =a+af" +amé™' +.., ¢&el.

Another well-known subclass of H is class A(n), which consists of f € H and is given by

@) =¢+ > a e, (1.1)
k=n+1
withn e N ={1,2,...}, and A=A(1).
The subclass K is defined by
K = {fe A Re(if:;g) + 1) 20, §(0) =0, F0) =1, £ U},

means the class of convex functions in the unit disk U.
For two functions f, £ (belong) to A(n), f given by (1.1), and L is given by the next form

LE)=¢+ ) b e,

k=n+1

the well-known convolution product was defined as: * : A — A

(D@ =+ ) abd .

k=n+1

In particular [5,6], several applications of Jackson’s g-difference operator d, : A — A are defined by

e (€#0,0<a<),
0,f(&) = (1.2
7(0) (€ =0).

Maybe we can put just k € N = {1, 2,3, ..}. It is written once previously

b, {i akfk} = i [k, @&, (1.3)
k=1

k=1
where
k], = 1_qK:1+§q" lim [«], = k
1 1—gqg — S ’
: nl,, Kk €N,
[«],! = ngl[]“ (1.4)
1 k=0.
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In [7], Aouf and Madian investigate the g-analogue Citas operator I;(1,€) : A— A (s € Ny, £, 1 > 0,
0 < g<1)as follows:

K )

1+ €], + Ak + €1, — [1+£1)Y
o - g0 5[ 0011 0)
k=2 q

(s € Nypt,1>0,0<qg<1).

Also, the g-Ruscheweyh operator R f(£) was investigated in 2014 by Aldweby and Darus [8]

-1],!
U q K
RE(E) = £ + Z—M T Wz 00<a<,
where [a], and [a],! are defined in (1.4).
Let be

= ([1 + L, + Ak + L], — [T+ f]q))“ &

@ =6+ T
q

k=2

Now we define a new function fiﬁ /(&) in terms of the Hadamard product (or convolution) such that:

; 11!
fone@) x T8 (&) =&+ Zm§

Next, driven primarily by the q-Ruscheweyh operator and the q-Catas operator, we now introduce
the operator I? (4,€) :A — A is defined by

K

a.u

2 OFE) = 7 () +1(6), (1.5)
where s € Ny, £, 4, u > 0,0 < q< 1. For f € A and (1.5), it is obvious
[k +u—1]!
(4 0f(€) = € + Z VA O a" (1.6)
where
[1+¢], y

Vet d, 6 = ([1 o+ Ak + €, — [+ 41

We observe that:

(@) If s = 0and q — 17, we get R¥§(£) is a Russcheweyh differential operator [9] investigated by
numerous authors [10-12].

(i) If we set ¢ — 17, we obtain I’”[ f(¢) which was presented by Aouf and El-Ashwah [13].

(iii) If we set u = 0 and q — 17, we obtain J;'(4, £)i(£), presented by El-Ashwah and Aouf (with
p=1)[14]

) Ifu=0,=2=1,and q = 17, we get p*f(£), investigated by Jung et al. [15].

WMWIfu=0,1=1,£=0,and g — 17, we obtain I’f(£), presented by Sdldgean [16].

(vi) If we set u = 0 and A = 1, we obtain Ig’sf(f), presented by Shah and Noor [17].
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(vii) If we setu =0, 4 =1, and g— 17, we obtain J >, Srivastava—Attiya operator: see [18, 19].
(viii) I (1, O) '(t)b t. (g-Alexander operator [17])
(ix) I} o(1,0) = gp fo *~1§(t)d,t (9-Bernardi operator [20]).

(x) 110(1 1) = 1 [“§(6)d,¢ (g-Libera operator [20]).
Moreover, we have

(i) I8, (1,0)() = I£, (&)

1\ [k+p—1],!
( )[K Kol e (seNuu20,0<q<1.6€U)

«aeAJ@m9:§+§]ﬂﬂ PNPEETN

k=2

(i) I3 ,(1, O (&) = I35

I+ 7], -1]4!
i© e Ai© =€+ Ex[+€)[%ﬁﬁ_quﬁ,
q q
(s € Np,>0,u>0,0<qg<1,6e).
(iii) I3, (A, 0){(6) = L}:17(¢)
= 1 Tk +p—1],!
A I5(€) = " a, &,
i) e WM>§+lehmm_D)wwv_mgf

(s € Ng,a>0,u>0,0<qg<1,E€).

Since the investigation of g-difference equations using function theory tools explores various
properties, this direction has been considered in many works. Thus, several authors used
the qg-calculus based linear extended operators recently defined for investigating theories of
differential subordination and subordination (see [21-32]). Applicable problems involving q-
difference equations and g-analogues of mathematical physical problems are studied extensively for:
Dynamical systems, g-oscillator, g-classical, and quantum models; g-analogues of mathematical-
physical problems, including heat and wave equations; and sampling theory of signal analysis [33,34].

We denote by O the class of analytic univalent functions ¢(¢), which are convex functions with
©(0) = 1 and Rep(¢) > 0in U.

The differential subordination theory, studied by Miller and Mocanu [35], is based on the
following definitions:

f is subordinate to £ in U, denote it as f < L if there exists an analytic function @, with @(0) =
and |@(¢)| < 1 for all £ € U, such that f(¢) = L(@w(£)). Moreover, if £ is univalent in U, we have:

f(§) < L&) & 1(0) = L) and FU) c L.

Let O(r, s,1;&) : C2> x U — C and let b in U be a univalent function. An analytic function A in U,
which validates the differential subordination, is a solution of the differential subordination

DAE), EX(6), E247(€);€) < D(&). (1.7)
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We call B a dominant of the solutions of the differential subordination in (1.7) if A(&) < B(€) for
all A satisfying (1.7). A dominant % is called the best dominant of (1.7) if A?ﬁ(f) < B(¢) for all the
dominants 8.

The following definitions characterize both of the theories of differential superordination that Miller
and Mocanu introduced in 2003 [36]:

f is superordinate to £, denotes as L < {, if there exists an analytic function @, with @(0) = 0 and
|l@m(&)] < 1 for all £ € U, such that L(¢) = f(w(£)). For the univalent function §, we have

L&) <) e 7(0) = LO) and LU) c ).

Let ®(r, 5;¢) : C> x U — C and let h in U be an analytic function. A solution of the differential
superordination is the univalent function A such that ®(A(&), €1 (€); &) is univalent in U satisfy the
differential superordination

D(&) < D(AE), £X (£); &), (1.8)

then A is called to be a solution of the differential superordination in (1.8). We call the function
B a subordinant of the solutions of the differential superordination in (1.8) if B(&) < A(¢) for all 4
satisfying (1.8). A subordinant B is called the best subordinant of (1.8) if B) < %(f) for all the
subordinants 8.
Let o say the collection of injective and analytic functions on U \ E(y), with y'(¢) # 0 for & €
oU \ E(y) and
E(x)={¢c:5€dU : }}g}){(f) = oo}.

Also, ¢(a) is the subclass of ¢ with y(0) = a.
The proofs of our main results and findings in the upcoming sections can benefit from the usage of
the following lemmas:

Lemma 1.1. (Miller and Mocanu [35]). Suppose g is convex in U, and

b(&) = nyég () + 9(&),

with & € U, n is +ve integer and y > 0. When

9(0) + " + Pua &+ = (), €€,
is analytic in U, and
YED () + p(§) < D), &€,

holds, then
p(&) < 8(6),

holds as well.

Lemma 1.2. (Hallenbeck and Ruscheweyh [37], see also (Miller and Mocanu [38], Th. 3.1.b, p.71)).
Let Yy be a convex with H)(0) = a, and let y € C* with Re(y) > 0. When p € Hla, n] and

pé) +

fpf) 0@, feU,
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holds, then
p&) <aé) <h), €€,

holds for

ng

Lemma 1.3. (Miller and Mocanu [35]) Let by be a convex with H(0) = a, and let y € C*, with Re(y) > 0.
When p € Q N Hla,n], p(§) + E”T("c) is a univalent in U and

&
8() = —— f b dr, ¢ €.
0

b(E) < pE) + f*’y@, £el,

holds, then
g(&) <p), ¢l

¢
holds as well, for g(¢) = =% f h(H)Y™-1dt, ¢ € U the best subordinant.
0

praD)
Lemma 1.4. (Miller and Mocanu [35]) Let a convex g be in U, and

bE) = (&) + fgy(f), £e,

withy € C*, Re(y) > 0. If p € Q N Hla,n], p(¢) + "Cp/% is a univalent in U and

QO _ ., 2O
y y

8(é) + <) §el,

holds, then
g(&) <p), €€l

&
holds as well, for g(¢) = # f b(H)tY™=1dt, & € U the best subordinant.
0

For a, 0, ¢ and ¢(¢ ¢ Z;) let consider the following Gaussian hypergeometric function is

. ao & aa+1o+1) &
F ;GE) =1+— .=+ =t
2F16,0;66) é 1 CE+1) 2!

For ¢ € U, the above series completely converges to an analytic function in U, (see, for
details, [ [39], Chapter 14]).

Lemma 1.5. [39] For a,0 and ¢ (¢ & Z)), complex parameters

I'(I'(€-0)

ro 2Fi(a,0;¢6)  (Re(é) > Re(o) > 0);

1
f 271 -1 - & dr =
0
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2 Fi(a,0;6:€) = 12F (0, a; 6€);

2Fi(@,0:6:6) = (1= €7, F (0.6 - 0161 é%x
L. G (L+ad)In(l +aé)
A EZET) = & ’

o, a& 21+ ag) _ln(1+d§)
2F1(1,1,3’é§+1) - C,lé: (1 C’lf )

A g-multiplier-Ruscheweyh operator is considered in the study reported in this paper to create a
novel convex subclass of normalized analytic functions in the open unit disc U. Then, employing
the techniques of differential subordination and superordination theory, this subclass is examined in

more detail.

2. Differential subordination results

1; (4, 0)f(&) given in (1.6) is a g-multiplier-Ruscheweyh operator that is applied to define the new

class of normalized analytic functions in the open unit disc U.

Definition 2.1. Let a € [0, 1). The class S, (4 G a) involves of the function f € A with

Re (I, (L O1©) >a, €U

We use the following denotations:

(i) S;,(4,£,0) = S (4, 0).

(i1) 68’0(/1, t;a) = S(a) (Ref(¢) > a), see Ding et al. [40].

¢11)) 62’0(/1, £;0) = S (Ref(¢) > 0), see MacGregor [41].

The first result concerning the class S| (4, {; @) establishes its convexity.
Theorem 2.1. The class 63#(/1, C; a) is closed under convex combination.

Proof. Consider
B =¢+ ) ape, €U, j=1.2,
k=2

being in the class Gg’#(/l, C; a). It suffices to demonstrate that

f(&) = nf1(&) + (1 = (&),

belongs to the class wa(/l, {; @), with n a positive real number.
f is given by:

i€ =€+ i+ (1 - nas)e, £ €,
k=2

and
[« +p—1],!

m(ﬂalk + (1 = pax)E”.
q- q-

I3 L OFE) = £+ D 0,4, 0)
k=2

2.1)

(2.2)
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Differentiating (2.2), we have

[« +p—1]!

Tl e = 13, e+ (1= Mazké .
ar q!

(1, 0/@) =1+ Y vk 1.0
k=2

Hence

[59)
’

— 11!
k=2

= [« +p—1],! -1
+Re|(1 - Sk, A, ) ——————ap, & 2.3
e(( n)ékwq (A Op e 2.3)
Taking into account that f;, f, € Sg#(/l, {; @), we can write
= [k +pu—1],! 1

Re kP (k, A, ) —————————a;, & | > nla—1). 2.4)
Using relation (2.4), we get from relation (2.3):

Re (Ij’#(/l, f)f(f)) >Sl+n@-D+1-n)a-1) =
It demonstrated that the set 63’#(/1, {; @) is convex. m]

Next, we study a class of differential subordinations 63’#(/1, {; @) and a g-multiplier-Ruscheweyh
operator /; (4, £) involving convex functions.

Theorem 2.2. For g to be convex, we define

h(&) = a(&) + %, a>0,¢eU. (2.5)
Forf € & (4,6 ), consider
F&) = ‘;12 f i(ndt, €€ U, 2.6)
then the differential subordination 0
(12,0, 0/©) < @), 2.7)

implies the differential subordination

’

(15, OF©) <a®),
for the best dominant.
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Proof. We can write (2.6) as:

3
@) = (a+2) f “i0di, £ €U,
0

and differentiating it, we get
EF (&) + (a+ DF(E) = (a+2)i(&)
and

£(L, L OF©) +(a+ DI OF @) = (a + DL, @), &€ U.

Differentiating the last relation, we obtain

£(15, (L OF @)

a+2

(1AL OF®) = (15, 0i©) . €€,

and (2.7) can be written as

£ (13,0, OF @) £©
— (L@ OF©) < = +9(). (2.8)
Denoting
§(&) = (I3,(L OF(©) € HIL 11 (2.9)
differential subordination (2.8) has the next type:
&9 &g (f)
o, PO <5 +a).
Through Lemma 1.1, we find
p&) < 8(),
then )
(12, OF©®) < g(@),
where g is the best dominant. |
Theorem 2.3. Denoting
&
+2
L(F) (&) = f““ f 'i(t)dt, a > 0, (2.10)
then,
L|S;,0. L) c &, ta), (2.11)
where .
a'=QRa-1)-(a—- 1)2F1(1,1,a+3;§). (2.12)

AIMS Mathematics Volume 9, Issue 7, 18143—-18162.
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Proof. Using Theorem 2.2 for h(¢) = 12@e 1 and using the identical procedures as Theorem 2.2,

proof then o

£p'(é)

wr2 + p(&) < Hé),
holds, with p defined by (2.9).

Through Lemma 1.2, we find
p(&) < a(§) < H(6),
similar to )
(15, (. OF(©) < a(&) < b,

where

a+2 (4 1-Qa-1)
8¢ = For? f; (=
_ 2@+ 2)(a—-1) [F !
= Ce-n-=—— | T
By using Lemma 1.5, we get
6@ = Qa - 1) = 2(a - (1 - & HFi(1, 1,a+3; é%).

Since g is a convex function and g(U) is symmetric around the real axis, we have

’

Re (I3 ,(4, OF )

%

réglll Reg(¢) = Reg(-1) = o”

1
QRa-1)=-(x-=1)F(1,1,a+3; 5).

If we put @ = 0, in Theorem 2.3, we obtain

Corollary 2.1. Let

1L0© = 2 2 ft“f(t)dt, a>0,

é:a+l 0
then,
L|S;,.0] c &), a0,

where )
a ' =-1+ 2F1(1,1,(1+3;§).

Example 2.1. If a = 0 in Corollary 2.1, we get:

2
I(H(&) = Ef:f(t)dt’

1@, 0] c &}, "),

then,

AIMS Mathematics Volume 9, Issue 7, 18143—-18162.
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where
. 1
o = —1+2F1(1,1,3;§)
= 3-4In2.
Theorem 2.4. Let g be the convex with g(0) = 1, we define

D(&) = £3'(€) + 9(é), £ € U.

Iff € A verifies

(15,44, 07®) <), €€, (2.13)

then the sharp differential subordination

I, (4, 0i(€)

z <g(¢), €€l (2.14)

holds.

Proof. Considering

| B OTO &+ TRV b Do
¢ ¢

clearly p € H[1, 1], this we can write

=1+pE+mé+...., &€l

&p(6) = 1;,,(4, OF(E),

and differentiating it, we obtain

’

(5,1, 07@) = &p'@) +p(©.

Subordination (2.13) takes the form

€0/ (&) + p(€) < B(E) = €5 (&) + 9(d), (2.15)

Lemma 1.1, allows us to have p(¢) < g(¢), then (2.14) holds. O
Theorem 2.5. Let V) be the convex and H(0) = 1, if f € A verifies

’

(3,1, 07®) <b@), €€, (2.16)
then we obtain the subordination

I3, OF(€)
£

for the convex function g(¢) = Qa — 1) + @ In(1 — &), being the best dominant.

<96, &€,

AIMS Mathematics Volume 9, Issue 7, 18143—-18162.
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Proof. Let
oA 5)f(f) - [k +p—110
Ztﬁ *(k, ﬂf)ﬂ a& e H[1,1], &el.

By differentiating it, we get /
(13,0, 0(©)) = £p'© +p(©),
and differential subordination (2.16) becomes
Ep' (&) + p(é) < h&),
Lemma 1.2 allows us to have
1
pé) < g6 = < f b(n)dr,
& Jo
then 13,407
iﬂéfii<g@»:@a—n+2w_1%m1—a,

for g is the best dominant. i

If we put @ = 0 in Theorem 2.5, we have

Corollary 2.2. Considering the convex b with H(0) = 1, if f € A verifies

(15,4, 07®) <), £€ U,
then we obtain the subordination

12 (A, O)7(@)
£

for the convex function §(&), which is the best dominant.

2
<9(§)=—1—Eln(1—§), el

Example 2.2. From Corollary 2.2, if

(12,0, 0©) <bE), €€,

we obtain )
Re (Ig’ﬂ(/l, {’)T(f)) > Ilgllll Reg(é) = Reg(—1) = —-1+21n2,

Theorem 2.6. Let g be a convex function with ¢(0) = 1. We define H(¢) = §g'(§) +g(&), £ e U If
f € A verifies

51’”(/1 0i(&)
T LONE) , e, 2.17
( q,ﬂ(/l,f)f(f)) he), £ (2.17)
then i e
w— , U, 2.18
1L OT@) <g(&), &€ 2.18)
holds.
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Proof. For

_LAONE) _E+ XL 640 e a,

LA O1©) g4 32,y A, OB g

By differentiating it, we get

(I0i©)  (1.a.01©)

PO oo MO Taoe
then
. EIEN(A, 0F(6)
Ep (&) +pé) = (—q,ﬂ(/l,f)f(g) )
Differential subordination (2.17), then we obtain (2.15), and Lemma 1.1 allows us to have p(¢) < g(¢),
then (2.18) holds. 0

3. Differential superordination results

This section examines differential superordinations with respect to a first-order derivative of a g-
multiplier-Ruscheweyh operator I (4,{). For every differential superordination under investigation,
we provide the best subordinant.

Theorem 3.1. Conszdermg fe A, aconvexlin U such that bh(0) = 1, and F(¢) defined in (2.6). We
assume that (Is (4, f)f(f)) is a univalent in U, ( W(/l f)f(f)) e ONH[11]. If

b(&) < (I, 0i@) , €€, 3.1)

holds, then ,
o) < (I3, (L. OF @) , €€,

with g(€) = Sﬂf—j fof 1y (¢)dt the best subordinant.

Proof. Differentiating (2.6), then £éF (¢) + (a + 1)F(¢) = (a + 2)f(¢) can be expressed as
E(I8 (L OF @) + @+ DI, AL OF© = (a+ 2,4 0E),
which, after differentiating it again, has the form

(I3, f)F(cf))”

U OF ©) = (1,007 .

Using the final relation, (3.1) can be expressed

£(13,, f)F(f))

DO < 5

+ (I8, OF @) . 3.2)

AIMS Mathematics Volume 9, Issue 7, 18143—-18162.
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Define /
@) = (I, AL OF@) , €€, (3.3)

: : : &
and putting (3.3) in (3.2), we obtain h(£) < (§+2) + p(¢), ¢ € U. Using Lemma 1.3, given n = 1,

and @ = a+ 2, it results in g(¢) < p(€), similar g(¢) < (Ig,ﬂ(/l, OF (f)) , with the best subordinant
9(&) = ;t% fj 1**'(t)dt convex function. -

Theorem 3.2. Let | € A, F(¢) = %3 fo 1'1()dt, and H(&) = FZE where Rea > =2, @ € [0, 1).

Suppose that (Ig’ﬂ(/l, f)f(f))l is a univalent in U, ( a,u(’l’ f)F(f)) € Q NH[1,1] and

b(©) < (I, (L. 0i(©) , €€, (3.4)
then ,
9@ < (1AL OF@) , €€,

is satisfied for the convex function §(&) = Qa — 1) = 2(a — D1 - & HLF(1,1,a + 3; = 1) as the
best subordinant.

Proof. Let p(¢) = (Ig#(/l, OF (f)) . We can express (3.4) as follows when Theorem 3.1 is proved:

1-Qa-Dg v (€)

M) =% a+2

+ p(&).

By using Lemma 1.4, we obtain g(¢) < p(€), with

at+2 (F1-Qa-1r,,,
= N dt
NG w%f L

= Qa-1)-2a-D1-8"2F(1,1,a+3; g—il) < (13,0, f)F(g))' :

g is convex and the best subordinant. O

Theorem 3.3. Let f € A and Yy be a convex function with H(0) = 1. Assuming that (Ig#(/l, {’)f(f)) isa

d 250 € QN HIL L if

univalent an 3

b(&) < (I, 0i@) , €€, (3.5)

holds, then
I (4, 0)7(@)
< —_—

b E b
&

is satisfied for the convex function §(&¢) = % fog h(t)dt, the best subordinant.
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Proof. Denoting

b OO £+ B A Oy
'3 &

we can write 17 (4, £)f(§) = £p(§) and differentiating it, we have

e H[1,1],

(15,00, @) = &8’ @ + @)

With this notation, differential superordination (3.5) becomes

D(&) < €p'(€) + p(&).

Using Lemma 1.3, we obtain

s (O
8(6) < p(¢) = % for o) = = f br)dt,

convex and the best subordinant. O

Theorem 3.4. Suppose that H(¢) = I_(f%])‘f with a € [0, 1). For i € A, assume that (Ig’u(/l, f)f(f)) isa

3
univalent and L4010 ONHI[11].If

¢
b(©) < (I, (L 0i(©) , €U, (3.6)
holds, then
8(6) < %@f@ e,
where
0@ = Qa— 1)+ 22 - Dingi - g,

I, (LO7©)

Proof. After presenting Theorem 3.3’s proof for p(¢) = , superordination (3.6) takes the form

¢
l1-QRa-1 ,
b(é) = %f)f <E @ + O,

By using Lemma 1.3, we obtain g(¢) < p(€), with

3 1 -Qa- 1)t

9 = g f —
_ I (A, €

= @a-n+ 2D s < I3y, O1) ; )T(f),

g is convex and the best subordinant. O
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070

Theorem 3.5. Let §) be a convex function, with H(0) = 1. For | € A, let ( YT ) is univalent in U
aut/s

LN A0(E)
13, (L0i@)

e ONH[11].If
v+l /l 5
&ly, ( )f(f)] U, 37

M@<[ 12,4 O (@)

holds, then
. LA, 0F€)

waoe <0

where the convex g(¢) = é f0§ b(1)dt is the best subordinant .

Proof. Let
_ 15 07@)

L, (A, O’

after differentiating it, we can write

o~ UMM&M»_(Qmwwmm'
POE a0 Y0

. : 101 |
in the form &p (€) + p(é) = (%—m(g)
Differential superordination (3.7) becomes h(&) < &p (€) + (). Applying Lemma 1.3, we obtain

_pQ0i@ . 1 (% .
a(é) < p(¢) = m, with the convex g(¢) = : fo b(¢)dt, the best subordinant. O

—Qa— . EALOIO .

Theorem 3.6. Assume that H(¢) = %& with @ € [0,1). For f € A, suppose that (%)
gt

LN ,07&)

13, (L0I@

univalent and

Q H[lal]'l‘f
€IS ! 1 f f

“@<( L0

holds, then
. LA, 06

eV,
L@ L e
where

2(a -1
86 = Qa—1y+ 22D

In(1 — &),

. e . ) ..
Proof. By using p(¢) = 1],’:,((/1—5)):(?’ differential superordination (3.8) takes the form

1 - Qa-1)¢

o <O+

h(é) =
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By using Lemma 1.3, we get g(¢) < p(€), with

_ l-Qa-y,
a) = gﬁ = 4

A=D1 LA, ()
M- < T e

g is convex and the best subordinant. O

Qa—1)+

4. Conclusions

A new class of analytical normalized functions 63#(/1, {; @), given in Definition 2.1, is related to the
novel findings proven in this study given in Definition 2.1. To introduce some subclasses of univalent
functions, we develop the g-analogue multiplier-Ruscheweyh operator I (4, {) using the notion of a
g-difference operator. The q-Ruscheweyh operator and the g-Cétas operator are also used to introduce
and study distinct subclasses. In Section 2, these subclasses are subsequently examined in more detail
utilizing differential subordination theory methods. Regarding the g-analogue multiplier-Ruscheweyh
operator/; ,(4,{) and its derivatives of first and second order, we derive differential superordinations in
Section 3 For every differential superordination under investigation, the best subordinant is provided.
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