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1. Introduction

Hardy-Hilbert’s double-series theorem [1] states:
Theorem 1.1. If ν, $ > 1 are such that 1

ν
+ 1

$
6 1 and 0 < λ = 2 − 1

ν
− 1

$
= 1

ν′
+ 1

$′
6 1, such that ν′

and $′ present the exponents conjugate, then

∞∑
=1

∞∑
ı=1

ϑ πı

(  + ı)λ
6 K

( ∞∑
=1

ϑν

) 1
ν
∞∑
ı=1

π$ı

) 1
$

, (1.1)
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where K = K(ν,$) depends on ν and $ only.
You may find the integral analogue of Theorem 1.1 in [1].
Theorem 1.2. Let ν, $, ν′, $′ and λ be as in Theorem 1.1. If ϑ ∈ Lν(0,∞) and θ ∈ L$(0,∞), then∫ ∞

0

∫ ∞

0

ϑ(ι)θ(ς)
(ι + ς)λ

dιdς 6 K
( ∫ ∞

0
ϑν(ι)dι

) 1
ν
( ∫ ∞

0
θ$(ς)dς

) 1
$

, (1.2)

where K = K(ν,$) depends on ν and $ only.

In 2000, Pachpatte [2] established different inequalities from inequality (1.1) but, to a certain extent,
having a glimpse of inequality (1.1) as follows:
Theorem 1.3. Let ν, $, a(=), b(δ), a(0), b(0), ∆αa(=) and ∆αb(δ) be as in [2] then

m∑
==1

n∑
δ=1

|a(=)||b(δ)|
qsν−1 + pt$−1 6

1
pq

m
ν−1
ν n

$−1
$

( m∑
==1

(m − = + 1)|∆αa(=)|ν
) 1
ν
( n∑
δ=1

(n − δ + 1)|∆αb(δ)|$
) 1
$

. (1.3)

In the same paper [2], Pachpatte also established more advanced versions of inequality (1.2) as follows:
Theorem 1.4. Let ν, $, ϑ(=), θ(δ), ϑ(0), θ(0), ϑ′(=) and θ′(δ) be as in [2], then∫ ι

0

∫ ς

0

|ϑ(=)||θ(δ)|
qsν−1 + pt$−1 d=dδ 6

1
pq
ι
ν−1
ν ς

$−1
$

( ∫ ι

0
(ι − =)|ϑ′(=)|νd=

) 1
ν
( ∫ ς

0
(ς − δ)|θ′(δ)|$dδ

) 1
$

. (1.4)

In 2011, Zhao et al. [3] proposed a new inequality similar to Theorem 1.2.
Theorem 1.5. Let hi > 1, νi > 1 be constants and 1

νi
+ 1

$i
= 1. Let the differentiable fun. ϑi(=i) on

[0, ιi), where ιi ∈ (0,∞) and we use ϑ′i as differentiation of ϑi. Suppose ϑi(0) = 0 for (i = 1, . . . , n).
Then ∫ ι1

0

∫ ι2

0
· · ·

∫ ιn

0

∏n
i=1 |ϑ

hi
i (=i)|(∑n

i=1
=i
$i

)∑n
i=1

1
$i

d=nd=n−1 . . . d=1

6 K
n∏

i=1

( ∫ ιi

0
(ιi − =i)

∣∣∣ϑhi−1
i (=i)ϑ′i(=i)

∣∣∣νid=i

) 1
νi
,

where

K =

(
n −

n∑
i=1

1
νi

)∑n
i=1

1
νi
−n n∏

i=1

hiι
1
$i
i .

Also in 2012, Zhao and Chung [4] proved the following theorem:
Theorem 1.6. Let νi > 1, be constants and 1

νi
+ 1

$i
= 1. Let ϑi(τ1i, . . . , τni) be real valued nth

differentiable functions defined on [0, ι1i) × · · · × [0, ιni), where 0 6 ι ji 6 δ ji, δ ji ∈ (0,∞) and
i, j = 1, . . . , n. Suppose

ϑi(ι1i, . . . , ιni) =

∫ ι1i

0
· · ·

∫ ιni

0

∂n

∂τ1i . . . ∂τni
ϑi(τ1i, . . . , τni)dτni . . . dτ1i,
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then ∫ δ11

0
· · ·

∫ δn1

0

∫ δ12

0
· · ·

∫ δn2

0
· · ·

∫ δ1n

0
· · ·

∫ δnn

0
(1.5)

∏n
i=1

( ∫ ι1i

0
· · ·

∫ ιni

0

∣∣∣∣∣ ∂n

∂τ1i...∂τni
ϑi(τ1i, . . . , τni)

∣∣∣∣∣νi

dτni . . . dτ1i

) 1
νi

(∑n
i=1

[
ι1i...ιni

]
$i

)∑n
i=1

1
$i

dι11 . . . dιn1dι12 . . . dιn2 . . . dι1n . . . dιnn

6 N
n∏

i=1

( ∫ δ1i

0
· · ·

∫ δni

0

n∏
j=1

(δ ji − ι ji)
∣∣∣∣∣ ∂n

∂ι1i . . . ∂ιni
ϑi(ι1i, . . . , ιni)

∣∣∣∣∣νi

dιni . . . dι1i

) 1
νi
,

where

N =

(
n −

n∑
i=1

1
νi

)∑n
i=1

1
νi
−n n∏

i=1

[
δ1i . . . δni

] 1
$i .

Fractional calculus on fractal sets has been widely applied in science and engineering because it is
better able to describe natural events. Many academics have recently used fractal sets and fractional
calculus to study various classical inequalities.

All of the aforementioned findings hold true for both continuous and discrete domains. The purpose
of the current research is to provide new, more general conclusions to the time-scale-based disparities
previously established. Supreme outcomes, from which many other previous and current results may be
taken, would be produced in this way. See the publications for various dynamic inequalities, integrals
of Hilbert’s kind, and other categories of inequalities on time scales [5–8, 11–20].

A very important question here is: Is it possible to prove the time scales version via α-conformable
derivative of the inequalities of Hardy-Hilbert-type presented in [3] due to Zhao et al. and also the
inequalities presented in [4] due to Zhao and Chung?

In this manuscript, we intend to address the question above, and establish a few novel delta fractional
dynamic inequalities of the Hardy-Hilbert type on time scales, which are studied in [3, 4]. We also
extract the discrete counterparts of the continuous Hilbert inequalities that are present in some special
situations of our results. The present article is arranged as follows: In Section 2, some basic concepts
of the α-fractional calculus on time scales and useful lemmas are introduced. In Section 3, we state
and prove our main results. We end with Section 4 of conclusion.

2. Preliminaries on time scales

Now, we present the fundamental results about the fractional time scales calculus. The results are
adapted from [9, 10, 21–24]. We assume throughout that T has the topology that it inherits from the
standard topology on the real numbers R. We define the forward jump operator σ : T→ T by

σ(ζ) := inf{s ∈ T : s > ζ}, ζ ∈ T, (2.1)

and the backward jump operator ρ : T :→ T is defined by

ρ(ζ) := sup{s ∈ T : s < ζ}, ζ ∈ T. (2.2)
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In the previous two definitions, we set inf ∅ = supT (i.e., if ζ is the minimum of T, then σ(ζ) = ζ)
and sup ∅ = inf T (i.e., if ζ is the maximum of ζ, then ρ(ζ) = ζ), where ∅ is the empty set.

A point ζ ∈ T with inf T < ζ < supT, is said to be right-dense if σ(ζ) = ζ , left-dense if ρ(ζ) = ζ,
right-scattered if σ(ζ) > ζ, and left-scattered if ρ(ζ) < ζ. Points that are simultaneously right-dense and
left-dense are called dense points, and points that are simultaneously right-scattered and left-scattered
are called isolated points. The forward and backward graininess functions µ and ν for a time scale T
are defined by µ(ζ) := σ(ζ) − ζ and ν(ζ) := ζ − ρ(ζ), respectively.
Definition 2.1. The number T ∆

α ( f )(ζ) (provided it exists) of the function f : T → R, for ζ > 0 and
α ∈ (0, 1] is the number which has the property that for any ε > 0, there exists a neighbrhood U of ζ
such that

|[ f (σ(ζ)) − f (s)]ζ1−α − T ∆
α ( f (ζ))[σ(ζ) − s]| ≤ ε|σ(ζ) − s|,

for all s ∈ U. T ∆
α ( f (ζ)) is called conformable α− fractional derivative of function f of order α at ζ, for

conformable fractional derivative on T at 0, we define it with T ∆
α ( f (0)) = limζ−→0 T ∆

α ( f (ζ)).
Remark 2.1. If α = 1 then we obtain from Definition 2.1 the delta derivative of time scales. The
conformable fractional derivative of order zero is defined by the identity operator: T ∆

0 (η) = η.
Remark 2.2. Along the work, we also use the notation (η(ζ))∆α = T ∆

α (η).
Theorem 2.1. Let α ∈ (0, 1] and T be a time scale. Assume η : T → R and ζ ∈ Tκ. The following
properties hold.

(i) If η is conformal fractional differentiable of order α a at ζ > 0, then η is continuous at ζ.
(ii) If η is continuous at ζ and ζ is right-scattered, then η is conformable fractional differentiable of

order α at ζ with

T ∆
α (η)(ζ) =

η(σ(ζ)) − η(ζ)
µ(ζ)

ζ1−α.

(iii) If ζ is right-dense, then η is conformable fractional differentiable of order α at ζ if, and only if,
the limit lims−→ζ

η(ζ)−η(s)
ζ−s ζ1−α exists as a finite number. In this case,

T ∆
α (η)(ζ) = lim

s−→ζ

η(ζ) − η(s)
ζ − s

ζ1−α.

(iv) If η is fractional differentiable of order α at ζ, then

η(σ(ζ)) = η(ζ) + (µ(ζ)ζα−1T ∆
α (η)(ζ)).

Remark 2.3. In a time scale T, due to the inherited topology of the real numbers, a function η is always
continuous at any isolated point ζ ∈ T.
Example 2.1. Let h > 0 and T = hZ = {hk : k ∈ Z}. Then σ(ζ) = ζ + h and µ(ζ) = h for all ζ ∈ T. For
function η : T −→ R, η(ζ) = ζ2 we have T ∆

α (ζ2) = (2ζ + h)ζ1−α.

Example 2.2. Let q > 1 and T = qZ := qZ ∪ {0} with qZ := {qk : k ∈ Z}. In this time scale

σ(ζ) =

qt, if ζ , 0;
0, if ζ = 0;

and µ(ζ) =

(q − 1)ζ, if ζ , 0;
0, if ζ = 0.

Here 0 is a right-dense minimum and every other point in T is isolated. Now consider the square
function of Example 2.1. It follows that

T ∆
α (η)(ζ) = T ∆

α (ζ2) =

(q + 1)ζ2−α, if ζ , 0;
0, if ζ = 0.
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The conformable fractional derivative has the following properties
Theorem 2.2. Let f , g : T −→ R be conformable fractional derivative of order α ∈ (0, 1], the following
properties are hold:

(i) The f , g : T −→ R are α-conformable fractional derivative and

T ∆
α ( f + g) = T ∆

α ( f ) + T ∆
α (g).

(ii) For all k ∈ R, then k f : T −→ R α-conformable fractional derivative and

T ∆
α (k f ) = kT ∆

α ( f ).

(iii) If f and g are α-conformable fractional differentiable, we have f g : T −→ R is α-conformable
fractional differentiable and

T ∆
α ( f g) = T ∆

α ( f )g + f σT ∆
α (g).

(iv) If f and g are α-conformable fractional differentiable, then f /g is α-conformable fractional
differentiable with

T ∆
α

( f
g

)
=

T ∆
α ( f )g − f T ∆

α (g)
ggσ

valid ∀ζ ∈ Tκ, where ggσ , 0.

Theorem 2.3. Let ς : T → R be continuous and α-fractional differentiable at ζ ∈ T for α ∈ (0, 1] and
δ : R→ R be a continuous differentiable function. Then there is c in the interval [ζ, σ(ζ)] such that

T ∆
α (δ ◦ ς) = δ′(ς(c))T ∆

α (ς(ζ)). (2.3)

Theorem 2.4. Let δ : R → R be continuously differentiable, α ∈ (0, 1] and ς : T → R be α-fractional
differentiable function. Then (δ ◦ ς) : T→ R is α-fractional differentiable and we have

T ∆
α (δ ◦ ς)(s) =

{ ∫ 1

0
δ′
(
ς(s) + hµ(s)sα−1T ∆

α (ς(s))
)
dh

}
T ∆
α (ς(s)). (2.4)

Definition 2.2. Let 0 < α 6 1, the α-fractional of f , is defined as∫
f (s)∆αs =

∫
f (s)sα−1∆s.

The conformable fractional integral satisfying the next properties
Theorem 2.5. Assume a, b, c ∈ T, λ ∈ R. Let δ, ς : T −→ R. Then

(i)
∫ b

a
[ς(s) + δ(s)]∆αs =

∫ b

a
ς(s)∆αs +

∫ b

a
δ(s)∆αs.

(ii)
∫ b

a
λς(s)∆αs = λ

∫ b

a
ς(s)∆αs.

(iii)
∫ b

a
ς(s)∆αs = −

∫ a

b
ς(s)∆αs.

(iv)
∫ b

a
ς(s)∆αs =

∫ c

a
ς(s)∆αs +

∫ b

c
ς(s)∆αs.

(v)
∫ a

a
ς(s)∆αs = 0.

AIMS Mathematics Volume 8, Issue 9, 22097–22111.



22102

Theorem 2.6. (Dynamic Hölder’s Inequality [11]) Let u, v ∈ T with u < v. If ϑ, θ ∈ CC1
rd([u, v]T ×

[u, v]T,R) be integrable functions and 1
ν

+ 1
$

= 1 with ν > 1. Then∫ v

u

∫ v

u
|ϑ(r, δ)θ(r, δ)|∆αr∆αδ ≤

[ ∫ v

u

∫ v

u
|ϑ(r, δ)|ν∆αr∆αδ

] 1
ν

×

[ ∫ v

u

∫ v

u
|θ(r, δ)|$∆αr∆αδ

] 1
$

. (2.5)

This inequality is reversed if 0 < ν < 1 and if ν < 0 or $ < 0.

3. Main results

Theorem 3.1. Let T be a time scale with δ0, ιi, =i, δi ∈ T, (i = 1, . . . , n). Let hi > 1, νi, $i > 1
be constants and 1

νi
+ 1

$i
= 1. Let ∆α-differentiable functions ϑi(=i) be decreasing on [δ0, ιi)T, where

ιi ∈ (0,∞). Suppose ϑi(δ0) = 0. Then∫ ι1

δ0

∫ ι2

δ0

· · ·

∫ ιn

δ0

∏n
i=1 |ϑ

hi
i (=i)|(∑n

i=1
(=i−δ0)
$i

)∑n
i=1

1
$i

∆α=n∆
α=n−1 . . .∆

α=1

6 K
n∏

i=1

( ∫ ιi

δ0

(σ(ιi) − σ(=i))
∣∣∣ϑhi−1

i (=i)ϑ∆α

i (=i)
∣∣∣νi

∆α=i

) 1
νi
, (3.1)

where

K = K(ι1, . . . , ιn) =

(
n −

n∑
i=1

1
νi

)∑n
i=1

1
νi
−n n∏

i=1

hi(ιi − δ0)
1
$i .

Proof. From Hölder inequality (2.5), one can see that

n∏
i=1

|ϑhi
i (=i)| 6

n∏
i=1

hi

∫ =i

δ0

∣∣∣ϑhi−1
i (τi)ϑ∆α

i (τi)
∣∣∣∆ατi (3.2)

6
n∏

i=1

hi(=i − δ0)
1
$i

( ∫ =i

δ0

∣∣∣ϑhi−1
i (τi)ϑ∆α

i (τi)
∣∣∣νi

∆ατi

) 1
νi
.

Using the inequality for the means [25],( n∏
i=1

λ
1
$i
i

) 1∑n
i=1

1
$i 6

1∑n
i=1

1
$i

n∑
i=1

λi

$i
, λi > 0 (i = 1, . . . , n), (3.3)

we have ∏n
i=1 |ϑ

hi
i (=i)|(∑n

i=1
(=i−δ0)
$i

)∑n
i=1

1
$i

6
(
n −

n∑
i=1

1
νi

)∑n
i=1

1
νi
−n n∏

i=1

hi

( ∫ =i

δ0

∣∣∣ϑhi−1
i (τi)ϑ∆α

i (τi)
∣∣∣νi

∆ατi

) 1
νi
. (3.4)
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Using the integration of (3.4) on =i from δ0 to ιi (i = 1, . . . , n) employing the inequality of Hölder’s,
gets ∫ ι1

δ0

∫ ι2

δ0

· · ·

∫ ιn

δ0

∏n
i=1 |ϑ

hi
i (=i)|(∑n

i=1
(=i−δ0)
$i

)∑n
i=1

1
$i

∆α=n∆
α=n−1 . . .∆

α=1

6
(
n −

n∑
i=1

1
νi

)∑n
i=1

1
νi
−n n∏

i=1

hi

∫ ιi

δ0

( ∫ =i

δ0

∣∣∣ϑhi−1
i (τi)ϑ∆α

i (τi)
∣∣∣νi

∆ατi

) 1
νi

6 K
n∏

i=1

( ∫ ιi

δ0

∫ =i

δ0

∣∣∣ϑhi−1
i (τi)ϑ∆α

i (τi)
∣∣∣νi

∆ατi∆
α=i

) 1
νi

= K
n∏

i=1

( ∫ ιi

δ0

(ιi − =i)
∣∣∣ϑhi−1

i (=i)ϑ∆α

i (=i)
∣∣∣νi

∆α=i

) 1
νi
. (3.5)

By exploiting the fact ιi 6 σ(ιi), we get that∫ ι1

δ0

∫ ι2

δ0

· · ·

∫ ιn

δ0

∏n
i=1 |ϑ

hi
i (=i)|(∑n

i=1
(=i−δ0)
$i

)∑n
i=1

1
$i

∆α=n∆
α=n−1 . . .∆

α=1

6 K
n∏

i=1

( ∫ ιi

δ0

(σ(ιi) − σ(=i))
∣∣∣ϑhi−1

i (=i)ϑ∆α

i (=i)
∣∣∣νi

∆α=i

) 1
νi
.

This concludes the evidence. �

Remark 3.1. In Theorem 3.1, taking T = Z, α = 1, hi = 1, got results thanks to the authors of [3,
Theorem 1.1].
Remark 3.2. In Theorem 3.1, taking T = R, α = 1, got results thanks to the authors of [3,
Theorem 1.3].
Corollary 3.1. In Theorem 3.1, taking n = 2, and h1 = h2 = 1, if ν1, ν2 > 1 are such that 1

ν1
+ 1

ν2
> 1

and 0 < λ = 2 − 1
ν1
− 1

ν2
= 1

$1
+ 1

$2
6 1, inequality (3.1) reduces to∫ ι1

δ0

∫ ι2

δ0

|ϑ1(=1)||ϑ2(=2)|(
$2(=1 − δ0) +$1(=2 − δ0)

)λ∆α=2∆
α=1 6

1
(λ$1$2)λ

(ι1 − δ0)
1
$1 (ι2 − δ0)

1
$2 (3.6)

×

( ∫ ι1

δ0

(σ(ι1) − σ(=1))|ϑ∆α

1 (=1)|ν1∆α=1

) 1
ν1
( ∫ ι2

δ0

(σ(ι2) − σ(=2))|ϑ∆α

2 (=2)|ν2∆α=2

) 1
ν2
.

Remark 3.3. In special case, taking T = R, α = 1, in (3.6), we have that∫ ι1

0

∫ ι2

0

|ϑ1(=1)||ϑ2(=2)|(
$2=1 +$1=2

)λd=2d=1 6
1

(λ$1$2)λ
(ι1)

1
$1 (ι2)

1
$2

×

( ∫ ι1

0
(ι1 − =1)|ϑ′1(=1)|ν1d=1

) 1
ν1
( ∫ ι2

0
(ι2 − =2)|ϑ′2(=2)|ν2d=2

) 1
ν2
, (3.7)

which is an interesting variation of inequality (1.2).
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Remark 3.4. In special case, taking T = Z, α = 1, in (3.6), we have that

m1∑
=1=1

m2∑
=2=1

|a1(=1)||a2(=2)|(
$2=1 +$1=2

)λ 6 1
(λ$1$2)λ

(m1)
1
$1 (m2)

1
$2

×

( m1∑
=1=1

(m1 − =1 + 1)|∆αa1(=1)|ν1

) 1
ν1
( m2∑
=2=1

(m2 − =2 + 1)|∆αa2(=2)|ν2

) 1
ν2
, (3.8)

which is an interesting variation of inequality (1.1).
Corollary 3.2. In Corollary 3.1, if λ = 1, then 1

ν1
+ 1

ν2
= 1

$1
+ 1

$2
= 1 and take ν1 = $2, ν2 = $1. In

this case inequality (3.6) reduces to∫ ι1

δ0

∫ ι2

δ0

|ϑ1(=1)||ϑ2(=2)|
$2(=1 − δ0) +$1(=2 − δ0)

∆α=2∆
α=1 6

1
ν1$1

(ι1 − δ0)
ν1−1
ν1 (ι2 − δ0)

$1−1
$1 (3.9)

×

( ∫ ι1

δ0

(σ(ι1) − σ(=1))|ϑ∆α

1 (=1)|ν1∆α=1

) 1
ν1
( ∫ ι2

δ0

(σ(ι2) − σ(=2))|ϑ∆α

2 (=2)|$1∆α=2

) 1
$1
.

Remark 3.5. In Corollary 3.2, if T = R, α = 1 we obtain an equivalent formulation of the inequality
that Pachpatte presented in [2, Theorem 2].
Remark 3.6. In Corollary 3.2, if T = Z, α = 1 we obtain an equivalent formulation of the inequality
that Pachpatte presented in [2, Theorem 1].
Theorem 3.2. Let T be a time scale with δ0, ιi, ςi, =i, δi ∈ T, (i = 1, . . . , n). Let hi > 1, νi, $i > 1
be constants and 1

νi
+ 1

$i
= 1. Let the ∆α-differentiable fun. ϑi(=i, δi) be decreasing funs. on [δ0, ιi)T ×

[δ0, ςi)T and ϑi(δ0, δi) = ϑi(=i, δ0) = 0, for (i = 1, . . . , n). Partial derivatives of ϑi are indicated by ϑ∆α1
i ,

ϑ
∆α2
i , ϑ

∆α12
i = ϑ

∆α21
i . Let (

ϑhi
i (=i, δi)

)∆α1 ∆α2 6
(
hiϑ

hi−1
i (=i, δi).ϑ

∆α1
i (=i, δi)

)∆α2 = ϑ
∆α12
i (=i, δi).

Then ∫ ι1

δ0

∫ ς1

δ0

· · ·

∫ ιn

δ0

∫ ςn

δ0

∏n
i=1 |ϑ

hi
i (=i, δi)|(∑n

i=1
(=i−δ0)(δi−δ0)

$i

)∑n
i=1

1
$i

∆αδn∆
α=n . . .∆

αδ1∆
α=1 (3.10)

6 C
n∏

i=1

( ∫ ιi

δ0

∫ ςi

δ0

(σ(ιi) − σ(=i))(σ(ςi) − σ(δi))|ϑ
∆α12
i (=i, δi)|νi∆αδi∆

α=i

) 1
νi
,

where

C = C(ι1ς1, . . . , ιnςn) =

(
n −

n∑
i=1

1
νi

)∑n
i=1

1
νi
−n n∏

i=1

[
(ιi − δ0)(ςi − δ0)

] 1
$i .

Proof. We can type

ϑhi
i (=i, δi) = ϑhi

i (=i, δi) − ϑ
hi
i (δ0, δi) − ϑ

hi
i (=i, δ0) + ϑhi

i (δ0, δ0)

=

∫ =i

δ0

(
ϑhi

i (ξi, δi)
)∆α1 ∆α

1ξi −

∫ =i

δ0

(
ϑhi

i (ξi, δ0)
)∆α1 ∆αξi
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=

∫ =i

δ0

[(
ϑhi

i (ξi, δi)
)∆α1 −

(
ϑhi

i (ξi, δ0)
)∆α1

]
∆αξi

6

∫ =i

δ0

∫ δi

δ0

(
hiϑ

hi−1
i (ξi, ηi).ϑ

∆α1
i (ξi, ηi)

)∆α2 ∆αηi∆
αξi

=

∫ =i

δ0

∫ δi

δ0

ϑ
∆α12
i (ξi, ηi)∆αηi∆

αξi. (3.11)

From (3.11) applying (2.5) and (3.12), gets
n∏

i=1

|ϑhi
i (=i, δi)| 6

n∏
i=1

∫ =i

δ0

∫ δi

δ0

|ϑ
∆α12
i (ξi, ηi)|∆α

1ηi∆
α
2ξi

6
n∏

i=1

[
(=i − δ0)(δi − δ0)

] 1
$i

( ∫ =i

δ0

∫ δi

δ0

|ϑ
∆α12
i (ξi, ηi)|νi∆αηi∆

αξi

) 1
νi
.

(3.12)

Using inequality (3.3), we get that∏n
i=1 |ϑ

hi
i (=i, δi)|(∑n

i=1
(=i−δ0)(δi−δ0)

$i

)∑n
i=1

1
$i

6
(
n −

n∑
i=1

1
νi

)∑n
i=1

1
νi
−n n∏

i=1

( ∫ =i

δ0

∫ δi

δ0

|ϑ
∆α12
i (ξi, ηi)|νi∆αηi∆

αξi

) 1
νi
. (3.13)

Integrating (3.13) on =i and δi, applying (2.5) and Fubini’s theorem, yields∫ ι1

δ0

∫ ς1

δ0

· · ·

∫ ιn

δ0

∫ ςn

δ0

∏n
i=1 |ϑ

hi
i (=i, δi)|(∑n

i=1
(=i−δ0)(δi−δ0)

$i

)∑n
i=1

1
$i

∆αδn∆
α=n . . .∆

αδ1∆
α=1

6
(
n −

n∑
i=1

1
νi

)∑n
i=1

1
νi
−n

×

n∏
i=1

( ∫ ιi

δ0

∫ ςi

δ0

( ∫ =i

δ0

∫ δi

δ0

|ϑ
∆α12
i (ξi, ηi)|νi∆αηi∆

αξi

) 1
νi
∆αδi∆

α=i

)
6

(
n −

n∑
i=1

1
νi

)∑n
i=1

1
νi
−n

×

n∏
i=1

[
(ιi − δ0)(ςi − δ0)

] 1
$i

( ∫ ιi

δ0

∫ ςi

δ0

( ∫ =i

δ0

∫ δi

δ0

|ϑ
∆α12
i (ξi, ηi)|νi∆αηi∆

αξi

)
∆αδi∆

α=i

) 1
νi

= C
n∏

i=1

( ∫ ιi

δ0

∫ ςi

δ0

(ιi − =i)(ςi − δi)|ϑ
∆α12
i (=i, δi)|νi∆αδi∆

α=i

) 1
νi
. (3.14)

By exploiting the fact ιi 6 σ(ιi), gives∫ ι1

δ0

∫ ς1

δ0

· · ·

∫ ιn

δ0

∫ ςn

δ0

∏n
i=1 |ϑ

hi
i (=i, δi)|(∑n

i=1
(=i−δ0)(δi−δ0)

$i

)∑n
i=1

1
$i

∆αδn∆
α=n . . .∆

αδ1∆
α=1
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6 C
n∏

i=1

( ∫ ιi

δ0

∫ ςi

δ0

(σ(ιi) − σ(=i))(σ(ςi) − σ(δi))|ϑ
∆α12
i (=i, δi)|νi∆αδi∆

α=i

) 1
νi
.

This concludes the evidence. �

Remark 3.7. In Theorem 3.2, if we take T = Z, α = 1, hi = 1, got results thanks to the authors [3,
Theorem 1.2].
Remark 3.8. In Theorem 3.2, supposing T = R, α = 1, got results thanks the authors [3, Theorem 1.4].
Corollary 3.3. Taking n = 2 and h1 = h2 = 1 in Theorem 3.2, we have

ϑ
∆α12
1 (=1, δ1) = ϑ∆α2 ∆α1 (=1, δ1), ϑ

∆α12
2 (=1, δ1) = ϑ∆α2 ∆α1 (=2, δ2).

Moreover, if ν1, ν2 > 1 satisfy 1
ν1

+ 1
ν2
> 1 and 0 < λ = 2 − 1

ν1
− 1

ν2
= 1

$1
+ 1

$2
6 1, inequality (3.10)

reduces to∫ ι1

δ0

∫ ς1

δ0

( ∫ ι2

δ0

∫ ς2

δ0

|ϑ1(=1, δ1)||ϑ2(=2, δ2)|(
ν1(=1 − δ0)(δ1 − δ0) +$1(=2 − δ0)(δ2 − δ0)

)λ∆α=2∆
αδ2

)
∆α=1∆

αδ1

6
1(

λ$1$2
)λ [(ι1 − δ0)(ς1 − δ0)

] 1
$1

[
(ι2 − δ0)(ς2 − δ0)

]$1−1
$1

×

( ∫ ι1

δ0

∫ ς1

δ0

(σ(ι1) − σ(=1))(σ(ς1) − σ(δ1))|ϑ∆α2 ∆α1 (=1, δ1)|ν1∆α=1∆
αδ1

) 1
ν1

(3.15)( ∫ ι2

δ0

∫ ς2

δ0

(σ(ι2) − δ0)(σ(ς2) − δ0)|ϑ∆α2 ∆α1 (=2, δ2)|ν2∆α=2∆
αδ2

) 1
ν2
.

Remark 3.9. In a unique scenario, if we take T = R in Corollary 3.3, the inequality (3.15) reduces to∫ ι1

0

∫ ς1

0

( ∫ ι2

0

∫ ς2

0

|ϑ1(=1, δ1)||ϑ2(=2, δ2)|(
ν1=1δ1 +$1=2δ2

)λ d=2dδ2

)
d=1dδ1

6
1(

λ$1$2
)λ [ι1ς1

] 1
$1

[
ι2ς2

]$1−1
$1

×

( ∫ ι1

0

∫ ς1

0
(ι1 − =1)(ς1 − δ1)|D1D2ϑ1(=1, δ1)|ν1d=1dδ1

) 1
ν1

(3.16)

×

( ∫ ι2

0

∫ ς2

0
(ι2 − =2)(ς2 − δ2)|D1D2ϑ2(=2, δ2)|ν2d=2dδ2

) 1
ν2
.

Remark 3.10. In a unique scenario, if we take T = Z in Corollary 3.3, the inequality (3.15) reduces to

m1∑
=1=1

n1∑
δ1=1

( m2∑
=2=1

n2∑
δ2=1

|a1(=1, δ1)||a2(=2, δ2)|(
ν1=1δ1 +$1=2δ2

)λ )

6
1(

λ$1$2
)λ [m1n1

] 1
$1

[
m2n2

]$1−1
$1
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×

( m1∑
=1=1

n1∑
δ1=1

(n1 − δ1)(m1 − =1)|∆α
1∆α

2a1(=1, δ1)|ν1

) 1
ν1

(3.17)

×

( m2∑
=2=1

n2∑
δ2=1

(n2 − δ2)(m2 − =2))|∆α
1∆α

2a2(=2, δ2)|ν2

) 1
ν2
.

Corollary 3.4. In Corollary 3.3, if λ = 1, then 1
ν1

+ 1
ν2

= 1
$1

+ 1
$2

= 1 and take ν1 = $2, ν2 = $1. In
this case the inequality (3.15) reduces to∫ ι1

δ0

∫ ς1

δ0

( ∫ ι2

δ0

∫ ς2

δ0

|ϑ1(=1, δ1)||ϑ2(=2, δ2)|(
ν1(=1 − δ0)(δ1 − δ0) +$1(=2 − δ0)(δ2 − δ0)

)∆α=2∆
αδ2

)
∆α=1∆

αδ1

6
1

ν1$1

[
(ι1 − δ0)(ς1 − δ0)

] ν1−1
ν1

[
(ι2 − δ0)(ς2 − δ0)

]$1−1
$1

×

( ∫ ι1

δ0

∫ ς1

δ0

(σ(ι1) − σ(=1))(σ(ς1) − σ(δ1))|ϑ∆α2 ∆α1 (=1, δ1)|ν1∆α=1∆
αδ1

) 1
ν1

(3.18)( ∫ ι2

δ0

∫ ς2

δ0

(σ(ι2) − δ0)(σ(ς2) − δ0)|ϑ∆α2 ∆α1 (=2, δ2)|ν2∆α=2∆
αδ2

) 1
ν2
.

Remark 3.11. In Corollary 3.4, if T = R, α = 1 we obtain an equivalent formulation of the inequality
that Pachpatte presented in [2, Theorem 4].
Remark 3.12. In Corollary 3.4, if T = Z, α = 1 we obtain an equivalent formulation of the inequality
that Pachpatte presented in [2, Theorem 3].
Theorem 3.3. Let T be a time scale with δ0, ιi j, τi j, δi j ∈ T, (i, j = 1, . . . , n). Let νi, $i > 1, be constants
and 1

νi
+ 1

$i
= 1. Let ϑi(τ1i, . . . , τni) be real valued nth ∆α-differentiable functions also that defined on

[δ0, ι1i)T × · · · × [δ0, ιni)T, where δ0 6 ι ji 6 δ ji, δ ji ∈ (0,∞) and i, j = 1, . . . , n. Suppose

ϑi(ι1i, . . . , ιni) =

∫ ι1i

δ0

· · ·

∫ ιni

δ0

∂n

∆ατ1i . . .∆ατni
ϑi(τ1i, . . . , τni)∆ατni . . .∆

ατ1i,

then ∫ δ11

δ0

· · ·

∫ δn1

δ0

∫ δ12

δ0

· · ·

∫ δn2

δ0

· · ·

∫ δ1n

δ0

· · ·

∫ δnn

δ0

(3.19)

∏n
i=1

( ∫ ι1i

δ0
· · ·

∫ ιni

δ0

∣∣∣∣∣ ∂n

∆ατ1i...∆ατni
ϑi(τ1i . . . τni)

∣∣∣∣∣νi

∆ατni . . .∆
ατ1i

) 1
νi

(∑n
i=1

[
(ι1i−δ0)...(ιni−δ0)

]
$i

)∑n
i=1

1
$i

∆αι11 . . .∆
αιn1 . . .∆

αι12 . . .∆
αιn2 . . .∆

αι1n . . .∆
αιnn

6 N
n∏

i=1

( ∫ δ1i

δ0

· · ·

∫ δni

δ0

n∏
j=1

(σ(δ ji) − ι ji)
∣∣∣∣∣ ∂n

∆αι1i . . .∆αιni
ϑi(ι1i, . . . , ιni)

∣∣∣∣∣νi

∆αι1i . . .∆
αιni

) 1
νi
,

where

N = N(δ1i, . . . , δni)
(
n −

n∑
i=1

1
νi

)∑n
i=1

1
νi
−n n∏

i=1

[
(δ1i − δ0) . . . (δni − δ0)

] 1
$i .
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Proof. From hypothesis of Theorem 3.3, we have

|ϑi(ι1i, . . . , ιni)| 6
∫ ι1i

δ0

· · ·

∫ ιni

δ0

∣∣∣∣∣ ∂n

∆ατ1i . . .∆ατni
ϑi(τ1i, . . . , τni)

∣∣∣∣∣∆ατni . . .∆
ατ1i. (3.20)

On other hand, by using (3.3) and Hölder’s dynamic inequality, we obtain
n∏

i=1

|ϑi(ι1i, . . . , ιni)|

6
n∏

i=1

∫ ι1i

δ0

· · ·

∫ ιni

δ0

∣∣∣∣∣ ∂n

∆ατ1i . . .∆ατni
ϑi(τ1i, . . . , τni)

∣∣∣∣∣∆ατni . . .∆
ατ1i

6
n∏

i=1

[
(ι1i − δ0) . . . (ιni − δ0)

] 1
$i

×

( ∫ ι1i

δ0

· · ·

∫ ιni

δ0

∣∣∣∣∣ ∂n

∆ατ1i, . . . ,∆ατni
ϑi(τ1i, . . . , τni)

∣∣∣∣∣νi

∆ατni . . .∆
ατ1i

) 1
νi

6

(∑n
i=1

[
(ι1i−δ0)...(ιni−δ0)

]
$i

)∑n
i=1

1
$i

(
n −

∑n
i=1

1
νi

)n−
∑n

i=1
1
νi

×

n∏
i=1

( ∫ ι1i

δ0

· · ·

∫ ιni

δ0

∣∣∣∣∣ ∂n

∆ατ1i . . .∆ατni
ϑi(τ1i, . . . , τni)

∣∣∣∣∣νi

∆ατni . . .∆
ατ1i

) 1
νi
. (3.21)

Divide (3.21) by
(∑n

i=1

[
(ι1i−δ0)...(ιni−δ0)

]
$i

)∑n
i=1

1
$i
, then integrating over ι ji from δ0 to δ ji (i, j = 1, . . . , n),

respectively, using dynamic Hölder’s inequality and using the information σ(n) > n, we obtain∫ δ11

δ0

· · ·

∫ δn1

δ0

∫ δ12

δ0

· · ·

∫ δn2

δ0

· · ·

∫ δ1n

δ0

· · ·

∫ δnn

δ0∏n
i=1

( ∫ ι1i

δ0
· · ·

∫ ιni

δ0

∣∣∣∣∣ ∂n

∆ατ1i...∆ατni
ϑi(τ1i, . . . , τni)

∣∣∣∣∣νi

∆ατni . . .∆
ατ1i

) 1
νi

(∑n
i=1

[
(ι1i−δ0)...(ιni−δ0)

]
$i

)∑n
i=1

1
$i

∆αι11 . . .∆
αιn1∆

αι12 . . .∆
αιn2 . . .∆

αι1n . . .∆
αιnn

6
(
n −

n∑
i=1

1
νi

)∑n
i=1

1
νi
−n

×

n∏
i=1

∫ δ1i

δ0

· · ·

∫ δni

δ0

( ∫ ι1i

δ0

· · ·

∫ ιni

δ0

∣∣∣∣∣ ∂n

∆ατ1i, . . . ,∆ατni
ϑi(τ1i, . . . , τni)

∣∣∣∣∣νi

∆ατni . . .∆
ατ1i

) 1
νi
∆αιni . . .∆

αι1i

6
(
n −

n∑
i=1

1
νi

)∑n
i=1

1
νi
−n n∏

i=1

[
(δ1i − δ0) . . . (δni − δ0)

] 1
$i

( ∫ δ1i

δ0

· · ·

∫ δni

δ0

( ∫ ι1i

δ0

· · ·

∫ ιni

δ0

∣∣∣∣∣ ∂n

∆ατ1i . . .∆ατni
ϑi(τ1i, . . . , τni)

∣∣∣∣∣νi

∆ατni . . .∆
ατ1i

)
∆αιni . . .∆

αι1i

) 1
νi
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= N
n∏

i=1

( ∫ δ1i

δ0

· · ·

∫ δni

δ0

n∏
j=1

(δ ji − ι ji)
∣∣∣∣∣ ∂n

∆αι1i . . .∆αιni
ϑi(ι1i, . . . , ιni)

∣∣∣∣∣νi

∆αιni . . .∆
αι1i

) 1
νi

6 N
n∏

i=1

( ∫ δ1i

δ0

· · ·

∫ δni

δ0

n∏
j=1

(σ(δ ji) − ι ji)
∣∣∣∣∣ ∂n

∆αι1i . . .∆αιni
ϑi(ι1i, . . . , ιni)

∣∣∣∣∣νi

∆αιni . . .∆
αι1i

) 1
νi
.

This concludes the evidence. �

Remark 3.13. In Theorem 3.3, supposing Z = T, andwithα = 1, obtains [4, Theorem 3.1].
Remark 3.14. In Theorem 3.3, supposing R = T, andwithα = 1, obtains [4, Theorem 3.2].
Corollary 3.5. Let ϑi(ι1i, . . . , ιni) change to ϑi(=i) in Theorem 3.3 and in view of ϑi(δ0) = 0, (i =

1, . . . , n), then ∫ ι1

δ0

∫ ι2

δ0

· · ·

∫ ιn

δ0

∏n
i=1 |ϑi(=i)|(∑n

i=1
(=i−δ0)
$i

)∑n
i=1

1
$i

∆α=n∆
α=n−1 . . .∆

α=1

6 R
n∏

i=1

( ∫ ιi

δ0

(σ(ιi) − σ(=i))
∣∣∣ϑ∆α

i (=i)
∣∣∣νi

∆ατi∆
α=i

) 1
νi
, (3.22)

where

R =

(
n −

n∑
i=1

1
νi

)∑n
i=1

1
νi
−n n∏

i=1

(ιi − δ0)
1
$i .

Remark 3.15. Taking n = 2, in Corollary 3.5, if ν1, ν2 > 1 are such that 1
ν1

+ 1
ν2
> 1 and 0 < λ =

2 − 1
ν1
− 1

ν2
= 1

$1
+ 1

$2
6 1, inequality (3.22) reduces to inequality (3.6).

4. Conclusions

In this work, we used Holder’s inequality to prove a number of Hilbert’s inequalities on the time
scale. Some integer and discrete inequalities were obtained as special cases of the results. This work
builds on the multiple inequalities reported by Pachpatte in 1998 and his 2000 and by Handley et al.
and by Zhao et al. in 2013. In the future, one can generalize the results proved here by using diamond
alpha calculus and also by trying to get the inverse inequalities.
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