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1. Introduction
Hardy-Hilbert’s double-series theorem [1] states:

Theorem 1.1. If v, w > l are such that : + 2 < land0 <A1=2-1 -
and @’ present the exponents conjugate, then

=1 4+ L <1, such that v/
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where K = K(v, w) depends on v and @ only.
You may find the integral analogue of Theorem 1.1 in [1].
Theorem 1.2. Let v, w, v/, @’ and A be as in Theorem 1.1. If ¢ € L”(0, o0) and 8 € L7 (0, o0), then

A0l N L
fo fo (t+g)ﬂd‘dg<K(fo v (‘)dt) ( fo 6 (c)dc) : (1.2)

where K = K(v, w) depends on v and @ only.

In 2000, Pachpatte [2] established different inequalities from inequality (1.1) but, to a certain extent,
having a glimpse of inequality (1.1) as follows:
Theorem 1.3. Let v, @, a(J), b(6), a(0), b(0), A%*a(J) and A?b(5) be as in [2] then

O O a@)lIb)| [ e N . Y\
Z;quv e L (Z(m 3+ DA a(8)|) (;(n—6+l)|A bOF)". (13)

In the same paper [2], Pachpatte also established more advanced versions of inequality (1.2) as follows:
Theorem 1.4. Let v, @, #(J), 6(5), 3(0), 6(0), ¥ (IJ) and &' (5) be as in [2], then

f f Iﬁ(lﬁ)lle(é)l1 d5ds < 1 % f (- 5)|,9'(5)|Vd5 f (¢— 5)|9(5)|Wd5). (1.4)
0o g8’ + pt@- P

In 2011, Zhao et al. [3] proposed a new inequality similar to Theorem 1.2.
Theorem 1.5. Let #; > 1, v; > 1 be constants and — = 1. Let the differentiable fun. ;(J,) on
[0,¢;), where ¢; € (O, oo) and we use ¥ as diﬁerentiation of ¥;. Suppose #;(0) = 0 for (i = 1,...,n).

Then
4o (T,
ff f [T, | ()ldﬁdﬁnl as,
i= lm-; "
K]—[ f(Ll SIANCATICAIREA
where

n

K=(o- 3

i=1

Also in 2012, Zhao and Chung [4] proved the following theorem:
Theorem 1.6. Let v; > 1, be constants and 1 + = = 1. Let ¥;(7y;,...,7,) be real valued nth
differentiable functions defined on [O,¢;) X - >< [O Lm) where 0 < ¢j; < 6j;, j; € (0,00) and
i,j=1,...,n. Suppose

L1i Lni an
Filtris - oo tui) = f T f It Ot Gi(Tis e oo s TuiddThi -« . dT1,
0 0 (9715 0Ty
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then
f6l 1 f‘snl f612 f&ﬂ féln f&m
0 0 0 0 0 0
v L
L1i Lni n vi
[T (fo R N P et /L (ST ) dTni~~-dTli)
o=
[Lli---Lm'] = @i
(32,2
diyy...doygduy .. duy .. duyy, .. duy,
n (51i ni I an Vi %
<Nn(f -..f n(éﬂ—Lﬂ) —ﬂi([ll’,...,Lm') dLm'...dL]j) P
=1 0 0 1 8L1i ‘oo 6[,”'
= ]_
where

5 1\ 1
N:(I’L—Z;) l—[[dli---éni]w[-
i=1 ! i=1

Fractional calculus on fractal sets has been widely applied in science and engineering because it is
better able to describe natural events. Many academics have recently used fractal sets and fractional
calculus to study various classical inequalities.

All of the aforementioned findings hold true for both continuous and discrete domains. The purpose
of the current research is to provide new, more general conclusions to the time-scale-based disparities
previously established. Supreme outcomes, from which many other previous and current results may be
taken, would be produced in this way. See the publications for various dynamic inequalities, integrals
of Hilbert’s kind, and other categories of inequalities on time scales [5-8, 11-20].

A very important question here is: Is it possible to prove the time scales version via @-conformable
derivative of the inequalities of Hardy-Hilbert-type presented in [3] due to Zhao et al. and also the
inequalities presented in [4] due to Zhao and Chung?

In this manuscript, we intend to address the question above, and establish a few novel delta fractional
dynamic inequalities of the Hardy-Hilbert type on time scales, which are studied in [3,4]. We also
extract the discrete counterparts of the continuous Hilbert inequalities that are present in some special
situations of our results. The present article is arranged as follows: In Section 2, some basic concepts
of the a-fractional calculus on time scales and useful lemmas are introduced. In Section 3, we state
and prove our main results. We end with Section 4 of conclusion.

2. Preliminaries on time scales

Now, we present the fundamental results about the fractional time scales calculus. The results are
adapted from [9, 10, 21-24]. We assume throughout that T has the topology that it inherits from the
standard topology on the real numbers R. We define the forward jump operator o : T — T by

o) :=inf{s e T: s> ¢}, leT, 2.1
and the backward jump operator p : T :— T is defined by

p(Q) :=sup{seT: s </} JeT. 2.2)
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In the previous two definitions, we set inf ) = sup T (i.e., if  is the minimum of T, then o({) = )
and sup @ = inf T (i.e., if  is the maximum of £, then p({) = {), where 0 is the empty set.

A point £ € T with inf T < ¢ < sup T, is said to be right-dense if 07({) = ¢, left-dense if p({) = ¢,
right-scattered if 07({) > £, and left-scattered if p({) < . Points that are simultaneously right-dense and
left-dense are called dense points, and points that are simultaneously right-scattered and left-scattered
are called isolated points. The forward and backward graininess functions y and v for a time scale T
are defined by u({) := 0({) — £ and v({) := ¢ — p({), respectively.

Definition 2.1. The number T5(f)() (provided it exists) of the function f : T — R, for £ > 0 and
a € (0, 1] is the number which has the property that for any € > 0, there exists a neighbrhood U of ¢
such that

ILf (@) = f(9)' ™ = TR(fo(Q) = sll < &lo({) = sl,
for all s € U. TA(f(0)) is called conformable a— fractional derivative of function f of order « at £, for
conformable fractional derivative on T at 0, we define it with T5(f(0)) = lim;—,o T2(f(2)).
Remark 2.1. If @« = 1 then we obtain from Definition 2.1 the delta derivative of time scales. The
conformable fractional derivative of order zero is defined by the identity operator: TOA(n) =1.
Remark 2.2. Along the work, we also use the notation (17(0))* = T5(n).
Theorem 2.1. Let @ € (0,1] and T be a time scale. Assume  : T — R and ¢ € T*. The following
properties hold.

(i) If n is conformal fractional differentiable of order @ a at { > 0, then 7 is continuous at .
(ii) If n is continuous at { and ¢ is right-scattered, then 7 is conformable fractional differentiable of
order a at { with

T = "D =1 1o
u(&)

(i11) If £ is right-dense, then 1 is conformable fractional differentiable of order « at £ if, and only if,
g n y
the limit lim,_,, %{ 1= exists as a finite number. In this case,

n(&) —n(s)

1-a
[—s °

To00(@) = lim
(iv) If n is fractional differentiable of order « at Z, then

(o () = (&) + W' TE@W)).

Remark 2.3. In a time scale T, due to the inherited topology of the real numbers, a function 7 is always
continuous at any isolated point £ € T.

Example 2.1. Let h > 0and T = hZ = {hk : k € Z}. Then 0({) = { + h and u({) = hfor all £ € T. For
functionn : T — R, n({) = ¢ we have T2({%) = (2¢ + b ™.

Example 2.2. Let ¢ > 1 and T = g% := ¢* U {0} with ¢% := {¢* : k € Z}. In this time scale

gt, if £#0; (g—1¢, if &#0;
o({) = : and u({) = :
0, if £=0; 0, if £=0.
Here O is a right-dense minimum and every other point in T is isolated. Now consider the square
function of Example 2.1. It follows that
(g+ 1), if £#0;

A _ A2y
YMWO—%@%{Q if £ 0.
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The conformable fractional derivative has the following properties
Theorem 2.2. Let f, g : T — R be conformable fractional derivative of order a € (0, 1], the following
properties are hold:

(i) The f, g : T — R are a-conformable fractional derivative and
To(f +8) = T(f) + T(9).
(i1) For all k € R, then kf : T — R a-conformable fractional derivative and
To(kf) = kT, (f).

(iii) If f and g are a-conformable fractional differentiable, we have fg : T — R is @-conformable
fractional differentiable and

T2(fg) = TS (g + f7T2(9).

@iv) If f and g are a-conformable fractional differentiable, then f/g is a-conformable fractional
differentiable with

TA(J_‘) _T(Ng — fT3(9)
“\g 88"
valid V¢ € T%, where gg” # 0.

Theorem 2.3. Let ¢ : T — R be continuous and a-fractional differentiable at £ € T for @ € (0, 1] and
0 : R — R be a continuous differentiable function. Then there is ¢ in the interval [, 07({)] such that

T2 0 6) = &' (s())T2(s(L)). (2.3)

Theorem 2.4. Let 6 : R — R be continuously differentiable, @ € (0, 1] and ¢ : T — R be a-fractional
differentiable function. Then (6 o ¢) : T — R is a-fractional differentiable and we have

1
Ti(aoo(s):{ fo 6’(g<s)+hu(s)s“‘lTﬁ(g(s»)dh}Tﬁ(g(s)). (2.4)

Definition 2.2. Let 0 < a < 1, the a-fractional of f, is defined as

f F()Ays = f F(5)s* ' As.

The conformable fractional integral satisfying the next properties
Theorem 2.5. Assume a, b,c € T, A € R.Let§,¢ : T — R. Then

@) ["16() +5)IAes = [ §()Ags + [ 5(5)Ays.
(i) [ A6()A0s = A [ 6(5)Ays.
(i) [ 6()Aus = = [ s(5)Aqs.
@) [ (a5 = [ s()Aas + [ 6(5)Aus.
W [} s()has = 0.
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Theorem 2.6. (Dynamic Holder’s Inequality [11]) Let u, v € T withu < v. If ¢, 0 € C C} S, vl X
[u, v]r, R) be integrable functions and X + L = 1 with v > 1. Then

f f 19(r, $)0(r, 6 A FA’S < [ f f Iﬁ(r,é)IVA“rA“(S]V
x[ f f |9(r,5)|WA“rA“5]’”. 2.5)

This inequality is reversed if 0 < v < 1 and if v < O or @ < O.
3. Main results

Theorem 3.1. Let T be a time scale with 6, ¢;, J;,0; € T, (i = 1,...,n). Let h; > 1, v;,m; > 1
be constants and =+ w— = 1. Let A*-differentiable functions 9,(J;) be decreasmg on [60, t;)t, where
t; € (0, 00). Suppose %:(69) = 0. Then

n ﬂh 5.
f f f [Tz 197" (30| —A*T,AYT, .. AT
| B0 6) T e

}’l

wi

K]—[ f (o) - o(J; ))W’ (9" ()

1
i

AT ) ' 3.1)

where

n 7—11 n

K:K(Ll,...,tn):(n—z ) 8K nh(Ll—éo)“l.

i-1 Vi
Proof. From Holder inequality (2.5), one can see that

n

n Si
[ < [ ]n [ lob-@os aolars, (32)
i=1 i=1 0

1

4 i . v
< ];[h,-(s,-—aoﬁ( fé 917 9 ] ")

Using the inequality for the means [25],

L i nlL 1 < /l,'
([TA )% c =22 40 (=1, (3.3)

1oL w,;

i=1 !

i=1 wi i=1

we have
T, 19%(3)
(1. “))Z'nlm’

Ly Ui
’ h,-( f I )9 ()]
(n z) l_[ 00 | ' (T) (T

= i=1

A%,-)VI". 3.4)
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Using the integration of (3.4) on J; from &, to ¢; (i = 1,...,n) employing the inequality of Holder’s,

gets
9(3;
f f f [Tizy 18 (T —A"Y,AT, ;.. AT,
(S 50)) llm’

I’l

n

AT L Pt
i 0

i=1 i=1 0

1
<K f f 9 ()9 (1)) V"A%,-A“S,.)V"
L

1
i

) } 3.5)

Kl—[( (Ll SPIARIE NS

By exploiting the fact ¢; < o7(t;), we get that

AT
ff f o 0rON e pos, . avs,
n (8 (5()) tlm,

This concludes the evidence. O

wi

<K ]—1[ ( fé () - a(fs,->>|0§’f“<5i>0?"

Remark 3.1. In Theorem 3.1, taking T = Z,a@ = 1, h; = 1, got results thanks to the authors of [3,
Theorem 1.1].
Remark 3.2. In Theorem 3.1, taking T = R,a = 1, got results thanks to the authors of [3,
Theorem 1.3].
Corollary 3.1. In Theorem 3.1, taking n = 2, and hy = hy = 1, if vi, v, > 1 are such that ;- + ;- > 1

and0 < A=2- -+ =L+ 1 <1, inequality (3.1) reduces to
M (ID(T 1 @ 2L
f f | 1( 1)” 2( 2)| /lAa32A051 < —/l(Ll _ 50)1;1 (Lg _ 50)1;2 (36)
0 0 (/l’(D']ZD’z)

02(51 80) + @1 (3, — 50))

1

x( ((r(u)—a(ﬁo)w?“(m)WA“m)”( (0'(L2) (S (T P2A"S )
00

Remark 3.3. In special case, taking T = R, @ = 1, in (3.6), we have that

e (T2
d9,dS, < @ 5
Lf (1D'251+1D'152)/l ? : ( )/I(Ll) (LZ)
x( f <L1—81)|ﬂ;(f51>|”d5 T f (i2 = T T2dT, ) (3.7)
0

which is an interesting variation of inequality (1.2).

AIMS Mathematics Volume 8, Issue 9, 22097-22111.



22104

Remark 3.4. In special case, taking T = Z,a = 1, in (3.6), we have that

1 1 |
Z Z |a1(3])||a2(52)| () ()

F1=1 9,=1 (wajl'i'?D'] 2) (/lw 2)/1

1 1

X S m -9+ Diaca )" S m - 95+ DAaE) . G8)
=1 Jr=1

which is an interesting variation of inequality (1.1).
Corollary 3.2. In Corollary 3.1, if 4 = 1, then Vl—l + L=

1 1
. X : v, @ @
this case inequality (3.6) reduces to

+ o= 1 and take v; = w@,, v» = w;. In

[ (BDI92(T)] v ra 1 PR E
f fo 28, = 60) + @1 (D2 —00) 52A"3; < G ) (3.9)

46

Remark 3.5. In Corollary 3.2, if T = R, = 1 we obtain an equivalent formulation of the inequality
that Pachpatte presented in [2, Theorem 2].
Remark 3.6. In Corollary 3.2, if T = Z, @ = 1 we obtain an equivalent formulation of the inequality
that Pachpatte presented in [2, Theorem 1].
Theorem 3.2. Let T be a time scale with 6, ¢;, ¢;, 35, 0; € T, i = 1,...,n). Let h; > 1, vi,w; > 1
be constants and Vl + wi = 1. Let the A®-differentiable fun. 9;(J;, 6;) be decreasing funs. on [d, ¢;)r X

[80, i)t and 9,(5, 6;) = 9:(J;,80) = 0, for (i = 1,...,n). Partial derivatives of 1J; are indicated by ﬂiA?,
9% 9% = 9™ Let

1

(cr(n)—a(if]))w?"(m)V'A"m)”( () = HENIOY (57 AT )7
)

0

@35, 60)" < ("1 (3,,6).00 (3,,6))"™ = 9023, 5).

Then
1 1|ﬂh (31’6)| @ o 04 @
- ,AénA J,...A"6,A"T, (3.10)
%0 n | S 60))2” K
CH f f (@) = T Sr(s:) = @I, (31 60 80,47,
i=1
where

C=C(GS1, ... yGy) = (n - z”: ;) o [(t; — 6o)(si — 50)]%,-
i=1

Proof. We can type

(T, 6) = 9(Ti,8) — 080, 6;) — I (Ts, 8o) + 97 (80, 50)

Si Si
f§ (@& 59) AE, f (8 (& 50 A"
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J; o @
f (97, 60)™ — (97(&, 60)) T |A%;

)

N

S,‘ (5,' @ o
f f (R &) 05 (&)™ ATiAE,
00 5o

Si 6i a
f f 9, (L ATAE (3.11)
40 50

From (3.11) applying (2.5) and (3.12), gets

n n Si (5,‘
: AT, @ AQ
| ||ﬁf."(5i,6i)|<| | f f 19, (i mIATIA i

l‘l[(Ej — 60)(6; — 69)] ’”' f f |l9iA’]12(fi,77i)|v"A077iAafi)Vi-
)

i=1
(3.12)
Using inequality (3.3), we get that
i |ﬂ?i(si’6i)| 1\ S e A
! < (n—Z—) |ﬁ B P ATA gl) . (3.13)
(2'}_1 (Si—aoxéi—ao)) whe =1 Vi i=1
Integrating (3.13) on J; and §;, applying (2.5) and Fubini’s theorem, yields
[T 19 Buddl s oc
ST AGATT, . ATGAT,
AR 6o>) =t i
"1 :'1:1%-_
<|n- —
(n ; V,')
n L (S i o A L
<[ ( f f ( f 97 @ mrarace) A
i=1 ) ) ) 00
5 1\Zhn
< (n - —)
l; |
IR R f f f f 97" @ AT A6 A7, )
i= %o
=C (f f (6 = 31 — 6)9"(3,. 6 AT6,AT, ) (3.14)
i= 60 Yoo

By exploiting the fact ¢; < o (¢;), gives
(T, 6;
f f f f NEEUA Z)l —A5,A*T, ... A" AT,
s, Gt 60>) =t
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<C ff(ﬂ(t) F(IN0(5) = TN, >(I1, )" A"SATT )i

i=1
This concludes the evidence. O

Remark 3.7. In Theorem 3.2, if we take T = Z,a = 1, h; = 1, got results thanks to the authors [3,
Theorem 1.2].

Remark 3.8. In Theorem 3.2, supposing T = R, @ = 1, got results thanks the authors [3, Theorem 1.4].
Corollary 3.3. Taking n = 2 and h; = h, = 1 in Theorem 3.2, we have

931,00 = (T80, B5R(TL6) = 95N (T,60).

Moreover, if vi, v, > 1 satisty V—ll + % >land 0 <A =2- V—ll - % = le + w% < 1, inequality (3.10)
reduces to
f f f f [91(31, 6)N[32(T2, 62)l AAQSZA%Z)AQSIAQ(SI
s (vi(8y - 50)(51 00) + @ 1(82 = 60)(62 — )
w—1
< —[(11 —00)(s1 — 50)] [(tz —00)(s2 — 50)] 1
(/l?D']lD'z)
L] Sl VL
>< f f (o) —o(@))o(s1) — 0'(51))|19A2A1(51,51)IV‘A“51A“51) 1 (3.15)
)

f f (o(12) - 60)(0(52) - %)W“’A"(Sz,52)|V2A“82A“62)7
60 Yo

Remark 3.9. In a unique scenario, if we take T = R in Corollary 3.3, the inequality (3.15) reduces to

2
ff ff |ﬂ1(31,61)||192(52’52)|d52d52)d5 do,

Vls 0] + 1315262)

1 1 @1
< m[tlgl]”’ (] ™
f f 1 = 061 = S0IDDs (31,601 dT 16, ) (3.16)

1

X f f (t2 — 32)(s2 — 52)|D1D2192(52’52)|V2d52d52)vz-
0o Jo

Remark 3.10. In a unique scenario, if we take T = Z in Corollary 3.3, the inequality (3.15) reduces to

Z Z(i Z |611(31,51)||612(32,52)|)

A
=161=1  Tr=16=1 (vlﬁldl +1D'18252)

1 * @1
< ————[muim |71 [mony] =
(/113'1@2)/{

@ -1
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X D D =600 = SDIATALan(S 1, 501" ) (3.17)
J1=101=1
< (> D0z =2 = T IAT a2 0201 .
Jr=1 2=

Corollary 3.4. In Corollary 3.3, if 2 = 1, then V‘—l + Vl—2 = wll + w% = 1 and take v; = @y, v» = ;. In
this case the inequality (3.15) reduces to

19131, 6)195(35, 6)
AYT,AYS, JAYT  AYS
f f ﬁf (3 - G0)(61 - 50) + @1(35 — 60)(62 — 0p) 2) =

@ -1
@]

N

1 [(n — S0)(s - 6o>] [(tz G

V1

X f f (a(u)—a(ii]))(a(gl)—cr(c%))h?A‘z’A‘f(S],61>|“A“SIA“61)” (3.18)

f f (0(t2) = 80)((52) — G221 (T, 62)* AT zAaaz)z.
) do

Remark 3.11. In Corollary 3.4, if T = R, @ = 1 we obtain an equivalent formulation of the inequality
that Pachpatte presented in [2, Theorem 4].

Remark 3.12. In Corollary 3.4, if T = Z, @ = 1 we obtain an equivalent formulation of the inequality
that Pachpatte presented in [2, Theorem 3].

Theorem 3 3. Let T be a time scale with 6y, ¢;;, 7;;, 6;; € T, (i, j = 1,...,n). Let v;, @w; > 1, be constants
and + — = 1. Let ¥i(7y;, .. ., Ty;) be real valued nth A”-differentiable functions also that defined on
[50,L1,)T >< X [60, twi)T, Where 6o < tj; < 0, 0j; € (0,00) and i, j = 1,...,n. Suppose

Vit - - - Lm)_f f AC Aot ﬁ(Tln---’Tni)AaTni---AaTli’
o Tli-

then
011 nl 012 0 In o
[ f [ S 1o
o ) 90
Vi VL[
L i T)| AT AT
AQL“ Ay A A A, A"Lnn
Vi VLI
<N f f U(O-(éjl) le) AQ Aatm z(l«li, ey lni) AaLli e Aatm') .
where 1
n 1 1{1:1 Ti_” n N
N= N, . ’6’”')(” -2 _.) [(S17 = 0) . - . (Sui — 60)]™
i=1 ! i=1
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Proof. From hypothesis of Theorem 3.3, we have

[Pi(L1is ooy tui)] < f f 19 (Tl oo Ta)| AT o ATy (3.20)
5 AaTl
On other hand, by using (3.3) and Holder’s dynamic inequality, we obtain
[ Twicei . u
i=1
< —[f f) AaTl ﬂ(T]l,...,Tm')A Tm'...A T
< —[ (115 = 60) - (i — 6]
vi -
i is=++>tni A" ni-“Aa i)l
I;O fo A“TIZ,...,A( U o
[(i-60)- -0 |1 7
(2:1:1 L1i—00 vLm 0 ) !
< 1
n- Zl 1 v[
(” — 2in1 ,})
x SR P T ATy A T) 321
1_[ Iso L A“TI (T ) i (3.21)

wi

Divide (3.21) by ( >

respectively, using dynamic Holder’s inequality and using the information o (n) >

f6 1 fﬁnl ft5 12 f5n2 fd In f5nn
80 40 40 50 0 )

M (-

lﬁ(le,---,Tm')

A‘YTl

, then integrating over ¢;; from 6y to 6;; (i,j = 1,...,n),

n, we obtain

1

Vi >
a a !
A Tm...A Tli)

i=1

wi

« « a
A L11...A LnlA L1g ..

< (n — Zn: 1)2,'-;1 Vl"_n

L L L
< (n - Zn: l)Zl o 1—[ [(B15 = 60) - (6. — 60)]
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n 01 v 1
= Nl_[(f f 1—[(6]1 - ]z) ﬁ(tll,...,tm-) AaLm, AY le)
i=1 o
n 01 v 1
SN (f f 1—[(0-(6]1) L]l) ﬁ(t],,. ..,Lm') AaLm'...Aal,li) l.
i=1 o
This concludes the evidence. -

Remark 3.13. In Theorem 3.3, supposing Z = T, andwitha = 1, obtains [4, Theorem 3.1].
Remark 3.14. In Theorem 3.3, supposing R = T, andwitha = 1, obtains [4, Theorem 3.2].
Corollary 3.5. Let 9;(ty;,...,ty) change to ;(J;) in Theorem 3.3 and in view of #;(6y) = 0, (i =

1,...,n), then
f f f ”hm;' A'T,AT, 1. A,
s (sm:so) i
<[ ]( [ wer -l anas) 62
where

n 7—1’1 n

R:(n—z )1 l_[(t, 50)7 .

Remark 3.15. Taking n = 2, in Corollary 3.5, if v;, v, > 1 are such that Vl—l + Vl—z >1land 0 < A =

— & =5 = 2 + == < 1, inequality (3.22) reduces to inequality (3.6).

V1 V2 wi

4. Conclusions

In this work, we used Holder’s inequality to prove a number of Hilbert’s inequalities on the time
scale. Some integer and discrete inequalities were obtained as special cases of the results. This work
builds on the multiple inequalities reported by Pachpatte in 1998 and his 2000 and by Handley et al.
and by Zhao et al. in 2013. In the future, one can generalize the results proved here by using diamond
alpha calculus and also by trying to get the inverse inequalities.
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