Research article Special Issues

On Maia type fixed point results via implicit relation

  • Received: 19 February 2023 Revised: 18 May 2023 Accepted: 05 June 2023 Published: 12 July 2023
  • MSC : 47H10, 54H25

  • In order to study Maia type fixed point results for several well-known contractions, we suggest two novel contractions called $ \mathcal{A} $-contraction and $ \mathcal{A}' $-contraction. The majority of the Maia type fixed point results for various contractions can now be unified through these, which eliminate the need to manage various contractions individually. The advantage of including such contractions in the study of Maia type fixed point results has been demonstrated in suitable examples. We present an application of one of our established results towards the conclusion of the paper.

    Citation: Ashis Bera, Pratikshan Mondal, Hiranmoy Garai, Lakshmi Kanta Dey. On Maia type fixed point results via implicit relation[J]. AIMS Mathematics, 2023, 8(9): 22067-22080. doi: 10.3934/math.20231124

    Related Papers:

  • In order to study Maia type fixed point results for several well-known contractions, we suggest two novel contractions called $ \mathcal{A} $-contraction and $ \mathcal{A}' $-contraction. The majority of the Maia type fixed point results for various contractions can now be unified through these, which eliminate the need to manage various contractions individually. The advantage of including such contractions in the study of Maia type fixed point results has been demonstrated in suitable examples. We present an application of one of our established results towards the conclusion of the paper.



    加载中


    [1] M. Akram, A. A. Zafar, A. A. Siddiqui, A general class of contractions: A-contractions, Novi Sad J. Math., 38 (2008), 25–33.
    [2] M. Albu, A fixed point theorem of Maia-Perov type, Studia Univ. Babeş-Bolyai Math., 23 (1978), 76–79.
    [3] S. A. Al-Mezel, F. R. M. Al-Solamy, Q. H. Ansari, Fixed point theory, variational analysis and optimization, New York: CRC Press, 2014. https://doi.org/10.1201/b17068
    [4] A. H. Ansari, M. S. Khan, V. Rakočević, Maia type fixed point results via C-class function, Acta U. Sapientiae Ma., 12 (2020), 227–244. https://doi.org/10.2478/ausm-2020-0015 doi: 10.2478/ausm-2020-0015
    [5] Q. H. Ansari, S. Al-Homidan, J. C. Yao, Equilibrium problems and fixed point theory, Fixed Point Theory Appl., 2012 (2012), 25. https://doi.org/10.1186/1687-1812-2012-25 doi: 10.1186/1687-1812-2012-25
    [6] M. E. Balazs, A Maia type fixed point theorem for Prešić-Kannan operators, Miskolc Math. Notes, 18 (2017), 71–81. https://doi.org/10.18514/MMN.2017.1875 doi: 10.18514/MMN.2017.1875
    [7] M. E. Balazs, Maia type fixed point theorems for Ćirić-Prešić operators, Acta U. Sapientiae Ma., 10 (2018), 18–31. https://doi.org/10.2478/ausm-2018-0002 doi: 10.2478/ausm-2018-0002
    [8] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181.
    [9] S. Sadiq Basha, Best proximity point theorems for some special proximal contractions, Numer. Funct. Anal. Opt., 40 (2019), 1182–1193. https://doi.org/10.1080/01630563.2019.1598431 doi: 10.1080/01630563.2019.1598431
    [10] V. Berinde, Maia type fixed point theorems for some classes of enriched contractive mappings in Banach spaces, Carpathian J. Math., 38 (2022), 35–46. https://doi.org/10.37193/CJM.2022.01.04 doi: 10.37193/CJM.2022.01.04
    [11] V. Berinde, M. Păcurar, Approximating fixed points of enriched contractions in Banach spaces, J. Fixed Point Theory Appl., 22 (2020), 38. https://doi.org/10.1007/s11784-020-0769-9 doi: 10.1007/s11784-020-0769-9
    [12] V. Berinde, M. Păcurar, Fixed point theorems for enriched Ćirić-Reich-Rus contractions in Banach spaces and convex metric spaces, Carpathian J. Math., 37 (2021), 173–184. https://doi.org/10.37193/CJM.2021.02.03 doi: 10.37193/CJM.2021.02.03
    [13] R. M. T. Bianchini, Su un problema di S. Reich riguardante la teoria dei punti fissi, Boll. Un. Mat. Ital., 5 (1972), 103–108.
    [14] S. K. Chatterjea, Fixed-point theorems, Rend. Acad. Bulgare Sci., 25 (1972), 727–730.
    [15] L. B. Ćirić, Generalized contractions and fixed-point theorems, Publ. Inst. Math., 12 (1971), 19–26.
    [16] L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267–273.
    [17] P. Debnath, N. Konwar, S. Radenović, Metric fixed point theory: Applications in science, engineering and behavioural sciences, Singapore: Springer, 2022. https://doi.org/10.1007/978-981-16-4896-0
    [18] B. C. Dhage, On extension of a fixed point theorem of Maia, Pure Appl. Math. Sci., 24 (1986), 65–69.
    [19] B. C. Dhage, V. V. Dhobale, On generalization of Maia's fixed point theorem, J. Indian Acad. Math., 8 (1986), 25–30.
    [20] H. A. Hammad, P. Agarwal, S. Momani, F. Alsharari, Solving a fractional-order differential equation using rational symmetric contraction mappings, Fractal Fract., 5 (2021), 159. https://doi.org/10.3390/fractalfract5040159 doi: 10.3390/fractalfract5040159
    [21] H. A. Hammad, M. Zayed, Solving a system of differential equations with infinite delay by using tripled fixed point techniques on graphs, Symmetry, 14 (2022), 1388. https://doi.org/10.3390/sym14071388 doi: 10.3390/sym14071388
    [22] R. Kannan, Some results on fixed points, Bull. Cal. Math. Soc., 60 (1968), 71–76.
    [23] M. S. Khan, On fixed point theorems, Math. Japonica, 23 (1978), 201–204.
    [24] M. G. Maia, Un'osservazione sulle contrazioni metriche, Rend. Semin. Mat. U. Pad., 40 (1968), 139–143.
    [25] P. Mondal, H. Garai, L. K. Dey, On some enriched contractions in Banach spaces and an application, Filomat, 35 (2021), 5017–5029. https://doi.org/10.2298/FIL2115017M doi: 10.2298/FIL2115017M
    [26] V. Mureşan, Basic problem for Maia-Perov's fixed point theorem, In: Seminar on fixed point theory, 1988, 43–48.
    [27] A. S. Mureşan, Some fixed point theorems of Maia type, In: Seminar on fixed point theory, 1988, 35–42.
    [28] A. S. Mureşan, From Maia fixed point theorem to the fixed point theory in a set with two metrics, Carpathian J. Math., 23 (2007), 133–140.
    [29] H. K. Pathak, R. P. Dubey, Comment on the fixed point theorem of Maia, 1991.
    [30] S. Reich, Some remarks concerning contraction mappings, Can. Math. Bull., 14 (1971), 121–124. https://doi.org/10.4153/CMB-1971-024-9 doi: 10.4153/CMB-1971-024-9
    [31] B. E. Rhoades, A comparison of various definitions of contractive mappings, T. Am. Math. Soc., 226 (1977), 257–290. https://doi.org/10.2307/1997954 doi: 10.2307/1997954
    [32] I. A. Rus, On a fixed point theorem of Maia, Stud. Univ. Babeş-Bolyai Math., 22 (1977), 40–42.
    [33] I. A. Rus, Basic problem for Maia's theorem, In: Seminar on fixed point theory, 1981,112–115.
    [34] B. Rzepecki, A note on fixed point theorem of Maia, Stud. Univ. Babeş-Bolyai Math., 25 (1980), 65–71.
    [35] B. Rzepecki, On fixed point theorems of Maia type, Publ. Inst. Math., 28 (1980), 179–186.
    [36] S. Shukla, S. Radenović, Prešić-Maia type theorems in ordered metric spaces, Gulf J. Math., 2 (2014), 73–82. https://doi.org/10.56947/gjom.v2i2.197 doi: 10.56947/gjom.v2i2.197
    [37] D. Trif, The Maia type fixed point theorem in the alternative method, In: Seminar on fixed point theory, 1988, 29–34.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1181) PDF downloads(73) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog