In the current manuscript, new alpha delta dynamic Hardy-Hilbert inequalities on time scales are discussed. These inequalities combine and expand a number of continuous inequalities and their corresponding discrete analogues in the literature. We shall illustrate our results using Hölder's inequality on time scales and a few algebraic inequalities.
Citation: Marwa M. Ahmed, Wael S. Hassanein, Marwa Sh. Elsayed, Dumitru Baleanu, Ahmed A. El-Deeb. On Hardy-Hilbert-type inequalities with $ \alpha $-fractional derivatives[J]. AIMS Mathematics, 2023, 8(9): 22097-22111. doi: 10.3934/math.20231126
In the current manuscript, new alpha delta dynamic Hardy-Hilbert inequalities on time scales are discussed. These inequalities combine and expand a number of continuous inequalities and their corresponding discrete analogues in the literature. We shall illustrate our results using Hölder's inequality on time scales and a few algebraic inequalities.
[1] | G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1952. |
[2] | B. G. Pachpatte. Inequalities similar to certain extensions of Hilbert's inequality, J. Math. Anal. Appl., 243 (2000), 217–227. https://doi.org/10.1006rjmaa.1999.6646 |
[3] | C. J. Zhao, L. Y. Chen, W. S. Cheung, On some new Hilbert-type inequalities, Math. Slovaca, 61 (2011), 15–28. https://doi.org/10.2478/s12175-010-0056-0 doi: 10.2478/s12175-010-0056-0 |
[4] | C. J. Zhao, W. S. Cheung, On Hilbert type inequalities, J. Inequal. Appl., 2012 (2012), 145. https://doi.org/10.1186/1029-242X-2012-145 doi: 10.1186/1029-242X-2012-145 |
[5] | B. C. Yang, S. H. Wu, Q. Chen, A new extension of Hardy-Hilbert's inequality containing kernel of double power functions, Mathematics, 8 (2020), 894. https://doi.org/10.3390/math8060894 doi: 10.3390/math8060894 |
[6] | B. C. Yang, S. H. Wu, A. Z. Wang, A new Hilbert-type inequality with positive homogeneous kernel and its equivalent forms, Symmetry, 12 (2020), 342. https://doi.org/10.3390/sym12030342 doi: 10.3390/sym12030342 |
[7] | Y. G. Sun, T. Hassan, Some nonlinear dynamic integral inequalities on time scales, Appl. Math. Comput., 220 (2013), 221–225. https://doi.org/10.1016/j.amc.2013.06.036 doi: 10.1016/j.amc.2013.06.036 |
[8] | J. Q. Liao, S. H. Wu, B. C. Yang, On a new half-discrete Hilbert-type inequality involving the variable upper limit integral and partial sums, Mathematics, 8 (2020), 229. https://doi.org/10.3390/math8020229 doi: 10.3390/math8020229 |
[9] | M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Birkhäuser Boston, Inc., Boston, MA, 2001. |
[10] | S. Hilger, Analysis on measure chains–-a unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18–56. https://doi.org/10.1007/BF03323153 doi: 10.1007/BF03323153 |
[11] | R. Agarwal, D. O'Regan, S. Saker, Dynamic inequalities on time scales, Springer, Cham, 2014. |
[12] | E. Akin-Bohner, M. Bohner, F. Akin, Pachpatte inequalities on time scales, J. Inequal. Pure Appl. Math., 6 (2005). |
[13] | M. Bohner, T. Matthews, The Grüss inequality on time scales, Commun. Math. Anal., 3 (2007), 1–8. |
[14] | M. Bohner, T. Matthews, Ostrowski inequalities on time scales, J. Inequal. Pure Appl. Math., 9 (2008). |
[15] | C. Dinu, Hermite-Hadamard inequality on time scales, J. Inequal. Appl., 2008 (2008). https://doi.org/10.1155/2008/287947 doi: 10.1155/2008/287947 |
[16] | R. Hilscher, A time scales version of a Wirtinger-type inequality and applications, J. Comput. Appl. Math., 141 (2002), 219–226. https://doi.org/10.1016/S0377-0427(01)00447-2 doi: 10.1016/S0377-0427(01)00447-2 |
[17] | W. N. Li, Some delay integral inequalities on time scales, Comput. Math. Appl., 59 (2010), 1929–1936. https://doi.org/10.1016/j.camwa.2009.11.006 doi: 10.1016/j.camwa.2009.11.006 |
[18] | P. Rehak, Hardy inequality on time scales and its application to half-linear dynamic equations, J. Inequal. Appl., 2005 (2005), 495–507. https://doi.org/10.1155/JIA.2005.495 doi: 10.1155/JIA.2005.495 |
[19] | R. P. Agarwal, V. Lakshmikantham, Uniqueness and nonuniqueness criteria for ordinary differential equations, World Scientific Publishing, Singapore, vol. 6 of Series in Real Analysis, 1993. |
[20] | J. D. Li, Opial-type integral inequalities involving several higher order derivatives, J. Math. Anal. Appl., 167 (1992), 98–110. |
[21] | M. Bohner, A. C. Peterson, Advances in dynamic equations on time scales, Springer Science and Business Media, 2002. |
[22] | M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Birkhauser, Boston, Mass, USA, 2001. |
[23] | N. Benkhettou, S. Hassani, D. F. M. Torres, A conformable fractional calculus on arbitrary time scales, J. King Saud Univ.-Sci., 28 (2016), 93–98. https://doi.org/10.1016/j.jksus.2015.05.003 doi: 10.1016/j.jksus.2015.05.003 |
[24] | E. R. Nwaeze, D. F. M. Torres, Chain rules and inequalities for the BHT fractional calculus on arbitrary timescales, Arab. J. Math., 6 (2017), 13–20. https://doi.org/10.1007/s40065-016-0160-2 doi: 10.1007/s40065-016-0160-2 |
[25] | M. J. Cloud, B. C. Drachman, L. Lebedev, Inequalities, Springer, 1998. |