Research article Special Issues

On Hardy-Hilbert-type inequalities with $ \alpha $-fractional derivatives

  • Received: 24 April 2023 Revised: 05 June 2023 Accepted: 12 June 2023 Published: 12 July 2023
  • MSC : 26D10, 26D15, 26D20, 34A12, 34A40

  • In the current manuscript, new alpha delta dynamic Hardy-Hilbert inequalities on time scales are discussed. These inequalities combine and expand a number of continuous inequalities and their corresponding discrete analogues in the literature. We shall illustrate our results using Hölder's inequality on time scales and a few algebraic inequalities.

    Citation: Marwa M. Ahmed, Wael S. Hassanein, Marwa Sh. Elsayed, Dumitru Baleanu, Ahmed A. El-Deeb. On Hardy-Hilbert-type inequalities with $ \alpha $-fractional derivatives[J]. AIMS Mathematics, 2023, 8(9): 22097-22111. doi: 10.3934/math.20231126

    Related Papers:

  • In the current manuscript, new alpha delta dynamic Hardy-Hilbert inequalities on time scales are discussed. These inequalities combine and expand a number of continuous inequalities and their corresponding discrete analogues in the literature. We shall illustrate our results using Hölder's inequality on time scales and a few algebraic inequalities.



    加载中


    [1] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1952.
    [2] B. G. Pachpatte. Inequalities similar to certain extensions of Hilbert's inequality, J. Math. Anal. Appl., 243 (2000), 217–227. https://doi.org/10.1006rjmaa.1999.6646
    [3] C. J. Zhao, L. Y. Chen, W. S. Cheung, On some new Hilbert-type inequalities, Math. Slovaca, 61 (2011), 15–28. https://doi.org/10.2478/s12175-010-0056-0 doi: 10.2478/s12175-010-0056-0
    [4] C. J. Zhao, W. S. Cheung, On Hilbert type inequalities, J. Inequal. Appl., 2012 (2012), 145. https://doi.org/10.1186/1029-242X-2012-145 doi: 10.1186/1029-242X-2012-145
    [5] B. C. Yang, S. H. Wu, Q. Chen, A new extension of Hardy-Hilbert's inequality containing kernel of double power functions, Mathematics, 8 (2020), 894. https://doi.org/10.3390/math8060894 doi: 10.3390/math8060894
    [6] B. C. Yang, S. H. Wu, A. Z. Wang, A new Hilbert-type inequality with positive homogeneous kernel and its equivalent forms, Symmetry, 12 (2020), 342. https://doi.org/10.3390/sym12030342 doi: 10.3390/sym12030342
    [7] Y. G. Sun, T. Hassan, Some nonlinear dynamic integral inequalities on time scales, Appl. Math. Comput., 220 (2013), 221–225. https://doi.org/10.1016/j.amc.2013.06.036 doi: 10.1016/j.amc.2013.06.036
    [8] J. Q. Liao, S. H. Wu, B. C. Yang, On a new half-discrete Hilbert-type inequality involving the variable upper limit integral and partial sums, Mathematics, 8 (2020), 229. https://doi.org/10.3390/math8020229 doi: 10.3390/math8020229
    [9] M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Birkhäuser Boston, Inc., Boston, MA, 2001.
    [10] S. Hilger, Analysis on measure chains–-a unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18–56. https://doi.org/10.1007/BF03323153 doi: 10.1007/BF03323153
    [11] R. Agarwal, D. O'Regan, S. Saker, Dynamic inequalities on time scales, Springer, Cham, 2014.
    [12] E. Akin-Bohner, M. Bohner, F. Akin, Pachpatte inequalities on time scales, J. Inequal. Pure Appl. Math., 6 (2005).
    [13] M. Bohner, T. Matthews, The Grüss inequality on time scales, Commun. Math. Anal., 3 (2007), 1–8.
    [14] M. Bohner, T. Matthews, Ostrowski inequalities on time scales, J. Inequal. Pure Appl. Math., 9 (2008).
    [15] C. Dinu, Hermite-Hadamard inequality on time scales, J. Inequal. Appl., 2008 (2008). https://doi.org/10.1155/2008/287947 doi: 10.1155/2008/287947
    [16] R. Hilscher, A time scales version of a Wirtinger-type inequality and applications, J. Comput. Appl. Math., 141 (2002), 219–226. https://doi.org/10.1016/S0377-0427(01)00447-2 doi: 10.1016/S0377-0427(01)00447-2
    [17] W. N. Li, Some delay integral inequalities on time scales, Comput. Math. Appl., 59 (2010), 1929–1936. https://doi.org/10.1016/j.camwa.2009.11.006 doi: 10.1016/j.camwa.2009.11.006
    [18] P. Rehak, Hardy inequality on time scales and its application to half-linear dynamic equations, J. Inequal. Appl., 2005 (2005), 495–507. https://doi.org/10.1155/JIA.2005.495 doi: 10.1155/JIA.2005.495
    [19] R. P. Agarwal, V. Lakshmikantham, Uniqueness and nonuniqueness criteria for ordinary differential equations, World Scientific Publishing, Singapore, vol. 6 of Series in Real Analysis, 1993.
    [20] J. D. Li, Opial-type integral inequalities involving several higher order derivatives, J. Math. Anal. Appl., 167 (1992), 98–110.
    [21] M. Bohner, A. C. Peterson, Advances in dynamic equations on time scales, Springer Science and Business Media, 2002.
    [22] M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Birkhauser, Boston, Mass, USA, 2001.
    [23] N. Benkhettou, S. Hassani, D. F. M. Torres, A conformable fractional calculus on arbitrary time scales, J. King Saud Univ.-Sci., 28 (2016), 93–98. https://doi.org/10.1016/j.jksus.2015.05.003 doi: 10.1016/j.jksus.2015.05.003
    [24] E. R. Nwaeze, D. F. M. Torres, Chain rules and inequalities for the BHT fractional calculus on arbitrary timescales, Arab. J. Math., 6 (2017), 13–20. https://doi.org/10.1007/s40065-016-0160-2 doi: 10.1007/s40065-016-0160-2
    [25] M. J. Cloud, B. C. Drachman, L. Lebedev, Inequalities, Springer, 1998.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(896) PDF downloads(51) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog