The concept of $ k $-folded $ \mathcal{N} $-structures ($ k $-F$ \mathcal{N} $Ss) is an essential concept to be considered for tackling intricate and tricky data. In this study, we want to broaden the notion of $ k $-F$ \mathcal{N} $S by providing a general algebraic structure for tackling $ k $-folded $ \mathcal{N} $-data by fusing the conception of semigroup and $ k $-F$ \mathcal{N} $S. First, we introduce and study some algebraic properties of $ k $-F$ \mathcal{N} $Ss, for instance, subset, characteristic function, union, intersection, complement and product of $ k $-F$ \mathcal{N} $Ss, and support them by illustrative examples. We also propose $ k $-folded $ \mathcal{N} $-subsemigroups ($ k $-F$ \mathcal{N} $SBs) and $ \widetilde{\zeta} $-$ k $-folded $ \mathcal{N} $-subsemigroups ($ \widetilde{\zeta} $-$ k $-F$ \mathcal{N} $SBs) in the structure of semigroups and explore some attributes of these concepts. Characterizations of subsemigroups are considered based on these concepts. Using the notion of $ k $-folded $ \mathcal{N} $-product, characterizations of $ k $-F$ \mathcal{N} $SBs are also discussed. Further, we obtain a necessary condition of a $ k $-F$ \mathcal{N} $SB to be a $ k $-folded $ \mathcal{N} $-idempotent. Finally, relations between $ k $-folded $ \mathcal{N} $-intersection and $ k $-folded $ \mathcal{N} $-product are displayed, and how the image and inverse image of a $ k $-F$ \mathcal{N} $SB become a $ k $-F$ \mathcal{N} $SB is studied.
Citation: Anas Al-Masarwah, Mohammed Alqahtani. Operational algebraic properties and subsemigroups of semigroups in view of $ k $-folded $ \mathcal{N} $-structures[J]. AIMS Mathematics, 2023, 8(9): 22081-22096. doi: 10.3934/math.20231125
The concept of $ k $-folded $ \mathcal{N} $-structures ($ k $-F$ \mathcal{N} $Ss) is an essential concept to be considered for tackling intricate and tricky data. In this study, we want to broaden the notion of $ k $-F$ \mathcal{N} $S by providing a general algebraic structure for tackling $ k $-folded $ \mathcal{N} $-data by fusing the conception of semigroup and $ k $-F$ \mathcal{N} $S. First, we introduce and study some algebraic properties of $ k $-F$ \mathcal{N} $Ss, for instance, subset, characteristic function, union, intersection, complement and product of $ k $-F$ \mathcal{N} $Ss, and support them by illustrative examples. We also propose $ k $-folded $ \mathcal{N} $-subsemigroups ($ k $-F$ \mathcal{N} $SBs) and $ \widetilde{\zeta} $-$ k $-folded $ \mathcal{N} $-subsemigroups ($ \widetilde{\zeta} $-$ k $-F$ \mathcal{N} $SBs) in the structure of semigroups and explore some attributes of these concepts. Characterizations of subsemigroups are considered based on these concepts. Using the notion of $ k $-folded $ \mathcal{N} $-product, characterizations of $ k $-F$ \mathcal{N} $SBs are also discussed. Further, we obtain a necessary condition of a $ k $-F$ \mathcal{N} $SB to be a $ k $-folded $ \mathcal{N} $-idempotent. Finally, relations between $ k $-folded $ \mathcal{N} $-intersection and $ k $-folded $ \mathcal{N} $-product are displayed, and how the image and inverse image of a $ k $-F$ \mathcal{N} $SB become a $ k $-F$ \mathcal{N} $SB is studied.
[1] | L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. http://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[2] | Y. B. Jun, K. J. Lee, S. Z. Song, $\mathcal{N}$-Ideals of BCK/BCI-algebras, Journal of the Chungcheong Mathematical Society, 22 (2009), 417–437. |
[3] | J. Chen, S. Li, S. Ma, X. Wang, $m$-Polar fuzzy sets: an extension of bipolar fuzzy sets, Sci. World J., 2014 (2014), 416530. https://doi.org/10.1155/2014/416530 doi: 10.1155/2014/416530 |
[4] | S. Bashir, S. Shahzadi, A. N. Al-Kenani, M. Shabir, Regular and intra-regular semigroups in terms of $m$-polar fuzzy environment, Mathematics, 9 (2021), 2031. https://doi.org/10.3390/math9172031 doi: 10.3390/math9172031 |
[5] | S. Abdullah, A. F. Ali, Applications of $\mathcal{N}$-structures in implicative filters of BE-algebras, J. Intell. Fuzzy Syst., 29 (2015), 517–524. https://doi.org/10.3233/IFS-141301 doi: 10.3233/IFS-141301 |
[6] | M. Khan, S. Anis, F. Smarandache, Y. B. Jun, Neutrosophic $\mathcal{N}$-structures and their applications in semigroups, Ann. Fuzzy Math. Inform., 14 (2017), 583–598. |
[7] | P. Rangsuk, P. Huana, A. Iampan, Neutrosophic $\mathcal{N}$-structures over UP-algebras, Neutrosophic Sets Sy., 28 (2019), 87–127. https://doi.org/10.5281/zenodo.3387801 doi: 10.5281/zenodo.3387801 |
[8] | A. Rattana, R. Chinram, Applications of neutrosophic $\mathcal{N}$-structures in $n$-ary groupoids, Eur. J. Pure Appl. Math., 13 (2020), 200–215. https://doi.org/10.29020/nybg.ejpam.v13i2.3634 doi: 10.29020/nybg.ejpam.v13i2.3634 |
[9] | C. Jana, T. Senapati, M. Pal, Handbook of research on emerging applications of fuzzy algebraic structures, Hershey: IGI Global, 2020. https://doi.org/10.4018/978-1-7998-0190-0 |
[10] | C. Jana, T. Senapati, K. P. Shum, M. Pal, Bipolar fuzzy soft subalgebras and ideals of BCK/BCI-algebras based on bipolar fuzzy points, J. Intell. Fuzzy Syst., 37 (2019), 2785–2795. https://doi.org/10.3233/JIFS-18877 doi: 10.3233/JIFS-18877 |
[11] | C. Jana, M. Pal, Generalized intuitionistic fuzzy ideals of BCK/BCI-algebras based on 3-valued logic and its computational study, Fuzzy Information and Engineering, 9 (2017), 455–478. https://doi.org/10.1016/j.fiae.2017.05.002 doi: 10.1016/j.fiae.2017.05.002 |
[12] | C. Jana, M. Pal, A. B. Saied, $(\in, \in \vee q)$-Bipolar fuzzy BCK/BCI-algebras, Missouri J. Math. Sci., 29 (2017), 139–160. https://doi.org/10.35834/mjms/1513306827 doi: 10.35834/mjms/1513306827 |
[13] | C. Jana, T. Senapati, M. Pal, $(\in, \in \vee q)$-Intuitionistic fuzzy BCIsubalgebras of a BCI-algebra, J. Intell. Fuzzy Syst., 31 (2016), 613–621. https://doi.org/10.3233/IFS-162175 doi: 10.3233/IFS-162175 |
[14] | C. Jana, T. Senapati, M. Bhowmik, M. Pal, On intuitionistic fuzzy G-subalgebras of G-algebras, Fuzzy Information and Engineering, 7 (2015), 195–209. https://doi.org/10.1016/j.fiae.2015.05.005 doi: 10.1016/j.fiae.2015.05.005 |
[15] | A. Al-Masarwah, A. G. Ahmad, On some properties of doubt bipolar fuzzy H-ideals in BCK/BCI-algebras, Eur. J. Pure Appl. Math., 11 (2018), 652–670. https://doi.org/10.29020/nybg.ejpam.v11i3.3288 doi: 10.29020/nybg.ejpam.v11i3.3288 |
[16] | A. Al-Masarwah, A. G. Ahmad, Novel concepts of doubt bipolar fuzzy H-ideals of BCK/BCI-algebras, Int. J. Innov. Comput. I., 14 (2018), 2025–2041. https://doi.org/10.24507/ijicic.14.06.2025 doi: 10.24507/ijicic.14.06.2025 |
[17] | Y. B. Jun, F. Smarandache, H. Bordbar, Neutrosophic $\mathcal{N}$-structures applied to BCK/BCI-algebras, Information, 8 (2017), 128. https://doi.org/10.3390/info8040128 doi: 10.3390/info8040128 |
[18] | A. Al-Masarwah, A. G. Ahmad, Subalgebras of type $(\alpha, \beta)$ based on $m$-polar fuzzy points in BCK/BCI-algebras, AIMS Mathematics, 5 (2020), 1035–1049. https://doi.org/10.3934/math.2020072 doi: 10.3934/math.2020072 |
[19] | A. Al-Masarwah, A. G. Ahmad, $m$-Polar fuzzy ideals of BCK/BCI-algebras, J. King Saud Univ. Sci., 31 (2019), 1220–1226. https://doi.org/10.1016/j.jksus.2018.10.002 doi: 10.1016/j.jksus.2018.10.002 |
[20] | A. Al-Masarwah, H. Alshehri, Algebraic perspective of cubic multi-polar structures on BCK/BCI-algebras, Mathematics, 10 (2022), 1475. https://doi.org/10.3390/math10091475 doi: 10.3390/math10091475 |
[21] | M. Sarwar, M. Akram, New applications of $m$-polar fuzzy matroids, Symmetry, 9 (2017), 319. https://doi.org/10.3390/sym9120319 doi: 10.3390/sym9120319 |
[22] | M. Akram, G. Shahzadi, Hypergraphs in $m$-polar fuzzy environment, Mathematics, 6 (2018), 28. https://doi.org/10.3390/math6020028 doi: 10.3390/math6020028 |
[23] | A. Z. Khameneh, A. Kiliçman, $m$-Polar fuzzy soft weighted aggregation operators and their applications in group decision-making, Symmetry, 10 (2018), 636. https://doi.org/10.3390/sym10110636 doi: 10.3390/sym10110636 |
[24] | J. G. Lee, K. Hur, Y. B. Jun, Multi-folded $\mathcal{N}$-structures with finite degree and its application in BCH-algebras, Int. J. Comput. Int. Sys., 14 (2021), 36–42. https://doi.org/10.2991/ijcis.d.201023.001 doi: 10.2991/ijcis.d.201023.001 |