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Abstract: In recent years, the concept of fuzzy set has been incorporated into the field of geometric
function theory, leading to the evolution of the classical concept of differential subordination into
that of fuzzy differential subordination. In this study, certain generalized classes of p-valent analytic
functions are defined in the context of fuzzy subordination. It is highlighted that for particular functions
used in the definitions of those classes, the classes of fuzzy p-valent convex and starlike functions are
obtained, respectively. The new classes are introduced by using a g-calculus operator defined in this
investigation using the concept of convolution. Some inclusion results are discussed concerning the
newly introduced classes based on the means given by the fuzzy differential subordination theory.
Furthermore, connections are shown between the important results of this investigation and earlier
ones. The second part of the investigation concerns a new generalized g-calculus operator, defined
here and having the (p, q)-Bernardi operator as particular case, applied to the functions belonging to
the new classes introduced in this study. Connections between the classes are established through this
operator.
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1. Introduction

Lotfi A. Zadeh published a paper in 1965 [1] that developed the theory of fuzzy sets. Fuzzy sets
theory was included in 2011 [2], in the study of complex-valued functions related to subordination.
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The connection of this theory with the field of complex analysis was motivated by the many successful
attempts of researchers to connect fuzzy sets with established fields of mathematical study. The
differential subordination concept was first presented by the writers of [3, 4]. Fuzzy differential
subordination was first proposed in 2012 [S]. A publication released in 2017 [6] provides a good
overview of the evolution of the fuzzy set concept and its connections to many scientific and technical
domains. It also includes references to the research done up until that moment in the context of
fuzzy differential subordination theory. The research revealed in 2012 [7] showed how to adapt
the well-established theory of differential subordination to the specific details that characterizes
fuzzy differential subordination and provided techniques for analyzing the dominants as well as for
providing the best dominants of fuzzy differential subordinations. Also, some researchers applied
fuzzy differential subordination to different function classes; see [8,9]. After that, the specific Briot—
Bouquet fuzzy differential subordinations were taken into consideration for the studies [10].
Let A, (p a positive integer) denote the class of functions of the form:

im=n"+ > an's (peN=1{1,23,.}, ne ), (1.1)

n=p+1

which are analytic and multivalent (or p-valent) in the open unit disk U given by
U={n:inl<l}

For p = 1, the class A, = A represents the class of normalized analytic and univalent functions in U.
Jackson [11,12] was the first to employ the g-difference operator in the context of geometric function
theory. Carmichael [13], Mason [14], Trijitzinsky [15], and Ismail et al. [16] presented for the first time
some features connected to the g-difference operator. Moreover, many writers have studied different
g-calculus applications for generalized subclasses of analytic functions; see [17-26].
The Jackson’s g-difference operator d, : A, — A, defined by

W ()%0; 0<q< 1)
Dy pf(m) = (1.2)
(0) (n=0),
provided that §'(0) exists. From (1.1) and (1.2), we deduce that
voof() 1= [plyn"™ + D Ky aar ™, (1.3)
k=p+1

where

1

[K]g [K = 1] e [2], [1], k=1,2,3,..
1 k=0.

1— qK k=1
[«] =1+ ) ¢, (0], =0,
q _ q ; q

«],! = (1.4)

We observe that
f(m) — f(an)

o

lim d,,f(n) := lim
=g a—g-
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The g-difference operator is subject to the following basic laws:

D, (cf () £ dh (7)) = cd,f (7)) £ ddh (n7) (1.5)
b, (F (i (n) =T (an) d, (i () + A(n)d, (7 (17)) (1.6)
f(n)) b, (F () h(n) — T (1) b, (A1)
d = . h(an)h 0 1.7
(i Ao (o) # 47
Inq d, (F (7))
d, (1 = — 1.8

where f,% € A, and ¢ and d are real or complex constants.
Jackson in [12] introduced the g-integral of f as:

,7 .
[ rome =01 -a Y s,
k=0

and

lim f(z)qu - f (1)t

g—1-

where j(;n f(r)bt, is the ordinary integral.

The study of linear operators is an important topic for research in the field of geometric function
theory. Several prominent scholars have recently expressed interest in the introduction and analysis
of such linear operators with regard to g-analogues. The Ruscheweyh derivative operator’s g-analogue
was examined by the writers of [27], who also examined some of its properties. It was Noor et al. [28]
who originally introduced the g-Bernardi integral operator.

In [29], Aouf and Madian investigate the g-p-valent Citas operator I} (4, ¢) : A, = A, (s € Ny =
NU{0},£,4>0,0<q<1,pe€N) as follows:

f], + A 4 )\
77+Z(p+ o T A+ L], - [P+ ]q) p

I;,p(/l’ [)f(n) p + 5] aKn
qa

k=p+1

(s € Npt,1>0,0<qg<1,peN).

Also, Arif et al. [30] introduced the extended q-derivative operator ‘R’fp - A, = A, for p-valent
analytic functions is defined as follows:

REP () Qp(q,u +pim) i) (> -p),

[t + p,al- lu+palep
+ ay
" Z = pan

k=p+1

Setting

[p+ €], + Ak + €], - [p+€])\
Ouadm =+ Z ( [+ ], |

k=p+1

Now, we define a new function ® q”; 1¢(m) n terms of the Hadamard product ( or convolution ) by:
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[ﬂp,KpK(

e N).
[« — p,q]! )

G () G () =" + Z

k=p+1

Then, motivated essentially by the g-analogue of the Ruscheweyh operator and the g-analogue Catas
operator, we now introduce the operator 7 (4, {) : A,—HA, defined by

Lo, 080 = 6,7, () * (), (1.9)
where s € Ny, £, >0,u>-p,0<q<1,peN. Forfe A, and (1.9), it is clear that

[p"'f]q ‘Y[IJ"'P]K—pq
~a,n". 1.10
(p+€]q+ﬂ<[K+qu—[p+f]q>) —ply 7 10

(A, 0F0) =" + Z

k=p+1

We use (1.10) to deduce the following:

+p t+
- ( S+1P(/l f)f(ﬂ)) _ [ /lq ]q]-sp(/l f)f( ) — ([ p]q ) SHP(/?. g)f(n)
a1 > 0), (1.11)
#n 0 (LA 05) = [+ pl, Zyh (4 O = [u], T35 O (112

We note that :

(i) If s = 0and g — 17 the operator defined in (1.10) reduces to the differential operator investigated
by Goel and Sohi [31], and further, by making p = 1, we get the familiar Ruscheweyh operator [32]
(see also [33]). Also, for more details on the g-analogue of different differential operators, see the
works [34,35];

(ii) If wesetq — 17, p =1, we obtain 7 j &#T(n) that was defined by Aouf and El-Ashwah [36];

(iii) If we set u = 0, and ¢ — 17, we obtain Jy(4, £)f(n7) that was introduced by El-Ashwah and
Aouf [37];

vyIfu=0,=a2=1, p=1,and q — 17, we obtain 7°*f(n) that was investigated by Jung et
al. [38];

WVMIfu=0,1=1,£=0, p=1,and g — 17, we obtain 7*{(n) that was defined by Séldgean [39];

(vi)Ifwesetu=0,4=1,and p = 1, we obtain J f',sf(n) that was presented by Shah and Noor [40];

(vii) If wesetu =0, A =1, p=1,and q —» 17, we obtain Jg,f, the Srivastava—Attiya operator;
see [41,42];

(vii) T 1’é(l 0) = fon 0y t(q Alexander operator [40]);

(viii) TN (1, ¢) = Q] #27'5(1)d, (q-Bernardi operator [28]);
q,0 O

(ix) Il(l)(l 1) =Lk fO f(£)d,t (9-Libera operator [28]).
We also observe that
(i) 1,(1, 0)i(n) = 1,77

o < Azigion =+ ) () S,
a ar

(s € No,u=>20,0<qg<1,peN,npel).

k=p+1
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(i) I20(1, 0f(p) = 1205

+ 0\ [+ Pl
A Iap) = (p ) Tadr,
fan € f) = 1"+ szl‘l i)

(s € No,€>0,u>0,0<q<1,peN,peU).

(iii) T30, 00i(p) = Z505(n)

S ]K_
A ]-sp/l 3 ( ) [/,l + p P-q . K,
i) € fon) =" + KZ[J';l (], + /1([K -[pl)) [k-ply! i

(s € Ng,4>0,u>0,0<g<1,peN,pel).
2. Preliminaries

We provide an overview of a number of fundamental ideas that are important to our research.
Definition 2.1. [43] A mapping & is said to be a fuzzy subset on 9 # ¢, if it maps from ) to [0, 1].
Alternatively, it is defined as:

Definition 2.2. [43] A pair (U, §y) is said to be a fuzzy subset on 9), where §y : 9 — [0, 1] is the
membership function of the fuzzy set (U, Fy) and U= {x €9 : 0 < Fy(x) < 1} = sup (U, Fy) is the
support of fuzzy set (U, Fy).

Definition 2.3. [43] Let (U, &y,) and (U,, Fu,) be two subsets of Y. Then, (Uj, Fu,) € (Us, Fu,)
if and only if Fy, (t) < Fu, (©), t € Y, whereas (U, Fy,) and (U,, Fy,) of Y are equal if and only if
Ul = Uz.

The subordination method for two analytic functions | and h was established by Miller and
Mocanu [44]. Specifically, if f(y) = b(k(n)), where k(1) is a Schwartz function in U, then, f is
subordinate to b, symbolized by < .

According to Oros [5], the subordination technique of analytic functions can be generalized to fuzzy
notions as follows:

Definition 2.4. If §(19) = H(1n9) and F(F (1) < FH (), (n € U c C), where 1y €U be a fixed point,
then f is fuzzy subordinate to b and is denoted by f <3 b.

Definition 2.5. [5] Lety : C? x U — C, and let b be univalent in U. If w is analytic in U and satisfies
the (second-order) fuzzy differential subordination:

T W), nw' (), n*w” 1); 1) < Foan(H(m)), (2.1)

1.e.,
Y(w), nw’ M), 1" @); M) <z (0(), neU,

then, w is called a fuzzy solution of the fuzzy differential subordination. The univalent function w is
called a fuzzy dominant if w(n) <z x(n), for all w satisfying (2.1). A fuzzy dominant y that satisfies
x (1) <3 x(n) for all fuzzy dominant y of (2.1) is said to be the fuzzy best dominant of (2.1).
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Using the concept of fuzzy subordination, certain special classes are next defined.

The class of analytic functions b (n7) that are univalent convex functions in U with §(0) = 1 and
Re(h (7)) > 0 is denoted by Q. We define the following for h(n) € Q, F : C — [0,1], s e Ny, £, 1 >
0O, u>-p,0<qg<l,and p e N:

Definition 2.6. When { € A, we say that { € E§M§ (b) if and only if

A=y y ¥ (12,7 ()

Pl T il im0
Furthermore, 0.1 ()
n n
") =FST, ) = A, —— ,
IM () = FST, (b) {Te i <gb(n)}
and

ML (D) = FCV, () =1<feA,: M <gb@;.
! b P [plodqT (17)

It is noted that
no,f(n)
(rlq
Particularly, for §) () = }%Z, the classes FCV,, (h) and FST , (h) reduce to the classes FCV,, and
&ST ,, of the fuzzy p-valent convex and fuzzy p-valent starlike functions, respectively.

With the operator 7,1(4, £), specified by (1.10), certain new classes of fuzzy p-valent functions are
defined as follows:

fedCV,H) & € ST ,(h). (2.2)

Definition 2.7. Letfe A,,{,A>0,u>-p,0 <q<1,p€Nand s be areal. Then,
ML (0. A, 6:0) = {f € A, : T, 07 () € FME (D)),

FST 0 (7. 4.4:0) = {f € A, : T4, Of () € FST, (0)}.
and
FCVil (v, 4, 6:1) = {i € A, = TV, () € FCV, ().

It is clear that

s btf .
feFCVou (7, 4,6h) & n[lp_](n) € FST on (v, 4, 6:h). (2.3)
q
Particularly, if s = 0, u = 1, then My} (7,4, €;0) = IMy (D), ST 4 (v, 4, 6:H) = FST, (h), and

FCVh (v, 4,€;1) = FCV, (h). Moreover, if p = 1, then the classes FM, (b), FST , (h), and FCV, (b)
reduce to the classes M, (h), FST (b), and FCV (h) studied in [45].

In the first part of this investigation, the goal is to establish certain inclusion relations between
the classes seen in Definitions 2.6 and 2.7 using the properties of fuzzy differential subordination and
then to obtain connections between the newly introduced subclasses by applying a new generalized
g-calculus operator, which will be defined in the second part of this study. This research follows the
line established by recent publications like [46—48].

AIMS Mathematics Volume 9, Issue 8, 21239-21254.
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3. Main results

The proofs of the main results require the following lemma:

Lemma 3.1. [47] Let ri, r, € C, r| # 0, and a convex function ) satisfies

Re(rb(t) +r) >0,r e U.

If g is analytic in U with g(0) = b(0), and Q(a(¢), D,a(1); 1) = a(t) + ~=22 is analytic in U with
Q (5(0), 0;0) = h(0), then,

10,9(1)

m < Ty (b(D)

gg(csz) [g(t) +

implies

Taw) (8(1) < Fyv) (0(2)), 1€ U.

3.1. Inclusion properties

In this section, we are going to discuss some inclusion properties for the classes defined above.

Theorem 3.1. Leth e Q, 0<y<1,6,A>0,u>—-p,0<qg<1,peN, and s be a real. Then,
SMs (v, A, 6:9) € FST 35 (4, 6;h).

Proof. Letf e My (v, A, £; D), and let

o, (2354, OFn)
[p], Za (A, i)

= x(), (3.1

with y(n) being analytic in U and y(0) = 1.
We take logarithmic differentiation of (2.1) to get

o (10, (2344, 7)) 00 (T34 OF) o, (v(m)

o I3, )i(n) o ofm x
Equivalently,
v, (0, (T304, O)i(n) 1, ()
d (‘l,’,i ))=X(n)+—m- (3.2)
[p]q quq,,u (/19 f)f(?]) [p]q X(U)
Since f € M, 7 (v, A, ¢;b), from (2.1) and (3.2), we get
(1 =), (Ié;ﬁ(a,f>f<n>)+ y v (md (230, 07()) Ly
P, T20im el sl oim P T a2 O

We obtain x(7) <3 b () by applying (3.3) and Lemma 3.1. Hence, f € 87,7, (4, £; D). m|

a5,

AIMS Mathematics Volume 9, Issue 8, 21239-21254.
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Corollary 3.1. SM;, (2, 6:h) C i‘s-STs A, 60),if p = 1. Furthermore, if s = 0, u = 1 we obtain

IM, (h) c FST (b), and ify =1, then %C(V () c FST (h). Additionally, for H(n) = =, we obtain
FCV c §ST.

Theorem 3.2. Lethe Q, y> 1,6, 120, u>-p, 0<g<1, peN,and s be a real. Then,
ML (v, A, 6,0) € FCV o0 (v, A, 6;D).

Proof. Letf € M5 (v, A, €;h). Then, by definition, we write

(1= (T 010) |y (2 (734 01))
[pl,  Tohoip [Pl SO

=pi(m) <z H(1).

Now,

y % (T30 0fm)) (1 -y, (If.jﬁ(/l,f)f(n))+ v O (0, (2300, OF)))
lpl, v Ignoip (el I0im  [ply 2 ik OF()
L =D (30, 0F) (= 1ymd, (Zan(d, OF)

PR P T R T R PR T

This implies

o, (10, (Lo OF)) 1 ()+(1_ 1) o, (1354, 0F())
Pl g oim 77 [P, o, 0in)

Y
1 1
—pi(m) + (1 - —)pz(n)-
Y Y

0, (10, (L34 (,07m))) .
Since py, p2 <5 b (), i TG <5 b (n). This is the expected outcome. O

In particular, if p = 1, we get M, (v, 4, ;D) C 8C(V“ (y, A, ;). Additionally, when s = 0, u =
1, we have M, (h) € FCV (D), and considering h(n) = ==, we obtain M} c FCV.

Theorem 3.3. Leth € Q 0< 7y, <y, < 1,6 A1>20, u>-p, 0<qg<1, peN,ands be a real
number. Then,

Proof. For vy, = 0, it is obviously true, based on the preceding theorem.
Let f € M} (v2, 4, £; D). Then, by definition, we have
(1 = y2) 10 (L322, () L P NUENEHENSLON)
[Pl Zoa@0fG  Iply md T, O

Now, we can easily write

(1= ) 1 (L3 0FD) D (0, (2354, 01)) ( )
= — 1 - — 35
Pl Z2L00m Pl %I Ofm) Rl e, G)

=g1(n) <z b (). (3.4)

AIMS Mathematics Volume 9, Issue 8, 21239-21254.
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where we have used (3.4), and % 92(17) <z b(n). Since g, 92 <3 H(n), (3.5) implies

(1= y) M (Lol 01) 5, v (im0, (23401 OF))
+ 5P <F
[Pl T0in [P, 2 Zond i

This proves the theorem. O

).

Remark 3.1. If y, = 1, and f € M, "
shows that

(1,4, 6;9) = FCV,; (4,4 D), then the previously proved result

.

fedMp(yi,4,6D), for 0 <y, <1,
Consequently, by using Theorem 3.1, we get FCV, 5, (4, £;D) C FST o (1,4, 4:1).

Now, certain inclusion results are discussed for the subclasses given by Definition 2.1.

Theorem 3.4. Leth € Q, €, 1 20, u>—p, 0<q<1, peN,and s be areal with [{ + p], > Aqt.
Then,

FST 0. (4, 6:h) € FST o4 (A, 6:h) € FST o7 (A, 6D) .

Proof. Let{ € ST ;1 (4, ;D). Then,

o, (LA, i)
[ 1, Z5b 7, 0)f(n)

<xbh@.

Now, we set

e (737 (4, OF)

" ), (3.6)
[ Jo Lo ", O )
with analytic ‘B(n) in U and *B(0) = 1.
From (1.11) and (3.6), we get
m, (70,7, 0100) e+ pl, (T 0fm) ([f +pl, 1)
[ LI @0t A [pl, I @ iy L\ ’
equivalently,
[e+p], (L35 0@m)
Wl
where &, , = [p#]ﬂ ([[;:;]“ - 1).
On g-logarithmic differentiation yields,
O (Lo (A, OF () )
o i ) gy B .
[p], Lo, OF () [p], (B +&,,)
Since f € 8'87'”’ (A, ¢; ), (3.7) implies
n0,(B(17))
. . 3.8
Y emra, 77 39
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We conclude that B(17) <z b () by applying (3.8) and Lemma 3.1. Hence, | € %S‘]' stlp 4,6 . To
prove the first part, let f € c{yS‘Tq Lt (1, ¢;b), and set

o o, (24, f)f(n))
A ol T, i)

where y is analytic in U with y(0) = 1. Then, it follows y <z b (1) that by applying the same arguments
as those described before with (1.12). Theorem 3.4’s proof is now complete. O

Theorem 3.5. Leth e Q, £,1>0,u>-p,0< qg< 1,peN, and s be a real. Then,

FCVIL (A, 6:0) € FCVL (A, 6:) € FCVoy ™ (4,6:1) .

a.u

Proof. Let f € FCV,5, (4, ;D). Applying (2.3), we show that

n(d,f)

ST 5P(A, ¢
), & 0T b ED
n

® b (7302, 0i(p) € FST, ()
q

n(d,f)
[p]q

& L, (T, 0f() € FST, ()

], ]
PN 5+1p(/l f)(n(bqf)
[Pl

& IDM(Q,0im) e FCV, (H)
& FeFCVIP (A 6D).

f e FCVILY) &

€ FST 174, 6:D)

) € ST ()

We can demonstrate the first part using arguments similar to those described above. Theorem 3.5’s
proof is now complete. O

3.2. Properties involving integral operator.

For f(n7) € A,, the generalized (p, q)-Bernardi integral operator for p-valent functions B}, f(n7) :
A, = A, is defined by

BY (Br_, ), (n e N),

4 _
Bual (1) = { ). (n = 0),

where B{ (1) is given by
(O (3.9)

- ([P +ol,
— P K —
= n+ Z ([K+Q]q)akz, (©>-p,nel).

k=p+1

BY ()

AIMS Mathematics Volume 9, Issue 8, 21239-21254.
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From %f’ .J(1), we deduce that

B i) = BY (B i)
& (Ip+ Q]q)2 )
— V4 _
n +K;1([K+Q]q az, (0>-p),
and
> ([p+ol\" .
Blfo =0+ ) ([K " Q]:) a2, (meN, o>-p),

k=p+1

which are defined in [49].

If n = 1, we obtain the g-Bernardi integral operator for a p-valent function [50].

Theorem 3.6. Let f € FM,}, (v, A, £; D), and define

[PQ

B, (1) = f ©70der (0> 0).

Then, 87, € FST 7 (1, 4;1).

Proof. Let f € Myl (y, 4, £:), and BY% (4, O)(17) = T34, €) (Bl (7). We assume
b, (B it é’)(n))
[p], Bajio(, ()

where 9t(n) is analytic in U with 9t(0) = 1.
From (3.10), we obtain

= N,

q(ng%qy g(/l 5)(77))

g 1
[P +ol, 1.

This implies
o, (B (4. O() = ([p]q + %) i) - L ]“ —By (4, D).
We use (3.11), (3.12), and (1.10), to obtain

[g]q) (L Of) e,
@ Jpl, L. 0 (BL,m) o lply

N(n) = ([P]q +

We use logarithmic differentiation to obtain
o, (234, OF() 70, 9(17)
Pl o ot +
Since f € M} (v, A, £:b) € FST ;1 (4, £; ), (3.13) implies
Uhq‘ﬁ(n)
[p], ) + =2*

The intended outcome follows from applying Lemma 3.1.

N(n) +

(3.10)

(3.11)

(3.12)

(3.13)

O

AIMS Mathematics Volume 9, Issue 8, 21239-21254.
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When p = 1, the following corollary can be stated:

Corollary 3.2. Letf € i”yMj,ﬂ (y, A4, ¢;b), and define

[1+0],
779

Ul
Bo,of(m) = fo 700yt (0> 0).

Then, B,,f(n) € FST, , (4, £ D).

.1

4. Conclusions

The means of the fuzzy differential subordiantion theory are employed in order to introduce and
initiate investigations on certain subclasses of multivalent functions. The g-p-analogue multiplier-
Ruscheweyh operator 7,7(4, £) is developed using the notion of a g-difference operator and the concept
of convolution. The g-analogue of the Ruscheweyh operator and the g-p-analogue of the Cétas operator
are further used to introduce a new operator applied for defining particular subclasses. In the second
section, we obtained some inclusion properties between the classes C&Mjﬁy, ,60), ST ;:ﬁ 4,6 h),
and FCYV, f]jﬁ (4,¢;b). The investigations concern the (p, q)-Bernardi integral operator for the p-valent
function preservation property and certain inclusion outcomes for the newly defined classes. Another
new generalized g-calculus operator is defined in this investigation that helps establish connections
between the classes introduced and investigated in this study. For instance, many researchers used
fuzzy theory in different branches of mathematics [51-54].

This work is intended to motivate future studies that would contribute to this direction of study by
developing other generalized subclasses of g-close-to-convex and quasi-convex multivalent functions
as well as by presenting other generalized g-calculus operators.
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