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Abbreviations

The following abbreviations are used in this manuscript:

BVPs Boundary Value Problems
HHFDEs Hilfer-Hadamard Fractional-order Differential Equations
HHFIEs Hilfer-Hadamard Fractional-order Integrodifferential Equations

HFIs Hadamard Fractional Integrals

HHFDs  Hilfer-Hadamard Fractional Derivatives
CFDs Caputo Fractional Derivatives

HFDs Hilfer Fractional Derivatives

HFDEs  Hilfer Fractional Differential Equations
HFDs Hadamard Fractional Derivatives (HFDs)
CHFDs  Caputo-Hadamard Fractional Derivatives (CHFDs)

1. Introduction

This study presents and examines a new nonlinear sequential Hilfer-Hadamard fractional-order
integrodifferential equations (HHFIEs) with nonlocal coupled multipoint and Hadamard fractional
integrodifferential boundary conditions. The formulation of the problem is as follows:

{ MDY+ MDY TINS(@) = F (@, S@), Z(@), I S(@), T Z(w)), 0

HHDP + WMD) Z(w) = G, S(®). Z(@). I S(@). I Z(w)).

and it is enhanced by nonlocal coupled multipoint and Hadamard fractional integrodifferential
boundary conditions:
S(1) =0, S(T) = XLy mZE&) + Ziy 6.7 I Z(&) + Xy AT DY Z(uo), (12)
Z() =0, Z(T) = Tisy PuSW) + Tosy QIITS(07) + Yoy MU D] S(rr). '

Here ay,a € (1, 2], ﬂ],ﬁz S [O, 1], A1, A, € Ry, T >1, s 6, As, 7)11, Qu, Mm € R, é:i’ {{,ﬂf, l//u, Oy, Ty €
L9, G = L,2,..m, t=12,...n, t =12,..,r, u=12..,a v =12,.,bb w =
1,2,...,0), ”Wi)ffi’ﬁ 7 denotes the Hilfer-Hadamard fractional derivative (HHFD) operator of order
a,Bii = 1,2, =1,2. H1x is the Hadamard fractional integral (HFI) of order y € {¢;,6, > 0} i =
1,2,...n, 0=1,2,..b, HZ)‘f’ is the Hadamard fractional derivative (HFD) of order ¥ € {wy, ¥y} T =
1,2,..,r, w = 1,2,....c, F,G : [1,7] x R* — R are continuous functions. It’s important to
highlight and that this study makes a significant contribution to the existing literature by addressing
a distinct setup involving sequential HHFIEs along with coupled multipoint and Hadamard fractional
integrodifferential boundary conditions. The methodology employed in this study involves using the
fixed-point approach to establish both existence and uniqueness results for the problems (1.1) and (1.2).
The process involves converting the given problem into an equivalent fixed-point problem, followed by
the application of Leray-Schauder alternative and Banach’s fixed-point theorem to establish existence
and uniqueness results, respectively. Additionally, we investigate the Ulam-Hyers stability of the
solution for the proposed system. The findings of this study are innovative and contribute to the existing
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literature on boundary value problems (BVPs) concerning coupled systems of sequential HHFIEs. In
recent decades, fractional calculus has gained considerable attention and become a prominent area of
study in mathematical analysis. This growth is largely attributed to the extensive use of fractional
calculus techniques in developing innovative mathematical models to represent various phenomena
in fields such as economics, mechanics, engineering, science, and others. References [1-4] offer
examples and comprehensive discussions on this subject.

In the upcoming section, we will provide an overview of relevant scholarly articles pertaining
to the discussed problem. Among various fractional derivatives introduced, the Riemann-Liouville
and Caputo fractional derivatives (CFDs) have garnered significant attention due to their practical
applications. The Hilfer fractional derivative, introduced by Hilfer in [5], incorporates the Riemann-
Liouville and CFDs as special cases for certain parameter values. Additional insights into this
derivative can be found in [6—13]. References [14—18] offer valuable insights into Hilfer-type initial and
BVPs. A recent study [19] explores the Ulam-Hyers stability and existence of a fully coupled system
featuring integro-multistrip-multipoint boundary conditions and nonlinear sequential Hilfer fractional
differential equations (HFDESs). Furthermore, [20] delves into a hybrid generalized HFDE BVP.

In 1892, Hadamard introduced the HFD, defined by a logarithmic function with an arbitrary
exponent in its kernel [21]. Subsequent studies, such as those in [22-26], have explored variations
such as HHFDs and Caputo-Hadamard fractional derivatives (CHFDs). Notably, for specific values of
B-B =0 and g = 1, respectively—HFDs and CHFDs emerge as particular instances of the HHFD.

Stability analysis has been a prominent field of study for fractional differential equations in the last
several decades and has drawn a lot of interest from scholars. Numerous stability models, including
Lyapunov, exponential, and Mittag-Lefller stability, have been thoroughly examined in the literature.
We suggest reviewing publications [27-31] for historical perspective on Ulam-Hyers stability and
current improvements.

The problem of existence and Ulam stability of solutions for the following Hilfer-Hadamard
fractional differential equations (HHFDESs) [32] is stated as follows:

("Dx) (1) = f(t,u(e)), fort € T = (1,77,

(17X =e 4
=1

where 0 <o < 1,0<p<l,y=a+p—-afB,7 >1,¢peR,and f : J XR — R s a given function.

Hy }_7 denotes the left-sided mixed Hadamard integral of order 1 — y, and 7 Z)(l"ﬁ is the HHFD of order

a and type S, introduced by Hilfer. In [33], existence results were established for an HHFDE with

nonlocal integro-multipoint boundary conditions:

HAD Y x(1) = f(1, x(1)), te[l,T],

1.4

W) =0, > (&) = 4T xt), (14
i=1

where a € (1,2], 8 € [0,1], 6,1 € R, n,& € (1,T) (i = 1,2,...,m), “1° is the Hadamard fractional

integral (HFI) of order 6 > 0, and f : [1,7] X R — R is a continuous function. Problem (1.4)

represents a non-coupled system, in contrast to problems (1.1)-(1.2), which is a coupled system. The

systems (1.1)-(1.2) presents nonlocal coupled Hadamard fractional integrodifferential and multipoint
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boundary conditions, whereas the problem (1.4) involves discrete boundary conditions with HFIs. The
authors of [34] established existence results for nonlocal mixed Hilfer-Hadamard fractional BVPs:

MDD = St x(@). 1€ (1T
x(1) =0, x(T) = Z nx(E) + Z G x(6) + Z A DY (),

j=1

wherea € (1,21, B € [0,1], 0, &is Ak € R, .0, € (1,T), (j = 1,2,...,m),(i = 1,2,...,n),(k =

., ), "I% is the HFI of order ¢; > 0, D" is the HFD of order y > 0, and f : [1, T ]XR —
R is a continuous function. Equation (1.5) does not represent a coupled system, unlike Eqs (1.1)
and (1.2), which does. In the latter, there are nonlocal coupled Hadamard fractional integrodifferential
and multipoint boundary conditions. In contrast, Eq (1.5) involves multipoint boundary conditions
comprising HFIs and HFDs. Furthermore, in [35], investigations were conducted on coupled HHFDEs
within generalized Banach spaces. The authors of the aforementioned study [36] successfully derived
existence results for a coupled system of HHFDEs with nonlocal coupled boundary conditions:

(1.5)

HHD B u(r) = f(t,u(@®), (1), 1<a <2, @well,T],
DY) = gt u(®),v(D), 1<y <2, e[l T,

m T n T
u(l) =0, 7{Z)fu(T) = Zj: 7“{Z)ﬁ)"u(s)a’(]-[,-(s) + Zf; WZ)(lriv(s)d‘K,-(s), (1.6)
i=1 i=1

)4 T q T
D=0, "O'WT)= f HDu(s)dP; f HD%(5)dQi(s),
w(1) (T Z] "Djuts) (s)+; - Dv5)dQs)

where @,y € (1,2], 8,6 € [0,1], T > 1, HHDB, 7”{1)?’5 denotes the HHFD operator of order
a,f,y,0. WD’IQ is the HFD operator of order y € {¢,?,0;,n;,0:,6:}, (i =1,2,...,m),(i=1,2,...,n),({ =
L,2,..,p),( = 1,2,...,9), f,g : [1,T] xR xR — R are continuous functions. In the boundary
conditions, Riemann-Stieltjes integrals with H;, K, P;,Q;, (i = 1,2,..m),(i = 1,2,..,n),0 =
1,2,...p), (i = 1,2,...,q), functions of bounded variation. Problem (1.6) involves a coupled system
of HHFDESs, while problems (1.1)-(1.2) deals with a coupled system of sequential HHFIEs. In
problems (1.1)-(1.2), there is nonlocal coupled multipoint and Hadamard fractional integrodifferential
boundary conditions, whereas in problem (1.6), Stieltjes-integral boundary conditions are incorporated,
involving HFDs. In problems (1.1)-(1.2), the nonlinearity depends on the unknown function and
its fractional integrals at lower orders are included. Conversely, in problem (1.6), the nonlinearity
depends on the unknown function, but it does not involve fractional integrals at lower orders. The
researchers in [37] performed an examination of a coupled system of HHFDEs with nonlocal coupled
HFI boundary conditions:

HAD P u(r) = 0, (t, u(0),v(1), 1 <ay <2, me&:=[1,T],
HHDP(1) = 05 (1, u(0), v(2)), 2< <3, we&:=[1,7T],
u(l) =0, w(T)=4"I%v(m),

(1) =0, vip) =0, wT)=L"TEu(p), 1<n,mns<7,

(1.7)

where a1 € (1,2], @, € (2,31, 81,8, € [0, 11, T > 1,8,,62 > 0, A1, A, € R, "D denotes the HHFD
operator of order a;,8;;1 = 1,2.j = 1,2. 7{] is the HFI operator of order y € {0,,0,}, and 01,0, :
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E X R xR — R are continuous functions. In Eq (1.7), we encounter a coupled system of HHFDEs,
whereas Eqgs (1.1) and (1.2) addresses a coupled system of sequential HHFIEs. In the latter, there are
nonlocal coupled Hadamard fractional integrodifferential and multipoint boundary conditions, whereas
Eq (1.7) involves multipoint and HFI boundary conditions. In Eq (1.7), solutions are obtained for the
coupled system of HHFDESs, while in Eqs (1.1) and (1.2), solutions are derived for the coupled system
of sequential HHFIEs. In Eqs (1.1) and (1.2), the nonlinearity depends on the unknown function and
its fractional integrals at lower orders are included. Conversely, in Eq (1.7), the nonlinearity depends
on the unknown function but does not involve fractional integrals at lower orders. Furthermore, in [38],
a two-point BVP for a system of nonlinear sequential HHFDEs was investigated:

FHDP + L, THDIPu(e) = f(t, u(0), v(©), 1 € [1,el,
(MHDP2 4+ LMD y(e) = g(t, u(r), v(D), 1 € [1,el, (1.8)
u(l) =0, ule) =A;, v(l) =0, vie) = A,

where ay, @, € (1,2], 81,82 € [0,1], 41, A2, A1, Ay € Ry, f,g : [1,e] X R X R — R are continuous
functions. Equation (1.8) features a two-point boundary condition, while problems (1.1)-(1.2) includes
multipoint and Hadamard fractional integrodifferential boundary conditions. In Eqs (1.1) and (1.2), the
nonlinearity involves the unknown function and its fractional integrals at lower orders. Conversely, in
Eq (1.8), the nonlinearity relies on the unknown function but does not incorporate fractional integrals
at lower orders.

The document is organized as follows in the following sections: The fundamental ideas of fractional
calculus relevant to this research are introduced in Section 2. An auxiliary lemma addressing the linear
versions of problems (1.1) and (1.2) is provided in Section 3. The primary findings are presented in
Section 4 along with illustrative examples. Finally, Section 5 provides a few recommendations.

2. Preliminaries

Definition 2.1. The HFI of order p > 0 for a continuous function ¥ : [a, 00) — R is given by

" = [(10p T TS
_Qﬂm_nma(mg) ds: @.1)

where log(-) = log,(-).
Definition 2.2. The HFD of order p > 0 for a function ¥ : [a, ) — R is defined by

"D F (@) = "I F) (@), n=[pl+1, (2.2)

dﬂ
dw"

Lemma 2.3. If p,q > 0and 0 < a < b < oo then

q-1 q+p—1
H 7 w _ I'(9) X _
(1) ( Ia+(log a) )(x) = —F(q " p)(log a) ;

q-1 q—p-1
Hey (1og @ _ T (.F
2) ( Z)a+(log a) )(x) = T p)(log a) .

where 0" = @w" -+ and [p] denotes the integer part of the real number .
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In particular, for q = 1, we have (WD2+)(1) = p(ll_p)

-p
(logi) #0,0<p< 1.

Definition 2.4. Forn—1 <p <nand0 < g < 1, the HHFD of order p and q for ¥ € L'(a,b) is defined
as

(’H‘HD )(7:(@)) (‘HIQ(" p)é‘n‘H[(n PIg— Q)?)(W)
_(H Iq(n p) 6n74 I(n 7)¢)(w)
=M1V DY F)(w), y = p+na - pa,

where T fﬁ) and WZ)EL;) are given and defined by (2.1) and (2.2), respectively.

Theorem 2.5. If ¥ € £'(a,b),0 < a < b < oo, and (WIZIVT)(W) € AC}[a,b], then

", (Wﬂzfﬁf)(w) =11, (W@Zf)(w)

n—1 —j-1
(5(n J- 1)(711'{7:))((1) o Y=J
F@) =), —F y—-J) (10 ) ’

Jj=o

where p > 0,0 < g < landy = p+ nqg—pq,n = [p] + 1. Observe that I'(y — j) exists for all
j=12,---,n—1andy € [p,n].

We’ll utilize established fixed point theorems in Banach spaces to demonstrate the existence and
uniqueness of solutions for Hilfer-Hadamard fractional differential systems.

Lemma 2.6. Let H,, H, € C([1,7],R) such that

DY+ DTN S (@) = Hi(w), 1 <y <2, m e [1,T], 03
HHOPP + ,MMDP T Z(w) = Hy(w), 1<y <2, we[1,T], '
enhanced by the boundary conditions (1.2) if, and only if,
1 m
Sy =14, S(s‘)dg /12277 (Z)gd _/12 61 1% f Z(g)
A 1 ) 1
i=1
- " Z(s) N 1 i i1 Ho(s)
-2 ﬁ’z)“’:f =>2ds + —f log = ds
2; T s ZJU'F(az) | ( gg) s
: et H (g) g M1y 1HAS)
97‘(]’4’1 g 2 2 1 H w:
’ Z r(az) Z v r(az) g

01 17‘(1 (S‘) —1}
1 Y2
r(ao ; {( °87)

Wy Ty
A Z(g) Z P, (S)g Z QNI A, (S% de
1

u=1
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—ZM H@?mf (Sid

w=1

1 Yu ',bu 01—17‘(1(§) b H 76, 0-0 - 17'{1(5')
+Z§Dur(6¥1)f (log—) dg+ZQ Il+r( 1) S
e ‘o al H (g) (tg 17—(2(5')
'Hz)ﬂi f 7T LA, f
+ Z M " I'(ay) S F(cxz) c
{Z mllog&)™ + Z 6 I (log &) + Z AH D (log ! }]
7 S(s) a7, ©),
B W 2.4
G A F(al) ( ) ;s (2.4)

and

1 7 Z(s) " (S)s (7S
Z(@) :K[/lz s —Zﬂ,al s —ZQDWI‘fJI s

u=1 S
t H o (S)¢ 1 Y Y1 H i (s)
D z’”‘fl T"“Zﬂmﬁ oes) =es
b
O "1 7’{(S‘)
‘]—{Iéu 0' A
+ZQ F(al) s

o T "1 1H (S')
+ MH D f ﬂ !
Z ACD) S

%(g) {(10gT)71_1}+/11 f 56 4
1

F(Gz) S
—Azzm (Z)gd s Ze*’ﬂl —Z(g)dg Azzﬂ’@‘;ﬁ " @dg
i=1
Zn f 'fl = 17{2(5‘) ﬂfpl f' {1 = 17{2(5')
'T(a) " IMay) S
Hoor L H @ 17{2(5‘) f C'l 17'(1(5‘)
+;/1f P Ty J, (Tog §) s = T(a) s

a b
X {Z P.(logy,)" " - Zl QM1 (logo)" ™! - Zl M D (log )™ H (2.5)

u=1

T T a1
e [T B [ 2]
Y I'(ay) J, S S
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A = ﬂlgz - ﬂzBl,

A = {(log 7')”‘1},
B, = {(log T )”‘1}, (2.6)

Ay = {Zﬁzl Pulogy )™ = 30 QMI% (logo) ™! = X5, Mo D" (log ﬂm)w—l},

B, = {Z}ilnx(log&)” L+ T 6M I (log &) + Tz, MDY (log ) 1}

Proof. From the first equation of (2.3), we have

((H“Hz)flll,ﬁl + /II(H“HD;H—M?] )S(’ZD’) — 7_{1 (w_)’
HH 2 B2, 1 HH y22-15 2.7)
(D 4 DI Z (@) = Ho(w).
Taking both sides of the HFI of order o, @, (2.7), we obtain
7-{7{[01 (‘H‘Hﬂalﬁl A ‘H‘I-{Dal—lﬁl )S(w) _ (H(H.Z-mﬂl(w)
’ 2.8
7—(7{]'(12(‘7'(741)02/32 +/12‘H‘HDCVZ lﬁZ)Z(w.) (H(HIQZWZ(W). ( )
Equation (2.8) can be written as follows:
o S a1—1 7_{
S(@) = ¢(log o)+ ¢i(log @) - f (g) f ( ) 1(5‘) d¢, (2.9
Y T (1) S

and

T ap—1
Z(@) = vollog @)™ + vy(log ) — 4, | 2 f ( ) He© 4o (2.10)
Y T (@2) S

where ¢y, Dy, ¢;, and d; are arbitrary constants. Boundary conditions (1.2) combined with (2.9)
and (2.10) produce

; 7 S(9) L7 @\ Hi)
S(1) = ¢l 17"+‘—1—Af ds + f(l —) de =0, (2.11
(1) = ¢o(log 1) oz o)™ V) T S ey ), 08 c (2.11)

w)z Y1

~ - v (TZE 1 f“ @\ Has)
Z(1) = dy(log 1)” e 1 j: . dg‘+r(a2) 1 (logg) c ds =0, (2.12)

from which we have ¢; = 0 and d; = 0. Equations (2.11) and (2.12) can be written as

(o] Yol a;—1

S(@) = qlog @)™ — A, f IO f (log 9) HE .. (2.13)
Y I'(ay) Sy S S
o ar—1

Z(@) = dy(logw)*™! = 1, f Z(g) f ( ) ), S, (2.14)
Y F(Olz) S
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from which we have

S(s) N H(2Ds
A ——d¢— A1 ——d
¢ = [ 1f S- 2277 R S

i=1

i
- A Zeﬂﬂ @dg /IQZ/lfﬂZ)“’* "2 e

S
Z"I f ) 1%@) o7t L f 4 e H(S) |
I'(a?) I'(a?) Y

+;ﬂﬂwt I(a) e)” l@ 7 r(al) " ml(g) {aogﬂ”_l}
A | @d —ZP . (S)g ZQ "o (ST)gd
_ ;Mmﬂﬂ?ﬂl | * (S )S‘d Zp“r( - fw“ Lﬁu)% 17{;(5‘)
#gQﬂfVMQ lgEMIﬂf)
+§;M ﬂﬂf:r( . fﬂ ”w a1 17{;(?)

F(ozz) )" l%g(g) {Z mi(log &)
+ Z 67 I (log £~ + Z AT DY (log p)™* 1}] (2.15)

=

b = A[/lz @d - Zﬂal " (Sld - ZQ WEPY (Sg)g

u=1

SN aq Hoyte S)s " wu 1)
ZMm Dl+/1f d¢ +Z’D"r( 1)f -

w=1

b
H 76, O'n a)— 17’(1(§) H i~ fﬂ ﬂ'm a|— 17’(1(5‘)
+ZQ 1y r( )f ZM Dl+F( D

s
7{2(9) {(log‘]’)”_l} + 4 f 56 4
§' 1 S

Mt
_122 f (Z)S‘d _/12 q{_z-?i Z(g)dg‘ /lzz/ltﬂzy]u: Z§§)dg
i=1 1

N ! 'fl @ 17'{2(5') H fgl é a-1H;(s)
Zﬂlr(a)f 291 Il+F(a2) 1 (log g‘) c d¢

i=1

F(a/z)
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ar—1 7‘{ (YI 1 7'(
+ Zﬂfﬂ@ﬁ ,Uf 2 2(9‘) f 1(5‘)
I'(a2) S - I(ay) S
{Z Pullog g™ Z Q' It (log oy Z MDY (log o)™ 1}] (2.16)
u=1
Substitute the values of ¢, ¢1, Dy, and d; in (2.9) and (2.10), and we get solutions (2.4) and (2.5). The
converse follows by direct computation. This completes the proof. O

3. Main results

Let us introduce the Banach space & = 7 ([1,7],R) endowed with the norm defined by [|S]| :=

sup |S(@)|. Thus, the product space (& X &, || - |lsxs) equipped with the norm ||S, Zllexs = IISI| + || Z]|
well,77]
for (8§ X Z) € &x & is also a Banach space.

In view of Lemma 2.6, we define as operator T : EX & — & X E by

T(S, 2)(@) = (T1(S, D)(@), TS, Z)(@)), (3.1)

where

1 m
TI(S, Z)(w) :K[{/ll S%dg‘ Ay Z n; @d; /12 HI¢‘ f Z(g)

1 i=1 1
r Z(g) A - HoS)
— /1 /1 WZ)wi I f
DI c 2y ;

S e | ¢ {inea-1 Hi ()
H ¢‘ 1 2
E AN log =
+. o 1I(cvz)f(og ) S as

H ot H ,Uf - 17{2(§)
+Zﬂf D“F(az)f :
‘Zl 17’{1(5') -1
F(aq) }{(log T)” }
Z(S‘) Y (S)g H 764 (3)5‘
A —d - P, —d - Q, 1A
o | z 1 z 2

\ \ . -1 Hi(s)
-y MDA f O e S oL f log Yy 1(9)
2, 1‘1gng(a1>1(gg) s
b
n"l 7‘{(5‘)
+ 5y QNI —— f e n
Z I'(ay) Y

H O 7Tm ar- 17‘{1(5‘) f 02 17‘{2(5‘) }
+ZM“’ r Ty l)f ¢ 7 T c

{Z plosey' + Y7 I Qo + Z AH D (log ! }]
i=1 i=1
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(o w a;—1
s f SO f (log 9) HE) e (3.2)
1S I'(ay) J S Y
and
Ta(S, =5 = ) Pl —ds - QMI%A
28, Z)(@) = [ Zl | Z >

- o S)g l//u ar- 1W1(§)
- MDD’ S P,— ﬁ
mZ:; 1+t Z I'(ay) S

u=1

b
H 6, 0'1) 1= 17_{1(5')
+ZQ 5 e )f ;

H oD T 7Tw - 17{1(5‘)
+ZM @“nal)f c

“2 1H (s )
S

,
789,

-1
F(az) {(log Ty } + A

_Azsz (ZT)gdg‘@Z@W‘ f @dg @ZM@T’: @dc

i fl - 17{2@) I f“ 4 - 1%@)
Z”‘F( )f ZG 5 T ;

H ot H “2 ‘7‘{2(§‘) f a| 17‘(1(5‘)
+Z”‘ D “mmf s " T :
{Z Pullogy)"™! Za*’ﬁ (log )" ZM "D (log )"~ }]
u=l1
ar—1
~ f 26 ey ! f (log 9) H©) (3.3)
S I'(a,) J, S S

We need the following hypothesis in the sequel:

1 Ty
o :x[{“l T+ ((g )1)}{<log'rw-l}

{Z Pudi(log gr,) - Z QI diogay) = >° MM Dy (log )
w=1

u=1

(log yn,)” g 70, 10207 H e )™
ZPF((X1+1) DZ:;Q B+t ZM D1+F(a1+1)}

x {Z nilog &)™ + Z 6 11, (log ¢y*" + Z AT DY (log gy 1}]
i=1 i

(log 7)™

—Ai(log7) + T+ 1)

(3.4)
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n

1 m s <
:K[{_/lz IZ; 771(10g 'fl) - /12 Z QiHI1+(10g gl) - /12 Z /lfH@1+(long)

i=1 =1

- (log &)™ N o.H % (log &)™ AH D (log u)™ =1
+an(a2+l) 2.6 e T + )+Z C O T )}{ﬂogw }

i= i=1 =1
)™\ [~
' {Azao 7 - o +)1)}{Z mllog&y”! + Z 619 (log £y~

T

£y M D aoguf)n-l}], (3.5)

=1

[{ Z Py (logy) - Z QI Alogay) - ) M D dilog )
w=]

u=1

(log iy, )™ w 75, d0g o)
ZgD“r(a1 +1) ZQ Il*r(al +1)

u=1

H o (logﬂm)"l - _ (log 7)™
+ZM Dt Tar }{(l g7y }+/11(10g7') @+ D

w=1

X {Z P.(logy,)' ™" — Z QM1 (log o)™ Z M D (log )™ }], (3.6)

u=1 =1 w=1

-1 log 7)™ N
&, A[{Az(l o7 - ((g )1)}{<1ogfr>ﬂ-l}+—12;m<log§i>

-1 Z 0/ I7.(log &) - 42 Z A DY (log )

N Ll Z g o (080" Z Aty (0gH0”

m g (@) "y + 1) "ay + 1)
{Z Pullogy)"™! ZQ "It (log o) ZM D (log mo)" 1}]
u=1
(log7)
—AlogT) + ———, 3.7
2(log 77) T(@) (3.7)
and
lPO =1Q; + Ql)gﬁo + (Q2 + Qz)mo,
¥, =|Q + Ql)(iml + o 1)) + (92 + Qz)(ml + n;]fil))’ (3.8)
Tz = Q] + Ql)(gﬁz + I‘(?;il)) + (QZ + QZ)(m2 + F(g;il))'

We give now the assumptions we will use in this section.
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(H,) Assume that there exist real constants 9, %; > 0G = 1,2) and N, > 0,9, such that, for all
€ [laT],Si € R7l = 1,25 374,

|F (@, S1, 82,83, Sa)l < Moy + NS | + N |So| + N31S5] + N4[Sal,
IG(@, 81, S2, 83, Sa)l < No + I4[S1| + I2|Sa| + 95|S5] + NylSul,V @ € [1,T].

(H,) There exists positive constant £, £, such that, forall @ € [1,7],S;, Z; € R,i = 1,2.

|F (@, 81, 82, 83, 84) — F (@, Z1, L2, L3, L)
<L(IS1 = Zil +182 = Zal + 1S5 = Zsl +18: - Z4l),

1G(@, S1, 8,83, 84) — G(@, Z1, 2>, L3, Za)
<Li(1S1 = Zil +18: = Zal + 1S5 — Zsl + 1S4 — Zal).

4. Existence result via Leray-Schauder alternative

The first theorem uses the Leray-Schauder alternative to establish the existence of a result.

Lemmad.l. [/]LetO(E) ={S € &E: S =«kE(S) for some 0 < k < 1}, where 2 : & — & is a completely
continuous operator. Then, either the set O(E) is unbounded or there exists at least one fixed for the
operator Z.

Theorem 4.2. Suppose condition (H1) is satisfied. Additionally, assume that
max{¥;, ¥,} < 1. 4.1)

Under these conditions, there exists at least one solution to the problems (1.1) and (1.2) on &.

Proof. First, let’s establish that the operator T : & X & — & X &, as defined in (3.1), is completely
continuous. The continuity of the operator I’ (in terms of Y and ) is evident from the continuity of
F and G.

Next, we aim to demonstrate that the operator T is uniformly bounded. To achieve this, consider a
bounded set B, C & X &. Then, we can find positive constants N; and N, satisfying

{ \F (@, S(w), Z(w), I S(w), I Z (@) < N, 42

IN(w, S(w), Z(w), 1" S(w), I Z(@))| < N>, ¥(S, ) € B..

Consequently, we obtain

1 = e
1S, 2@l :K[{Al ?@ L3 @d a Zgﬂﬂ‘ Z(g)
1 1

i=1

. "Z6) N\ f‘ fl e NaS)
— by MDY f =>2d
2; N IF( 2) s

S ogs L G INIG)
oo — f log 2 d
+; "I Ji (Ogg) c
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. Z W r( : £y 1|N2g|(g)
Ty | () 1'”;'@ floeer |
+ {/12 @d - Z; poa [ (Sid - Z QM1 (ST)gd
_ ;Mmﬂﬂ?fﬂl f] (Sg)g ;P o f ””“ l/fu)m 1IN!(g)
+DZ:Q Hpo F(al) ‘Tv @ 1IngI(g)
. Z M D F(al) g Ty 1|N1g|<g)
F(az) )" lNngg) } X {; mi(log &)

+ > 6 I (log sy + Z Ay Z)‘fi(loguf)”“}]
i=1

~2 f 786) . f ( ) 1|N1|(g)
: 'y F(al) 'y

<N1{ [/11(1 o7 + SoeT) (g )(;;]{(log‘f)”_l}

{Z Pudi(logy) - Z QM I tillogoy) — ) Mo D i (log )
w=1

u=1

(log Y, )™ o 5,(0g<7u)‘ - TR (7)™
UZ;P"F(QI+1) DZ:;Q I“r(al+1) ZM D“F(a1+1)}

+ {Z nlog&)™' + > 67 IT.(log &)™ + Z A DY (log 1}
i=1 i=1

(7-' |
— 4i(log 7) + M} - NZ{K[{ ~X Z nilog &) — A, Z 6717 (log &)

Il +1)
@ n l 1
_AZZMD (log“f”z ';( gi)l) Zeﬂﬂfl*;((;gi D
g (08 1)  (ogT)”
* ; WD, 1)}{(1°g Ty } * {Mlog ") T+ 1)} }

This observation, in light of the notation (3.4) and (3.5), yields
171(S, DIl < UN; + Qo Ns.

4.3)

4.4)
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Similarly, employing the notation (3.6) and (3.7), we obtain
IT2(S, DI < QNi + QN,. (4.5)
Then, it follows from (4.4) and (4.5) that
17(S, DIl < () + QDN + (Q + Q)N,. (4.6)

This demonstrates that the operator T’ is uniformly bounded.
To establish the equicontinuity of Y, let @, @, € & with @w,; < @,. Then, we find that

I11(S, D)(@2) = T1(S, D(@))

1 S(s) . f‘i (2)s D o f Z(g)
={-|Ia 220y /l | =Rde -, ) M
(3l{n [ 22as- 211”1 )

w Z(?) m ' § @ 17‘(2(§)
b ZN{D” s IF( 2) f( . s
H 1o 4 - 17‘(2(5‘) H oo ﬂf - 17’(2(5‘)
9 o r(omf Zﬂ* D “r(cm .
al 17_{1(5‘) _1}
1 Y2
r(cm g }{( og7)

Z(g) f Y (S)§ oy f (8)9
A P Q, I °
o [ E z 1 z 2

u=1

- w“ w\%1— 17_{(5‘)
S mHor, 6 )gd P, f g !
; BN Z "T(a) )

b
wyai—1H (S‘)
QMY 1 1 A
"2 r(m) o .
e Mo ‘“ H (S’) az 17»{2(g)
M Hﬂﬁf f 71' L f }
+ Z " I(ay) S F(CYZ) c
{Z m(logé&)”" + Z 6110 (log &) + Z MDY (log uf)”_l}]
i=1 o1 =
Ail(log @)™ = (log @) ™'] &dg + @dg 4.7)

1 @

1 o) aj—1 ap—1 @ N ld
I'(ay) Jy Y Y Y @ 5 S

independent of (S, Z) € B,. Likewise, it can be shown that |1 (S, Z)(@,) — T1(S, Z)(@;)| — 0 as
w, — @ is independent of (S, Z) € B,. Consequently, the equicontinuity of Y; and T, implies the
equicontinuity of the operator Y. Therefore, by Arzela-Ascoli’s theorem, the operator I’ is compact.
Finally, we establish the boundedness of the set @(T) = {S,Z € EXxE: S, Z =«Y(S,2Z);0 <k < 1}.
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Let (S,2) € O(T). Then, (S,22) = «Y (S, Z), which implies that S(w) = «Y1 (S, Z)(@), Z(w) =
kY2(S, Z)(w) for any w € &, and so |S(@)| = [T1(S, D)(@)|, L(w) = [T2(S, (@) ¥ w € [0,1].
Using some inequality proved at the beginning of the proof, we find

1 S m
||T1(S,Z)(w)|lzx[{/ll f gty [ - ﬁz S g f z©),
1 1

i=1

t ( Ut z
-1 Z e [T 2 g

=1 1 S
“2 1Ny + I4[S1| + 9%[Ss| + 9t5S5] + 5134|S4|
=1 ¢
+ZQHI¢1 5 a-1Ny + 4|51 ] + NSy +9?3|S3|+9?4|S4|
I'(ay) 'y
H ot ,Uf a-1Ng + NSy | + IHISo| + 3|S5 + 5124|S4|
" Z A Z)“F(ozz) s
ar-1 MWy + M Pl m m
B f log Z) =1y + NS | + D[Ss| + N31S5] + 4|S4|d§}{(10g7—)72—1}
I'(ay) S
T Z(s) - Y (S)S' H 76 7 (S)s
+44 —d - ¢)u/1 Q I " A —d
{ ? 1 S Z : Z S

u=1

—ZM Hpla g, f (S%dg

Z » fwu Wy )al 1Mo + D[S | + M, [S,| + Ni3|S; + 9ﬁ4IS4I
“F(a/l) §' S

u=1

+ZQ H]év fm 0'n ar- IEUEO+9JE1|81|+§Tﬁz|82|+im3|83|+§m4|84|
— AACH) S
\ H D 7Tw ai=1My + NS | + D[ So| + NI Ss| + 9324|S4|
+ D 1 —
ZM F(al) 8% s
02 1Ry + IS + | Ss| + N3] S5| + gﬁ4|34| }
F(az) S

§ {Z mllog £~ + Z 67 1% (og &) + | M D (log uf)”_l}]
= =l =1

7 8(s) 1 @ o\ Mo + NV [S1| + D|Sa| + N3|S3] + Ny | Sl
-4 d¢ + log — dg
Y I'(ay) S

Mm Mm
SQl{ﬂﬁo + DS |+ Dl S, + & 1 }

+
F(p+ DISI I'(p2 + DS

N; N4
" Qz{% PRIZI Ll Fe Sz T T 1)|zl|}’ *+5)
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which implies that

ISI| = sup [S(w@)
well,7]
N5 Ny
< Qi< Wo + IS + DSl + - + }
1{ 0T e T T+ DISH T T(py + IS
Ns N,
+ Q¢ No + IS + ISl + - + } 4.9)
2{ O TSI RIS Py + DISHL T T(an + DISI
Similarly, one can find that
IZIl = sup |Z(@)|
we[l,7]
} Dy My
< Q<M + V4 |IS1]] + DS || + + }
‘{ 0T T o+ DISHE T T(pa + IS

_ Ny
+ Q¢ Ny + TS| + I6|S || + 3 + } 4.10
2{ o+ S RIS+ m DS T+ Diisy (10
From (4.9) and (4.10), we obtained
IS + |1 Z]I S(Ql + Ql)imo + (Qz + Qz)%
- M, - N3
Q +Q M + ——— Q)+ I + ———
+ ||S||{( 1t 1)( 1+ T(o; + 1)) +( 2t 2)( 1+ T+ 1))}
_ Ny - Ny
Q +OQ (M + ——— Q + QO |I9H + —— |7,
+||ZII{( 1+ 1)( 2+F(p1+1))+( 2+ 2)( 2+F(q2+1))}
=¥ + ilISI| + P2l|ZIl < Wo + max{¥;, P2 }II(S, Dlle, 4.11)
where ;i = 0, 1,2 are given by (3.8). By (4.1), we deduce that
Y
IS, D)l = : (4.12)

1 — max{¥,,¥,}
As a result, O(Y) is bounded. Consequently, the conclusion of Lemma 2.6 applies, implying that

the operator Y has at least one fixed point, which indeed serves as a solution to the problems (1.1)
and (1.2). O

Now, we introduce the constants

Fo = sup |F(@,0,0,0,0)l, Go= sup |G(w,0,0,0,0), (4.13)

wel0,1] wel0,1]
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_ 1 1
p1= max{l e L r(pz+1>}’

_ 1 |
P2 = max{l + e Lt r<a2+1)}’
Dy = 30012 + T2, (4.14)
Dy = 300121 + f002 2,
G1 = FoQi + Go s,
9, = 7:0551 + QOQZ,

where Q;, Q, Q;, Q, are given by (3.4)—(3.7).
The subsequent result will establish the existence of a unique solution to the problems (1.1) and (1.2)
through the application of a fixed point theorem attributed to Banach.

Theorem 4.3. If the assumption (H,) is satisfied and that
Di+D, <1, (4.15)

where Q; and Q;, (i=1,2) are given in (3.4)—(3.7), then the problems (1.1) and (1.2) have a unique
solution on &.

Proof. By using condition (4.15), we define the positive number

1+ 5

where G, G,, Dy, D, are given by (4.14). We will prove that A(Bg) C Bg, where Bg = {(S,22) €
EXE:S,2Z) <R} For (S, 22) € Bg and w € [0, 1], we obtain

7 (@, S(@), Z(@), 1" S(@), 1™ Z(w))|
< |F(w, S(w), Z(w), I'" S(w), I Z(w)) - F(w,0,0,0,0)| + |F (,0,0,0,0)|
< 30(S(@)| + | Z(@)] + 1[I S(@)| + |1 Z(@)]) + Fo

1 1
sMwwwmufaﬁjww+ﬁgrﬁZM+%

1
1+ S, Zlls + F¢
I(p; +1) nm+nh le+ %o
1 1

1+
I'(pr +1) I'(py+1)

<30 max{l +

Sgomax{l + }R+TO
< 3001R + %o,
and

G(w, S(w), Z(w), 1" S(w), I Z(w))|
<G, S(w), Z(w), 1" S(w), I Z(w)) - G(w,0,0,0,0)| +G(w, 0,0, 0, 0)|
<(S@)| +1Z(@)| + 1" S(@)| + [T Z(®@)]) + Go
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1 1
Sfo<||3||+||Z||+m||S|| e )nzn) Go

1
, 1+
I'(ar+1) I'(a2+1)
1
, 1+ }R
I'(ar+1) I'(a2+1)

<1, max{l . }ns, Zlls + Go

<% max{l + + g()
< foo2R + Go.
Then we deduce that

IT1(S, D) (@) <Gop1R + Fo)i + (fop2R + Go)Q
=(3001Q1 + F1p20)R + Fo) + Gol = DR+ Gy, (4.17)

and

112(S, Z)(@)| < (Fop1R + F0)2; + (Fop2R + Go)
= (30012 + 1102 Q)R + FoQy + Go = DR + Gs. (4.18)

Therefore, by (4.17), (4.18), and the definition of R, we conclude that
I7(S, Dlle = 1T1(S, DU+ 1T2(S, DI < (D1 + D)R+ G1 + G2 = RV(S, ) € Bg, (4.19)

which gives us Y(Bg) C Bg.

We will prove next that Y’ is a contraction operator. By using (H5), for (S;, Z;) € Bg,i = 1,2, and
for any @ € [0, 1], we find:

Letting K| = sup,(; 4 [F (@,0,0)] < 0o and K, = sup,; 4 |G(@,0,0)| < oo, it follows by the
assumption () that

|7 (@, S, DI < LilISII + 1IZI) + K < LIS+ 11D + K,
and
IG(@, S, D < LS| + [1IZ1) + K.
To begin, we show that T8, C B, where B, = {(S, Z) € Ex & : [(S, Z) < p}, with

Q) + QDK + (s + )G
T+ QDL+ (Q + D) L)

(4.20)

For (S, Z) € 8,, we have

IT1(S, DIl = sup [T1(S, L) (@)

we[1,77]

1 7 S(5) - (s w0 [ Z(©)
A ALY S| E —d .y E 6. 1% —d
A[{ 1 G S— A . n; 1 2
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which yields

Y ; Ao @ de Ir( : f 6, w1 1G(s, S(? Z6
+29wgzr( : f (rog &y gt 59 260,
+ Z/ltﬂl)‘f’j s gy G (s, S(? - ZON

F(al) ) IIT(g,S(? ZO)l, } {(logT)Vz—l}

Y
+ {/12 @d - ;s&ml (Sld - ZQ "1 (S%d
. mzl MHD 2, (S)g ZP - ﬁ wu n- 1|¢<g,8(§> Z6
. iQ grne f’ G, S(? ZO
+;M Hot r( - " llﬂg,S(Z) Z6
) 165, S6). Z6))I }
F(az) :

{Z m(log &)™ + Z 6 I (log £)" + Z A" DY (log )™ 1}]

. f S(§) f ( ) ' F (5. S() Z(g))l
' T T S

1S, )l <(Lap + %){ [Al(l o) + ﬂ]{(log 'T)yz-l}

I'( 1)
{Z P, (log ) — Z Q1% (log ory) - Z MHD 2, (log )

u=1

+Z (log‘/’u ZQ 7{1-6 (IOgO'D) ! ZCIM Wz)ﬁn (71)*" }

"Ta, + 1) "I, + 1) F T, + 1)

u=

+ {Z nilog &) + Z 0717 (log &y~ + Z AT DY (log )" 1}
i=1 i=1

(log7 )™
—Ai(logT) + m} + {Z[{—ﬂz ; ni(log &)
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n o T oo m ( gé‘_,l)cr2 n — (log &
- i + l i) = + 1 +
/12 ;:l 0 Il (Ogg) /12 ;:1 /lf @1 (Ogﬂf)-i' ;:l Ir( T 1) E 6 Il F( n 1)

+ Z /lfﬂz)wt (1 g/'lf)a/2 }{(log (]"))/2—1} + {ﬂz(log (]~) _ ( og 7—-)(12 }
t=1
171(S, DI < (L1 + L) + QK + QKo (4.21)

"I'a, + 1) I'(ay+ 1)

Using the notation (3.4)-(3.5), we get

Likewise, we can find that
172(S, DI < (L1Q1 + L) + QK + QK. (4.22)
Then, it follows from (4.21)-(4.22) that
I7(S, DIl = [IT1(S, DI + 1T2(S, DIl < p.

Therefore, T8, C B, as (S, Z) € B, is an arbitrary element.
In order to verify that the operator T is a contraction, let S;, Z; € 8,,i = 1, 2. Then, we get

171(S1, Z0) = T1(S1, 2l

1 S() (Z)§ H 7o, “@
A[{/hf] . dc — AZIZ‘ e - A, Ze I

Mt Z
s Z o | (9)

Z f{‘ fl x-11G(s, S1(s), Z1(s)) — G(5, S2(s), Zz(é‘))|
=
I'(ay) S

N Z oH T f ‘ & w-1|G(s, Si(s), Zi(s)) — G(s, Sax(s), Zz(S‘))|
1+F( 2)

¢
H yor ,Uf w-1|G(s, S1(5), Z1(5)) — G(s, Sa(s), Zz(S‘))|
+Z”‘ v ‘*rmz) ;
) HF (g,Sl(g) Z1(9) = F (5, 8a(s), Za(s))l dg} {(log(]-)yz—l}
F(Oll) S

Z(g) f Y (S)e s f (S)s
A —d — P —d - Q,I"A ——dg
+{ | z 1 > arria [

¢ T (S
Mo [
— 1

- 1 Y Yu\ai-1F (5, 81(), Z1($)) = F (5, S:(5), Z2(s))l
i ZP“F(al)f log ?) s ds
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b (11 F (5, S81(5), Zi(9) = F(5,82(5), (g))l
7{1-6,, f HF (s, S ! .S 2
+ ; Q, Ty c
H oo i 7Tm ai-11F (5, S1(5), Zi()) = F (5, S2(s), Za2(s))
+ ZM D F( 5 : ds
az 11G(s5, S1(5), Z1(5)) — G(s, Sa(s), Zz(S‘))| }
F(a/z) S

{Z m(log&)™" + Z 6M I (log £)" + Z A DY (log )" 1}]

f S(S‘) f ( ) L (6, 81(5), Z1(9)) = F (5, Sa($), Za(6))]
- /11 g dg,
1 I'(a))

S S
which, by (H,), yields
IT1(S1, Z1) = Ti(S2, DI < (1L + Q. LIS = Sall + 121 = Zalll- (4.23)

Similarly, we can observe that
1T2(S1, Z1) = T2(S2, Z)N < (Q Ly + QLIS = Sall + 1121 = Zall. (4.24)
Consequently, it follows from (4.23) and (4.24) that

1T(S1, Z1) = T(S2, Do)l = 1T1(S1, Z2) = Ti(S1, DIl + 1T2(S1, Z2) = To(S1, o)l
< [Q + Q)L+ (Q + Q) LIS - Sall + 1121 = Zall, (4.25)
and by condition (4.15), it follows that Y is a contraction. Consequently, the operator I’ possesses a

unique fixed point as a direct application of the Banach fixed point theorem. Thus, there exists a unique
solution for the problems (1.1) and (1.2) on &. O

5. Hyers-Ulam stability of system

This section is devoted to the investigation of Hyers-Ulam stability for our proposed system.
Consider the following inequality:

HHDP A+ L MHDINS(@) - F(w, S(@), Z(@), I" S(@), I Z(@)) < &1, w € [1,T],
HHDP + LMD Z(w) - G(w, S(@), Z(®@), I S(w), I Z(w)) < &, w<[L.T],
(5.1)

where €1, &, are given two positive real numbers.

Definition 5.1. Problem (1.1) is Hyers-Ulam stable if there exist Q; > 0,i = 1,2,3,4 such that for
a given g;,& > 0 and for each solution (S,Z) € C([1,7 1, xR?) of inequality (5.1), there exists a
solution (S*, Z*) € C([1,T ], XxR?) of problem (1.1) with

{ IS(@) — S*(@)| < Qe + ey, @e[l,T], 52)

|Z(w) — Z"(@)| < Qi1 + ey, we[1,T].
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Remark 5.1. (S, 2) is a solution of inequality (5.1) if there exist functions Q; € C([1,7],R),i = 1,2,
which depend upon S, Z, respectively, such that

DIQ(@)| < &1, DIQ(D)| <&, well,T] (5.3)

(HDUH + DTN S(@) = F(w, S(@), Z(@), 1" S(@), I Z(@)) + Qi (@), @€ [1,T],
(HHDPP L L, MH DT Z (@) = G, S(@), Z(@), I S(@), I Z(@)) + Qu(@), @ € [1,T],
5.4)

Remark 5.2. If (S, 2), respectively, is a solution of inequality (5.1), then (S, Z) is a solution of the
following inequality:

IS(@) — §*(@)| < Qi) + ey, we[l,T], 5.5)
1Z(@) - Z'(@)| < Q&1 + D&, we[l,T]. ’
As from Remark 5.1, we have
((H’HDflliﬁl + /ll‘H‘HDflli—lﬂl)S(w)
= F(w, S(w), Z(w), I"S(w), I Z(w)) + Qi(w), @we[l,T], (5.6)

(’Hﬂz)ffiﬁz + /127{741)61Yi—1,l32)z(w)
= G(w, S(w), Z(w), I"S(w), I Z(w)) + Q(w), we[l,T]

With the help of Definition 5.1 and Remark 5.1, we verified Remark 5.2 in the following lines:
1 S(s) f‘i (D)s Ok f 29 4
—[44 —dg — /1 i ——dg—- A A
A { 1 j: < 2 771 B S— M Z
Z(g) f f, w1 16(5. 5. ZO .
— b Y 4D
’ Z L s Z} [(a)

S
o ‘ a 1606 S(6). Z@
+ZH I e 2)f c

IS(w) - S*(w)] <

o 1668 ZO
+Z”* D ‘*naz) ;

RAC: s<g> Z©)l } {(log (,-)n-l}
)

F(Oll)

Z( ) " (S) g S
+{/12 —gd —Zso /llf —gd —Z‘QDHqulfl ng

¢ T (S
W s

l//u wll - 1|7:(§', S(g) Z(g))l
+ Z Pu F(a’l) f ) S

u=1
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<
A

X - T (5,86, Z6N
7{]6, f” 1F (s,
+;Q U T(ay) ;
H D i 7Tm «i-1F (5, S(5), Z(C))I
+ Z MDY F( 5 c
az 11G(s, S(s), Z(s*))l }
F(a/z) S

{Z m(log&)™" + Z 6 I (log &)™™' + Z A DY (log )" 1}]

_2 f S 4 f ( ) QACK OO '
'S F(Oll) S

m ¢ i
— {/llf 56 46 —/12 ’”f L) 4o~ a, ZGHI"" @ dg
1 S
o Z(g) § ar- 1|Q2(S‘)|
_AZZMD“ 3 Ir( )f s
H 7¢i l gl @2~ 1|Q2(§')|
+Z¢9 d F(a/z)f S
+ Z/l Hz)wt @2- 1|Q2(§)|
* “r< 2) s
al 1|Q1(§)| 1
F(a/l) }{(log‘T)y }
Z(S‘) Y (S)e H 6 7 (S)s
A —d - ) Pl —d - ) QI ——dg
fe Z 1 z g
- S)g ‘//u ar— 1|Q1(§)|
- mﬂDﬂf/l ( P
;M e Z r( B s
b
H 76 Un - 1|Q1(§)|
+ZQ 5 T )f 5
T o "1 Q (§)|
M, Dﬁm 7T 1@
+; r (al) S
az 1|Q2(§)| }
T (ozz) S

x {Z nilog &) + Z 67 11, (log £)* ™" + Z A" DY log ) 1}]
i=1 =

] f”S(S‘) f( ) IQ1(§)| '
‘o F(al) S
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(logrlw)oz1 a1
wolal{esn e

{Z WAr(logy,) — Z QM1 A (loga,) - Z MDY A (log )

1 w=1

(logwu)‘“ wzo, 12T 0 L gy, ()
Z; ZQ "T(a + 1) ZM‘” Dl*r(alﬂ)}

{Z (log &) + Z 6 I7.(log &) + Z A DY (log ) 1}]

Ty
~ Ai(log ) + @} 2{ [{ ﬂzZm(logé) @Z@W‘aog;

I'(a; +1)
) H yon (log&)™ < (log )™
i A D e+ D a1 " Z‘gﬂf?*r(agﬁ D
t=1 P
N H qywi (log,uf)az -1 B (log 7‘)042 m .
+ ; A DH—F(Q’z n 1)}{(1og T) } {/12(10 T) T, }{Z ni(log &)”

+ ) 67T (log &y + Y AT D (log m)yz—l}]},
i=1 t=1

|S('ZD') - S*(W)| < 9181 + 9282. (57)
By the same method, we can obtain that
|Z(@) — Z'(@)| < Qi1 + ey, (5.8)

where Q;, Q,,Q,,Q, are given by (3.4)—(3.7). Hence, Remark 5.2 is verified, with the help of (5.7)
and (5.8). Thus, the nonlinear sequential coupled system of HHFDEs is Hyers-Ulam stable and,
consequently, the system (1.1) is Hyers-Ulam stable.

6. Examples

Consider the following Hilfer-Hadamard fractional BVP:
HHDIP + DTN S(w) = F(w, S(w), Z(w), " S(w), I Z(w)),
(Wz)“””z + LMD Z(w) = G(w, S(w), Z(@). 1" S(@). I Z(@))
S(1) =0, ST = Z mZE) + Z 61T Z(G) + Z A DY Z (), 6.1)

j= l

Z) =0, Z(T) = Z PuSWh) + Z QI S + Z MDD S(y),

u=1

with @1 = 5/4,a0 = 3/2,81 = 1/2,8 = 1/4m = 2,n = 2,v = 2,a = 2,b = 2,¢c = 2,7, =
1/5,m, = 1/10,&, = 4/3,& = 3/2,¢1 = 5/3,¢, = 7/3,6, = 1/2,6, = 1/2,{, = 7/3,{
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5/2,4 = 1,4 = L,wy, = 1/4,w, = 2/3,u; = 4,up = 4/3,P, = 1/18,P, = 1/9,¢ = 4/3,¢, =
5/2,Q = 1/4,Q, = 1/7,6, = 1/4,6, = 3/5,00 = 5/3,00 = 3/2, M; = 2/3, M, = 2/5,9, =
2/3,9%, = 3/5,m = 5/2,7, = 3/2. Using the given data, it is found that y; = 13/8,y, = 13/8,
A = 0.639100490745, A; = 0.799441, A, = 0.799441, 8B, = 0.1184655,8B, = 0.1251315,Q, =
1.3283929, Q, = 0.718823345,Q, = 1.028734,Q, = 0.97432874,7 = 2,p, = 11/5,p, = 25/6,q, =
11/5,q, = 22/7.

Example 6.1. For illustrating Theorem 4.2, we take

|F (w,S1,S,, S3,84)| < zll(cosw + % sin(S; + 82)) 9(m+1)83 + = arctanS4, 62)
G(@. 51,8283, 8| < | €77 + 181 + 48 | - % sin(S; + S0
forallw € [0,1],8; €R,i=1,2,3,4.
We obtained the inequalities
|F (@,81,8,, 83,8 = 1 + LISll + 16|Sz| + 75|S3| + 51S4l, 6.3)
1G(@,81,8,,85, 8 = 2 + 511 + £1Sa| + 4|33| + 2(S4l,
forall @ € [0,1]and S; € R,i = 1 2,3, 4 We also have My = %,sml = 16,5m2 = E,EUQ = %,‘11?4 =

3N =5 M =3, M = 5. N =5N =73,

We find here ¥, = 0.8228588 and ¥, =~ 0.5948088559. We deduce that the condition
max{¥,,¥,} =¥, < 1 is satisfied. Then, by Theorem 4.2, we conclude that the problem (6.1) with the
nonlinearities (6.2) has at least one solution w € [0, 1].

Example 6.2. For illustrating Theorem 4.3, we take

|F (@, 81,82, 83,8yl < & +

(81 ISal ) (1+w)2 cos 83 + T arctan Sy,

9(w+2) 1+1S2] (6.4)
|g(w,81,82,83,84)| < % - 781 2 sm 82 + == 5@ +%) sin 83 - e—2w8(]lfﬁls4|)’
forallw €[0,1],8;€R,i=1,2,3,4.
We obtain here the following inequalities

|F (@, 81,82,83,84) — F (@, Z1, L2, L3, Lol

< (1/27|31 - Zil+ 1/27|8; — Zol + 1/4|S5 — Zs] + 1/4|84 - Z4|), 6.5)
G(@, 81,82,.83,84) - G(@, Z1, Z2. Z3, Zs)| '

< (1/7|31 - Zil + 1/8|S: — Za| + 1/20|S5 — Z5] + 1/8|S4 — Z4|),

for all @ € [0,1]. So, we have ¢y = 1/4 and dy = 1/20. In addition, we find p; = 1.4125480,p, =
1.13889158,D; ~ 0.510067622, D, ~ 0.43933889. Then, D; + D, ~ 0.9410020109 < 1, that is,
the condition (4.15) is satisfied. Therefore, by Theorem 4.3, we conclude that problem (6.1) with the
nonlinearities (6.4) has a unique solution @ € [0, 1].
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7. Discussion & conclusions

We have presented criteria for the existence, uniqueness, and Ulam-Hyers stability of solutions
to a coupled system of nonlinear sequential HHFIEs and nonlocal coupled Hadamard fractional
integrodifferential and multipoint boundary conditions. We derive the expected results using a
methodology that uses modern analytical tools. It is imperative to emphasize that the results offered
in this specific context are novel and contribute to the corpus of existing literature on the topic.
Furthermore, our results encompass cases where the system reduces to the boundary conditions of
the form:

When i; = P, = 0, then we get

S1) =0, S(T) =YL, 67 I1"Z(&) + Xioy AHDV Z (),
Z(H) =0, Z(T) =30, QHI*S(c,) + 3oy MEDI*S(rry).

If 6, = Q, = 0, we get:

S() =0, ST) =31 mZE) + i, ANDYV Z(w),
Z() =0, Z(T) =32 PuSW) + Yooy MUEDTS(ry).

When A; = M, = 0, the outcome is:

S(1) =0, ST) = Z mZE) + Lisy 6" 1" Z(,
Z() =0, Z(T) = Tiey PuSW) + Yoy QT I S(0r).

In addition, if n; = P, = 4 = M, = 0, we obtain:

S()=0, S7T) =3, 6"1%Z(),
Z) =0, ZT) = Yoy QMI*S(0).

When n; = Py, = 6, = Q, = 0, the boundary condition is:

S() =0, ST =X, MDYV Z(w),
Z()=0, Z(T) = 25, MIDS(ny).

S(1) =0, S(7T)= X1 mZE&),

Z) =0, ZT) = Xy PuSW).
These cases represent new findings. Looking ahead, our future plans include extending this work to a
coupled system of nonlinear sequential HHFIEs enhanced by the nonlocal coupled mixed integro-
differential and discrete type boundary conditions. We also intend to investigate the multivalued
analogue of the problem studied in this paper.
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