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1. Introduction

Henkin and Skolem introduced Hilbert algebras in the fifties for investigations in intuitionistic and
other non-classical logics. Diego [5] proved that Hilbert algebras form a variety which is locally
finite. Bandaru et al. introduced the notion of GE-algebras which is a generalization of Hilbert
algebras, and investigated several properties (see [1–3, 8, 9]). The notion of interior operator is
introduced by Vorster [13] in an arbitrary category, and it is used in [4] to study the notions of
connectedness and disconnectedness in topology. Interior algebras are a certain type of algebraic
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structure that encodes the idea of the topological interior of a set, and are a generalization of
topological spaces defined by means of topological interior operators. Rachůnek and Svoboda [7]
studied interior operators on bounded residuated lattices, and Svrcek [12] studied multiplicative
interior operators on GMV-algebras. Lee et al. [6] applied the interior operator theory to GE-algebras,
and they introduced the concepts of (commutative, transitive, left exchangeable, belligerent,
antisymmetric) interior GE-algebras and bordered interior GE-algebras, and investigated their
relations and properties. Later, Song et al. [10, 11] introduced the notions of an interior GE-filter, a
weak interior GE-filter, a belligerent interior GE-filter, prominent interior GE-filter and investigate
their relations and properties. They provided relations between a belligerent interior GE-filter and an
interior GE-filter and conditions for an interior GE-filter to be a belligerent interior GE-filter is
considered. Also, they provided relations between a prominent interior GE-filter and an interior
GE-filter and conditions for an interior GE-filter to be a prominent interior GE-filter is considered.
Given a subset and an element, they established an interior GE-filter, and they considered conditions
for a subset to be a belligerent interior GE-filter. They studied the extensibility of the belligerent
interior GE-filter and established relationships between weak interior GE-filter and belligerent interior
GE-filter of type 1–type 3. Also, they introduced the concept of a prominent interior GE-filter of
type 1 and type 2, and investigate their properties. They studied the relationship between a prominent
interior GE-filter and a prominent interior GE-filter of type 1.

In this manuscript, we introduce the concept of an imploring interior GE-filter, and investigate
their properties. We discuss the relationship between an interior GE-filter and an imploring interior
GE-filter. We provide conditions for an interior GE-filter to be an imploring interior GE-filter and
give examples to show that an imploring interior GE-filter is independent to a belligerent interior GE-
filter. We provide conditions for an imploring interior GE-filter to be a belligerent interior GE-filter.
We discuss the relationship between imploring interior GE-filter and prominent interior GE-filter and
give example to show that any imploring interior GE-filter is not a prominent interior GE-filter. We
provide conditions for an imploring interior GE-filter to be a prominent interior GE-filter. Also, we
consider conditions under which an interior GE-filter larger than a given interior GE-filter to become
an imploring interior GE-filter.

2. Preliminaries

2.1. Default background for GE-algebras

Definition 2.1 ( [1]). By a GE-algebra we mean a non-empty set X with a constant 1 and a binary
operation ∗ satisfying the following axioms:

(GE1) x̃ ∗ x̃ = 1,
(GE2) 1 ∗ x̃ = x̃,
(GE3) x̃ ∗ (ỹ ∗ z̃) = x̃ ∗ (ỹ ∗ (x̃ ∗ z̃)),

for all x̃, ỹ, z̃ ∈ X.

In a GE-algebra X, a binary relation “≤” is defined by

(∀x̃, ỹ ∈ X) (x̃ ≤ ỹ ⇔ x̃ ∗ ỹ = 1) . (2.1)

Definition 2.2 ( [1, 2]). A GE-algebra X is said to be
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• transitive if it satisfies:

(∀x̃, ỹ, z̃ ∈ X) (x̃ ∗ ỹ ≤ (z̃ ∗ x̃) ∗ (z̃ ∗ ỹ)) ; (2.2)

• belligerent if it satisfies:

(∀x̃, ỹ, z̃ ∈ X) (x̃ ∗ (ỹ ∗ z̃) = (x̃ ∗ ỹ) ∗ (x̃ ∗ z̃)) . (2.3)

Proposition 2.3 ( [1]). Every GE-algebra X satisfies the following items.

(∀x̃ ∈ X) (x̃ ∗ 1 = 1) . (2.4)
(∀x̃, ỹ ∈ X) (x̃ ∗ (x̃ ∗ ỹ) = x̃ ∗ ỹ) . (2.5)
(∀x̃, ỹ ∈ X) (x̃ ≤ ỹ ∗ x̃) . (2.6)
(∀x̃, ỹ, z̃ ∈ X) (x̃ ∗ (ỹ ∗ z̃) ≤ ỹ ∗ (x̃ ∗ z̃)) . (2.7)
(∀x̃ ∈ X) (1 ≤ x̃ ⇒ x̃ = 1) . (2.8)
(∀x̃, ỹ ∈ X) (x̃ ≤ (ỹ ∗ x̃) ∗ x̃) . (2.9)
(∀x̃, ỹ ∈ X) (x̃ ≤ (x̃ ∗ ỹ) ∗ ỹ) . (2.10)
(∀x̃, ỹ, z̃ ∈ X) (x̃ ≤ ỹ ∗ z̃ ⇔ ỹ ≤ x̃ ∗ z̃) . (2.11)

If X is transitive, then

(∀x̃, ỹ, z̃ ∈ X) (x̃ ≤ ỹ ⇒ z̃ ∗ x̃ ≤ z̃ ∗ ỹ, ỹ ∗ z̃ ≤ x̃ ∗ z̃) . (2.12)
(∀x̃, ỹ, z̃ ∈ X) (x̃ ∗ ỹ ≤ (ỹ ∗ z̃) ∗ (x̃ ∗ z̃)) . (2.13)
(∀x̃, ỹ, z̃ ∈ X) (x̃ ≤ ỹ, ỹ ≤ z̃ ⇒ x̃ ≤ z̃) . (2.14)

Lemma 2.4 ( [1]). A GE-algebra X is transitive if and only if X satisfies the condition (2.13).

Definition 2.5 ( [1]). A subset F of a GE-algebra X is called a GE-filter of X if it satisfies:

1 ∈ F, (2.15)
(∀x̃, ỹ ∈ X)(x̃ ∗ ỹ ∈ F, x̃ ∈ F ⇒ ỹ ∈ F). (2.16)

Lemma 2.6 ( [1]). In a GE-algebra X, every GE-filter F of X satisfies:

(∀x̃, ỹ ∈ X) (x̃ ≤ ỹ, x̃ ∈ F ⇒ ỹ ∈ F) . (2.17)

Definition 2.7 ( [2, 8, 9]). A subset F of a GE-algebra X containing the constant 1 is called:

• A belligerent GE-filter of X if it satisfies

(∀x̃, ỹ, z̃ ∈ X)(x̃ ∗ (ỹ ∗ z̃) ∈ F, x̃ ∗ ỹ ∈ F ⇒ x̃ ∗ z̃ ∈ F). (2.18)

• A prominent GE-filter of X if it satisfies

(∀x̃, ỹ, z̃ ∈ X)(x̃ ∗ (ỹ ∗ z̃) ∈ F, x̃ ∈ F ⇒ ((z̃ ∗ ỹ) ∗ ỹ) ∗ z̃ ∈ F). (2.19)

• An imploring GE-filter of X if it satisfies

(∀x̃, ỹ, z̃ ∈ X)(x̃ ∗ ((ỹ ∗ z̃) ∗ ỹ) ∈ F, x̃ ∈ F ⇒ ỹ ∈ F). (2.20)

Lemma 2.8 ( [8]). Let F be a GE-filter of a GE-algebra X. Then F is a prominent GE-filter of X if and
only if it satisfies:

(∀x̃, ỹ ∈ X) (x̃ ∗ ỹ ∈ F ⇒ ((ỹ ∗ x̃) ∗ x̃) ∗ ỹ ∈ F) . (2.21)
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2.2. Default background for interior GE-algebras

Definition 2.9 ( [6]). By an interior GE-algebra we mean a pair (X, ξ) in which X is a GE-algebra and
ξ : X → X is a mapping such that

(∀x̃ ∈ X)(x̃ ≤ ξ(x̃)), (2.22)
(∀x̃ ∈ X)((ξ ◦ ξ)(x̃) = ξ(x̃)), (2.23)
(∀x̃, ỹ ∈ X)(x̃ ≤ ỹ ⇒ ξ(x̃) ≤ ξ(ỹ)). (2.24)

Definition 2.10 ( [6]). An interior GE-algebra (X, ξ) is said to be

• transitive if it satisfies:

(∀x̃, ỹ, z̃ ∈ X)(ξ(x̃ ∗ ỹ) ≤ ξ((z̃ ∗ x̃) ∗ (z̃ ∗ ỹ))); (2.25)

• belligerent if it satisfies:

(∀x̃, ỹ, z̃ ∈ X)(ξ(x̃ ∗ (ỹ ∗ z̃)) = ξ((x̃ ∗ ỹ) ∗ (x̃ ∗ z̃))). (2.26)

Definition 2.11 ( [11]). Let (X, ξ) be an interior GE-algebra. A GE-filter F of X is said to be interior if
it satisfies:

(∀x̃ ∈ X)(ξ(x̃) ∈ F ⇒ x̃ ∈ F). (2.27)

Definition 2.12 ( [11]). Let (X, ξ) be an interior GE-algebra. Then a subset F of X is called a belligerent
interior GE-filter in (X, ξ) if F is a belligerent GE-filter of X which satisfies the condition (2.27).

Definition 2.13 ( [10]). Let (X, ξ) be an interior GE-algebra. Then a subset F of X is called a prominent
interior GE-filter in (X, ξ) if F is a prominent GE-filter of X which satisfies the condition (2.27).

3. Imploring interior GE-filters

Definition 3.1. An interior GE-algebra (X, ξ) is said to be pre-transitive (resp., pre-belligerent, if X
itself is transitive (resp., belligerent).

It is clear that every pre-transitive (resp., pre-belligerent) interior GE-algebra is a transitive (resp.,
belligerent) interior GE-algebra, but the converse is not true (see [6]).

In what follows, let (X, ξ) denote an interior GE-algebra unless otherwise specified.

Definition 3.2. A subset F of X in (X, ξ) is called an imploring interior GE-filter in (X, ξ) if F contains
the constant “1” and satisfies (2.20) and (2.27).

Example 3.3. Consider a set X = {1, a, b, c, d} with the binary operation ∗ given as follows:

∗ 1 a b c d
1 1 a b c d
a 1 1 1 c c
b 1 1 1 d d
c 1 a a 1 1
d 1 a a 1 1
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If we define a mapping ξ on X as follows:

ξ : X → X, x 7→


1 if x̃ = 1,
a if x̃ ∈ {a, b},
c if x̃ ∈ {c, d},

then (X, ξ) is an interior GE-algebra and F := {1, a, b} is an imploring interior GE-filter in in (X, ξ).

We first discuss the relationship between interior GE-filter and imploring interior GE-filter.

Theorem 3.4. Every imploring interior GE-filter is an interior GE-filter.

Proof. Let F be an imploring interior GE-filter in (X, ξ). Then 1 ∈ F and (2.27) is clearly true. Let
x, y ∈ X be such that x ∗ y ∈ F and x ∈ F. The combination of (GE1) and (GE2) leads to

x ∗ ((y ∗ y) ∗ y) = x ∗ y ∈ F.

It follows from (2.20) that y ∈ F. Hence F is an interior GE-filter in (X, ξ). □

The following example shows that the converse of Theorem 3.4 is not true.

Example 3.5. Let X = {1, a, b, c, d} and consider a binary operation ∗ and a mapping ξ on X given as
follows:

∗ 1 a b c d
1 1 a b c d
a 1 1 1 c d
b 1 1 1 c d
c 1 a a 1 d
d 1 b b 1 1

and

ξ : X → X, x 7→


1 if x̃ = 1,
a if x̃ ∈ {a, b},
c if x̃ ∈ {c, d}.

Then (X, ξ) is an interior GE-algebra and the set F := {1, a, b} is an interior GE-filter in (X, ξ). But it is
not imploring interior GE-filter in (X, ξ) since

1 ∗ ((c ∗ d) ∗ c) = 1 ∗ (d ∗ c) = 1 ∗ 1 = 1 ∈ F

and 1 ∈ F but c < F.

We find and present the conditions under which interior GE-filter becomes imploring interior GE-
filter.

Theorem 3.6. Given an interior GE-filter F in (X, ξ), the following arguments are equivalent.

(i) F is an imploring interior GE-filter in (X, ξ).

AIMS Mathematics Volume 7, Issue 1, 855–868.



860

(ii) F satisfies:

(∀x, y ∈ X)(ξ((x ∗ y) ∗ x) ∈ F ⇒ x ∈ F). (3.1)

Proof. Assume that F is an imploring interior GE-filter in (X, ξ) and let x, y ∈ X be such that ξ((x ∗ y) ∗
x) ∈ F. Then

1 ∗ ((x ∗ y) ∗ x) = (x ∗ y) ∗ x ∈ F

by (GE2) and (2.27). It follows from (2.20) that x ∈ F.
Conversely, let F be an interior GE-filter in (X, ξ) which satisfies the condition (3.1). It is clear that

F contains the constant 1 and satisfies the condition (2.27). Let x, y, z ∈ X be such that x∗((y∗z)∗y) ∈ F
and x ∈ F. Then (y∗z)∗y ∈ F by (2.16), and so (y∗z)∗y ≤ ξ((y∗z)∗y) by (2.22). Hence ξ((y∗z)∗y) ∈ F
since F is a GE-filter of X. Thus y ∈ F by (2.27). Therefore F is an imploring interior GE-filter in
(X, ξ). □

Given a subset F of X in (X, ξ), consider the following argument.

(∀x, y ∈ X)(ξ((x ∗ y) ∗ y) ∈ F ⇒ (y ∗ x) ∗ x ∈ F). (3.2)

The following example shows that (imploring) interior GE-filter F in (X, ξ) does not satisfy the
argument (3.2).

Example 3.7. (1) If we consider the interior GE-algebra (X, ξ) in Example 3.5, then the set F :=
{1, a, b} is an interior GE-filter in (X, ξ). But it does not satisfy the argument (3.2) since ξ((c ∗ d) ∗ d) =
ξ(d ∗ d) = ξ(1) = 1 ∈ F but (d ∗ c) ∗ c = 1 ∗ c = c < F.

(2) Let X = {1, a, b, c, d, e} and define binary operation ∗ as follows:

∗ 1 a b c d e
1 1 a b c d e
a 1 1 1 c d d
b 1 1 1 c d d
c 1 a a 1 e e
d 1 a a 1 1 1
e 1 a a c 1 1

If we define a mapping ξ on X as follows:

ξ : X → X, x 7→


1 if x̃ = 1,
a if x̃ ∈ {a, b},
c if x̃ = c,
d if x̃ ∈ {d, e},

then (X, ξ) is an interior GE-algebra and the set F := {1, a, b} is an imploring interior GE-filter in
(X, ξ). But it does not satisfy the argument (3.2) since ξ((c ∗ d) ∗ d) = ξ(e ∗ d) = ξ(1) = 1 ∈ F but
(d ∗ c) ∗ c = 1 ∗ c = c < F.

We explore conditions under which imploring interior GE-filter can satisfy the argument (3.2).
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Proposition 3.8. If (X, ξ) is a pre-transitive interior GE-algebra, then every imploring interior GE-
filter F satisfies the argument (3.2).

Proof. Let F be an imploring interior GE-filter in a pre-transitive interior GE-algebra (X, ξ). Then F
is an interior GE-filter in (X, ξ) by Theorem 3.4. Let x, y ∈ X be such that ξ((x ∗ y) ∗ y) ∈ F. Then
(x ∗ y) ∗ y ∈ F by (2.27). Since x ≤ (y ∗ x) ∗ x by (2.9), it follows from (2.12) that ((y ∗ x) ∗ x) ∗ y ≤ x ∗ y.
Hence

(x ∗ y) ∗ y ≤ (y ∗ x) ∗ ((x ∗ y) ∗ x)
≤ (x ∗ y) ∗ ((y ∗ x) ∗ x)
≤ (((y ∗ x) ∗ x) ∗ y) ∗ ((y ∗ x) ∗ x)

by (2.7), (2.12) and (2.13). Using (GE2) and Lemma 2.6 derive

1 ∗ ((((y ∗ x) ∗ x) ∗ y) ∗ ((y ∗ x) ∗ x)) = (((y ∗ x) ∗ x) ∗ y) ∗ ((y ∗ x) ∗ x) ∈ F,

which implies from (2.20) that (y ∗ x) ∗ x ∈ F. □

Corollary 3.9. If (X, ξ) is a pre-belligerent interior GE-algebra, then every imploring interior GE-filter
F satisfies the argument (3.2).

Question. If (X, ξ) is a pre-transitive interior GE-algebra, then
1. is any interior GE-filter an imploring interior GE-filter?
2. does any interior GE-filter F satisfy the argument (3.2)?

The following example provides a negative answer to the above Question.

Example 3.10. Let X = {1, a, b, c, d} and define binary operation ∗ as follows:

∗ 1 a b c d
1 1 a b c d
a 1 1 1 c d
b 1 1 1 c d
c 1 a a 1 d
d 1 a b 1 1

If we define a mapping ξ on X as follows:

ξ : X → X, x 7→


1 if x = 1,
a if x ∈ {a, b},
c if x ∈ {c, d},

then (X, ξ) is a pre-transitive interior GE-algebra. It is routine to verify that the set F := {1, a, b} is
an interior GE-filter in (X, ξ). But it is not an imploring interior GE-filter in (X, ξ) since 1 ∗ ((c ∗
d) ∗ c) = 1 ∗ (d ∗ c) = 1 ∗ 1 = 1 ∈ F and 1 ∈ F but c < F. Also, it does not satisfy (3.2) since
ξ((c ∗ d) ∗ d) = ξ(d ∗ d) = ξ(1) = 1 ∈ F but (d ∗ c) ∗ c = 1 ∗ c = c < F.

We consider conditions for an interior GE-filter to be an imploring interior GE-filter.
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Theorem 3.11. Let F be an interior GE-filter in a pre-transitive interior GE-algebra (X, ξ). If F
satisfies the argument (3.2), then it is an imploring interior GE-filter in (X, ξ).

Proof. Assume that F is an interior GE-filter in a pre-transitive interior GE-algebra (X, ξ) which
satisfies the argument (3.2). Let x, y ∈ X be such that ξ((x ∗ y) ∗ x) ∈ F. Since the combination of
(2.5), (2.10) and (2.12) induces

(x ∗ y) ∗ x ≤ (x ∗ y) ∗ ((x ∗ y) ∗ y) = (x ∗ y) ∗ y,

we get ξ((x ∗ y) ∗ y) ∈ F by (2.24) and Lemma 2.6. Hence (y ∗ x) ∗ x ∈ F by (3.2). Combining (2.6)
and (2.12), we get (x ∗ y) ∗ x ≤ y ∗ x, and so ξ((x ∗ y) ∗ x) ≤ ξ(y ∗ x) by (2.24). Since ξ((x ∗ y) ∗ x) ∈ F,
we obtain ξ(y ∗ x) ∈ F by Lemma 2.6. If follows from (2.27) that y ∗ x ∈ F. Since (y ∗ x) ∗ x ∈ F, we
have x ∈ F by (2.16). Therefore F is an imploring interior GE-filter in (X, ξ) by Theorem 3.6. □

Corollary 3.12. Let F be an interior GE-filter in a pre-belligerent interior GE-algebra (X, ξ). If F
satisfies the the argument (3.2), then it is an imploring interior GE-filter in (X, ξ).

In the following example, we can confirm that an imploring interior GE-filter is independent to a
belligerent interior GE-filter.

Example 3.13. (1) Let X = {1, a, b, c, d, e} and define binary operation ∗ as follows:

∗ 1 a b c d e
1 1 a b c d e
a 1 1 1 c d d
b 1 1 1 c d d
c 1 a a 1 d d
d 1 a a c 1 1
e 1 a a 1 1 1

If we define a mapping ξ on X as follows:

ξ : X → X, x 7→



1 if x = 1,
a if x ∈ {a, b},
c if x = c,
d if x = d,
e if x = e,

then (X, ξ) is an interior GE-algebra which is not pre-transitive since

(e ∗ c) ∗ ((a ∗ e) ∗ (a ∗ c)) = 1 ∗ (d ∗ c) = 1 ∗ c = c , 1.

We can observe that the set F := {1, a, b} is an imploring interior GE-filter in (X, ξ). But F can not be
a belligerent interior GE-filter in (X, ξ) because d ∗ (e ∗ c) = d ∗ 1 = 1 ∈ F and d ∗ e = 1 ∈ F but
d ∗ c = c < F.
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(2) Let X = {1, a, b, c, d} and define binary operation ∗ as follows:

∗ 1 a b c d
1 1 a b c d
a 1 1 1 c d
b 1 1 1 c d
c 1 a b 1 d
d 1 1 b 1 1

If we define a mapping ξ on X as follows:

ξ : X → X, x 7→


1 if x = 1,
a if x ∈ {a, b},
c if x = c,
d if x = d,

then (X, ξ) is an interior GE-algebra which is not pre-transitive since

(a ∗ b) ∗ ((d ∗ a) ∗ (d ∗ b)) = 1 ∗ (1 ∗ b) = 1 ∗ b = b , 1.

Let F = {1, a, b}. Then we can observe that F is a belligerent interior GE-filter in (X, ξ). But F is not
imploring interior GE-filter in (X, ξ) since 1 ∗ ((c ∗ d) ∗ c) = 1 ∗ (d ∗ c) = 1 ∗ 1 = 1 ∈ F and 1 ∈ F but
c < F.

We explore the conditions under which imploring interior GE-filter becomes belligerent interior
GE-filter.

Lemma 3.14. Let (X, ξ) be a pre-transitive interior GE-algebra. Then every interior GE-filter is a
belligerent interior GE-filter.

Proof. Let F be an interior GE-filter in (X, ξ). Clearly the argument (2.27) is valid and F contains the
constant 1. Let x, y, z ∈ X be such that x ∗ (y ∗ z) ∈ F and x ∗ y ∈ F. By (2.7), (2.12) and (2.5), we have

x ∗ (y ∗ z) ≤ y ∗ (x ∗ z) ≤ (x ∗ y) ∗ (x ∗ (x ∗ z)) = (x ∗ y) ∗ (x ∗ z).

Since F is a GE-filter of X and x∗ (y∗z) ∈ F, we get (x∗y)∗ (x∗z) ∈ F. Hence x∗z ∈ F by Lemma 2.6.
Therefore F is a belligerent interior GE-filter in (X, ξ). □

Corollary 3.15. In a pre-transitive interior GE-algebra, every imploring interior GE-filter is a
belligerent interior GE-filter.

Corollary 3.16. In a pre-belligerent interior GE-algebra, every imploring interior GE-filter is a
belligerent interior GE-filter.

The following example shows that the converse of Corollary 3.15 and Corollary 3.16 is not true in
general.
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Example 3.17. (1) Consider the pre-transitive interior GE-algebra (X, ξ) which is described in Example
3.10. As

d ∗ (c ∗ b) = d ∗ a = a , b = 1 ∗ b = (d ∗ c) ∗ (d ∗ b),

it is not pre-belligerent. Then we can observe that F := {1, a, b} is a belligerent interior GE-filter in
(X, ξ). But F is not imploring interior GE-filter in (X, ξ) since 1∗ ((c∗d)∗c) = 1∗ (d∗c) = 1∗1 = 1 ∈ F
and 1 ∈ F but c < F.

(2) Let X = {1, a, b, c, d} and define binary operation ∗ as follows:

∗ 1 a b c d
1 1 a b c d
a 1 1 1 c d
b 1 1 1 c d
c 1 a a 1 d
d 1 a a 1 1

If we define a mapping ξ on X as follows:

ξ : X → X, x 7→


1 if x = 1,
a if x ∈ {a, b},
c if x ∈ {c, d},

then (X, ξ) is a pre-belligerent interior GE-algebra. Let F = {1, a, b}. Then we can observe that F
is a belligerent interior GE-filter in (X, ξ). But F is not imploring interior GE-filter in (X, ξ) since
1 ∗ ((c ∗ d) ∗ c) = 1 ∗ (d ∗ c) = 1 ∗ 1 = 1 ∈ F and 1 ∈ F but c < F.

We establish a relationship between imploring interior GE-filter and prominent interior GE-filter.

Theorem 3.18. In a GE-algebra, every prominent interior GE-filter is an imploring interior GE-filter.

Proof. Let F be a prominent interior GE-filter in (X, ξ). Then it is an interior GE-filter in (X, ξ) (see
Theorem 3.4 in [10]), and so 1 ∈ F and F satisfies (2.27). Let x, y, z ∈ X be such that x∗ ((y∗ z)∗y) ∈ F
and x ∈ F. Since F is a GE-filter of X, we have (y ∗ z) ∗ y ∈ F. Since F is a prominent GE-filter of X,
it follows from (GE1), (GE2), (2.5) and Lemma 2.8 that

y = 1 ∗ y = ((y ∗ z) ∗ (y ∗ z)) ∗ y = (((y ∗ (y ∗ z)) ∗ (y ∗ z)) ∗ y ∈ F.

Therefore F is an imploring interior GE-filter in (X, ξ). □

The converse of Theorem 3.18 is not true as seen in the following example.

Example 3.19. Consider the interior GE-algebra (X, ξ) in Example 3.7(2). It is not pre-transitive
because

(d ∗ c) ∗ ((e ∗ d) ∗ (e ∗ c)) = 1 ∗ (1 ∗ c) = 1 ∗ c = c , 1.

Let F := {1, a, b}. Then we can observe that F is an imploring interior GE-filter in (X, ξ). But F
is not a prominent interior GE-filter in (X, ξ) since 1 ∗ (d ∗ c) = 1 ∗ 1 = 1 ∈ F and 1 ∈ F but
((c ∗ d) ∗ d) ∗ c = (e ∗ d) ∗ c = 1 ∗ c = c < F.
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The combination of Theorem 3.18 and Corollary 3.15 induces the next corollary.

Corollary 3.20. In a pre-transitive GE-algebra, every prominent interior GE-filter is a belligerent
interior GE-filter.

Consider the pre-transitive interior GE-algebra (X, ξ) which is described in Example 3.10. As

d ∗ (c ∗ b) = d ∗ a = a , b = 1 ∗ b = (d ∗ c) ∗ (d ∗ b),

it is not pre-belligerent. Then we can observe that F := {1, a, b} is a belligerent interior GE-filter in
(X, ξ). But F is not a prominent interior GE-filter in (X, ξ) since 1 ∗ (d ∗ c) = 1 ∗ 1 = 1 ∈ F and 1 ∈ F
but ((c ∗ d) ∗ d) ∗ c = (d ∗ d) ∗ c = 1 ∗ c = c < F. Hence we know that the converse of Corollary 3.20 is
not true in general.

We can strengthen the conditions of interior GE-algebra so that imploring interior GE-filter becomes
prominent interior GE-filter.

Theorem 3.21. If (X, ξ) is a pre-transitive interior GE-algebra, then every imploring interior GE-filter
is a prominent interior GE-filter.

Proof. Let F be an imploring interior GE-filter in a pre-transitive interior GE-algebra (X, ξ). Then F
satisfies (2.27) and it is an interior GE-filter in (X, ξ) (see Theorem 3.4), and so F is a GE-filter of X.
Let x, y ∈ X be such that x∗y ∈ F. Note that y ≤ ((y∗x)∗x)∗y by (2.6), and thus (((y∗x)∗x)∗y)∗x ≤ y∗x
by (2.12). It follows from (2.2), (2.7) and (2.12) that

x ∗ y ≤ ((y ∗ x) ∗ x) ∗ ((y ∗ x) ∗ y)
≤ (y ∗ x) ∗ (((y ∗ x) ∗ x) ∗ y)
≤ ((((y ∗ x) ∗ x) ∗ y) ∗ x) ∗ (((y ∗ x) ∗ x) ∗ y).

Hence ((((y ∗ x) ∗ x) ∗ y) ∗ x) ∗ (((y ∗ x) ∗ x) ∗ y) ∈ F by Lemma 2.6, and so

1 ∗ (((((y ∗ x) ∗ x) ∗ y) ∗ x) ∗ (((y ∗ x) ∗ x) ∗ y))
= ((((y ∗ x) ∗ x) ∗ y) ∗ x) ∗ (((y ∗ x) ∗ x) ∗ y) ∈ F

by (GE2). Since 1 ∈ F, we have ((y ∗ x) ∗ x) ∗ y ∈ F by (2.20). This shows that F is a prominent
GE-filter of X by Lemma 2.8, and therefore F is a prominent interior GE-filter in (X, ξ). □

Corollary 3.22. If (X, ξ) is a pre-belligerent interior GE-algebra, then every imploring interior GE-
filter is a prominent interior GE-filter.

The following example shows that prominent interior GE-filter and belligerent interior GE-filter are
independent of each other.

Example 3.23. (1) Let X = {1, a, b, c, d, e} and define binary operation ∗ as follows:

∗ 1 a b c d e
1 1 a b c d e
a 1 1 1 c d e
b 1 1 1 c d e
c 1 a a 1 d 1
d 1 a a c 1 1
e 1 a a 1 1 1
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If we define a mapping ξ on X as follows:

ξ : X → X, x 7→



1 if x = 1,
a if x ∈ {a, b},
c if x = c,
d if x = d,
e if x = e,

then (X, ξ) is an interior GE-algebra. We can observe that the set F := {1, a, b} is a prominent interior
GE-filter in (X, ξ). But it is not a belligerent interior GE-filter in (X, ξ) because of d ∗ (e ∗ c) = d ∗ 1 =
1 ∈ F and d ∗ e = 1 ∈ F but d ∗ c = c < F.

(2) In Example 3.13(2), we can observe that F := {1, a, b} is a belligerent interior GE-filter in (X, ξ).
But it is not a prominent interior GE-filter in (X, ξ) since 1 ∗ (d ∗ c) = 1 ∗ 1 = 1 ∈ F and 1 ∈ F but
((c ∗ d) ∗ d) ∗ c = (d ∗ d) ∗ c = 1 ∗ c = c < F.

We build the extension property of imploring interior GE-filter.

Lemma 3.24. In a pre-transitive interior GE-algebra (X, ξ), every interior GE-filter F satisfies:

(∀x, y, z ∈ X)(ξ(x ∗ (y ∗ z)) ∈ F ⇒ (x ∗ y) ∗ (x ∗ z) ∈ F). (3.3)

Proof. Let x, y, z ∈ X be such that ξ(x ∗ (y ∗ z)) ∈ F. Since

x ∗ (y ∗ z) ≤ x ∗ ((x ∗ y) ∗ (x ∗ z))
≤ x ∗ (x ∗ ((x ∗ y) ∗ z))
= x ∗ ((x ∗ y) ∗ z)
≤ (x ∗ y) ∗ (x ∗ z),

we get ξ(x ∗ (y ∗ z)) ≤ ξ((x ∗ y) ∗ (x ∗ z)) by (2.24). It follows from Lemma 2.6 and (2.27) that
(x ∗ y) ∗ (x ∗ z) ∈ F. □

Theorem 3.25. Let F and G be interior GE-filters in a pre-transitive interior GE-algebra (X, ξ). If F
is contained in G and F is an imploring interior GE-filter in (X, ξ), then G is also an imploring interior
GE-filter in (X, ξ).

Proof. Assume that F ⊆ G and F is an imploring interior GE-filter in (X, ξ). Let x, y ∈ X be such that
ξ((x ∗ y) ∗ y) ∈ G. Then (x ∗ y) ∗ y ∈ G by (2.27). Since ξ(((x ∗ y) ∗ y) ∗ ((x ∗ y) ∗ y)) = ξ(1) = 1 ∈ F, It
follows from Lemma 3.24 that (((x ∗ y) ∗ y) ∗ (x ∗ y)) ∗ (((x ∗ y) ∗ y) ∗ y) ∈ F. Using (2.7) and (2.12),
we have

(((x ∗ y) ∗ y) ∗ (x ∗ y)) ∗ (((x ∗ y) ∗ y) ∗ y)
≤ (x ∗ (((x ∗ y) ∗ y) ∗ y)) ∗ (((x ∗ y) ∗ y) ∗ y).

Hence (x ∗ (((x ∗ y) ∗ y) ∗ y)) ∗ (((x ∗ y) ∗ y) ∗ y) ∈ F by Lemma 2.6, and so

ξ((x ∗ (((x ∗ y) ∗ y) ∗ y)) ∗ (((x ∗ y) ∗ y) ∗ y)) ∈ F
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by (2.22) and Lemma 2.6. Since F is an imploring interior GE-filter in (X, ξ), we have

((((x ∗ y) ∗ y) ∗ y) ∗ x) ∗ x ∈ F ⊆ G

by Proposition 3.8. Note that

(x ∗ y) ∗ y ≤ (((x ∗ y) ∗ y) ∗ y) ∗ y

≤ (y ∗ x) ∗ ((((x ∗ y) ∗ y) ∗ y) ∗ x)
≤ (((((x ∗ y) ∗ y) ∗ y) ∗ x) ∗ x) ∗ ((y ∗ x) ∗ x).

It follows from Lemma 2.6 that

(((((x ∗ y) ∗ y) ∗ y) ∗ x) ∗ x) ∗ ((y ∗ x) ∗ x) ∈ G.

Thus (y∗x)∗x ∈ G, and consequently G is an imploring interior GE-filter in (X, ξ) by Theorem 3.11. □

Corollary 3.26. Let F and G be interior GE-filters in a pre-belligerent interior GE-algebra (X, ξ). If F
is contained in G and F is an imploring interior GE-filter in (X, ξ), then G is also an imploring interior
GE-filter in (X, ξ).

4. Conclusions

We have introduced the concept of an imploring interior GE-filter and investigated their properties.
We have discussed the relationship between an interior GE-filter and an imploring interior GE-filter.
We have given an example to show that any interior GE-filter is not an imploring interior GE-filter. We
have given conditions for an interior GE-filter to be an imploring interior GE-filter. We have provided
examples to show that an imploring interior GE-filter is independent to a belligerent interior GE-filter.
Conditions for an imploring interior GE-filter to be a belligerent interior GE-filter are given. We have
discussed the relationship between imploring interior GE-filter and prominent interior GE-filter. We
have provided an example to show that any imploring interior GE-filter is not a prominent interior
GE-filter. Conditions for an imploring interior GE-filter to be a prominent interior GE-filter are given.
Also, we have considered the conditions under which an interior GE-filter larger than a given interior
GE-filter can become an imploring interior GE-filter. In future, we will study the prime and maximal
imploring interior GE-filters and their topological properties. Moreover, based on the ideas and results
obtained in this paper, we will study the interior operator theory in related algebraic systems such as
MV-algebra, BL-algebra, EQ-algebra, etc. It will also be used for pseudo algebra systems and further
to conduct research related to the very true operator theory.
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