
Citation: Xiaoming Wang, Mehboob Alam, Akbar Zada. On coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives[J]. AIMS Mathematics, 2021, 6(2): 1561-1595. doi: 10.3934/math.2021094
[1] | Ravi Agarwal, Snezhana Hristova, Donal O'Regan . Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential equations with Riemann-Liouville derivatives. AIMS Mathematics, 2022, 7(2): 2973-2988. doi: 10.3934/math.2022164 |
[2] | Hasanen A. Hammad, Hassen Aydi, Manuel De la Sen . The existence and stability results of multi-order boundary value problems involving Riemann-Liouville fractional operators. AIMS Mathematics, 2023, 8(5): 11325-11349. doi: 10.3934/math.2023574 |
[3] | Ymnah Alruwaily, Lamya Almaghamsi, Kulandhaivel Karthikeyan, El-sayed El-hady . Existence and uniqueness for a coupled system of fractional equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2023, 8(5): 10067-10094. doi: 10.3934/math.2023510 |
[4] | Md. Asaduzzaman, Md. Zulfikar Ali . Existence of positive solution to the boundary value problems for coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2019, 4(3): 880-895. doi: 10.3934/math.2019.3.880 |
[5] | Khalid K. Ali, K. R. Raslan, Amira Abd-Elall Ibrahim, Mohamed S. Mohamed . On study the fractional Caputo-Fabrizio integro differential equation including the fractional q-integral of the Riemann-Liouville type. AIMS Mathematics, 2023, 8(8): 18206-18222. doi: 10.3934/math.2023925 |
[6] | Veliappan Vijayaraj, Chokkalingam Ravichandran, Thongchai Botmart, Kottakkaran Sooppy Nisar, Kasthurisamy Jothimani . Existence and data dependence results for neutral fractional order integro-differential equations. AIMS Mathematics, 2023, 8(1): 1055-1071. doi: 10.3934/math.2023052 |
[7] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
[8] | Thabet Abdeljawad, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay. AIMS Mathematics, 2024, 9(3): 7372-7395. doi: 10.3934/math.2024357 |
[9] | Pinghua Yang, Caixia Yang . The new general solution for a class of fractional-order impulsive differential equations involving the Riemann-Liouville type Hadamard fractional derivative. AIMS Mathematics, 2023, 8(5): 11837-11850. doi: 10.3934/math.2023599 |
[10] | Bashir Ahmad, Ahmed Alsaedi, Sotiris K. Ntouyas . Nonlinear Langevin equations and inclusions involving mixed fractional order derivatives and variable coefficient with fractional nonlocal-terminal conditions. AIMS Mathematics, 2019, 4(3): 626-647. doi: 10.3934/math.2019.3.626 |
Fractional order differential equations are the generalizations of the classical integer order differential equations. The idea about the fractional order derivative was introduced at the end of the sixteenth century (1695) when Leibniz used the notation dndσn for nth order derivative. By writing a letter to him, L'Hospital asked the question: what would be the result if n=12? Leibniz answered in such words, "An apparent Paradox, from which one day useful consequences will be drawn", and this question became the foundation of fractional calculus. Fractional calculus has become a speedily developing area and its applications can be found in diverse fields ranging from physical sciences, porous media, electrochemistry, economics, electromagnetics, medicine and engineering to biological sciences. Progressively, fractional differential equations play a very important role in fields such as thermodynamics, statistical physics, nonlinear oscillation of earthquakes, viscoelasticity, defence, optics, control, signal processing, electrical circuits, astronomy etc. There are some outstanding articles which provide the main theoretical tools for the qualitative analysis of this research field, and at the same time, shows the interconnection as well as the distinction between integral models, classical and fractional differential equations, see [14,16,18,19,22,25,26,28,30]
Impulsive fractional differential equations are used to describe both physical, social sciences and many dynamical systems such as evolution processes pharmacotherapy. There are two types of impulsive fractional differential equations the first one is instantaneous impulsive fractional differential equations while the other one is non-instantaneous impulsive fractional differential equations. In last few decades, the theory of impulsive fractional differential equations are well utilized in medicine, mechanical engineering, ecology, biology and astronomy etc. There are some remarkable monographs [3,6,8,15,20,23,33,34], considering fractional differential equations with impulses.
The most preferable research area in the field of fractional differential equations (FDE′s), which received great attention from the researchers is the theory regarding the existence of solutions. Many researchers developed some interesting results about the existence of solutions of different boundary value problems (BVPs) using different fixed point theorems. For details we refer the reader to [2,7,9,10,11,13,27]. Most of the time, it is quite intricate to find the exact solutions of nonlinear differential equations, in such a situation different approximation techniques are introduced. The difference between exact and approximate solutions is nowadays dealt with using Hyers-Ulam (HU) type stabilities, which were first introduced in 1940 by Ulam [29] and then answered by Hyers in the following year in the context of Banach spaces. Many researchers investigated HU type stabilities for different problems with different approaches [12,17,31,35,36,37,39,40].
Zada and Dayyan [38], investigated the existence, uniqueness and Ulam's type stability for the implicit fractional differential equation with instantaneous impulses and Riemann-Liouville fractional integral boundary conditions having the following form
{cDα0,σu(σ)−ϕ1(σ,u(σ),cDαu(σ))=0,σ≠σj∈I,0<α≤1,Δu(σj)−Ej(u(σj))=0,j=1,2,…,q−1,η1u(σ)|σ=0+ξ1Iαu(σ)|σ=0=ν1,η2u(σ)|σ=T+ξ2Iαu(σ)|σ=T=ν2, |
where I=[0,T], and cDα0,σ is a generalization of classical Caputo derivative of order α with lower bound at 0, ϕ1:I×R×R→R is a continuous function. Furthermore, u(σ+j) and u(σ+j) represent the right-sided and left-sided limits respectively at σ=σj for j=1,2,…,q−1.
Ali et al. [4], studied a coupled system for the existence and uniqueness of solution using Riemann-Liouville derivative
{Dαu(σ)=ϕ1(σ,v(σ),Dαu(σ)),Dβv(σ)=ϕ2(σ,u(σ),Dβv(σ)),σ∈J,Dα−1u(0+)=β1Dα−1u(T−),Dα−1u(0+)=γ1Dα−1u(T−),Dβ−1v(0+)=β2Dβ−1v(T−),Dβ−1v(0+)=γ2Dβ−1v(T−), |
where σ∈J=[0,T], T>0, α,β∈(1,2], and β1,β2,γ1,γ2≠1. Dα, Dβ are the Riemann-Liouville fractional derivatives and ϕ1,ϕ2:[0,1]×R×R→R are continuous functions.
Wang et al. [32], presented stability of the following coupled system of implicit fractional integro-differential equations having anti-periodic boundary conditions:
{cDαu(σ)−ϕ1(σ,v(σ),cDαu(σ))−1Γ(γ1)∫σ0(σ−s)γ1−1f(s,v(s),cDαu(s))ds=0,∀σ∈J,cDβv(σ)−ϕ2(σ,u(σ),cDβv(σ))−1Γ(γ2)∫σ0(σ−s)γ2−1g(s,u(s),cDβv(s))ds=0,∀σ∈J,u(σ)|σ=0=−u(σ)|σ=T=0,cDr1u(σ)|σ=0=−cDr1u(σ)|σ=T,v(σ)|σ=0=−v(σ)|σ=T=0,cDr2v(σ)|σ=0=−cDr2v(σ)|σ=T, |
where 1<α,β≤2, 0≤r1,r2≤2, γ1,γ2>0, and J=[0,T], T>0. ϕ1,ϕ2,f,g:J×R×R→R are continuous functions.
Motivated by the above work, we focus our attention on the following coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives of the form:
{{Dαu(σ)−ϕ1(σ,Iαu(σ),Iβv(σ))=0, σ∈ω, σ≠σj, j=1,2,…,p,Δu(σj)−Ej(u(σj))=0,Δu′(σj)−E∗j(u(σj))=0, j=1,2,…,p,ν1Dα−2u(σ)|σ=0=u1,μ1u(σ)|σ=T+ν2Iα−1u(σ)|σ=T=u2,{Dβv(σ)−ϕ2(σ,Iαu(σ),Iβv(σ))=0, σ∈ω, σ≠σk, k=1,2,…,q,Δv(σk)−Ek(v(σk))=0,Δv′(σk)−E∗k(v(σk))=0, k=1,2,…,q,ν3Dβ−2v(σ)|σ=0=v1,μ2v(σ)|σ=T+ν4Iβ−1v(σ)|σ=T=v2, | (1.1) |
where 1<α,β≤2, ϕ1,ϕ2:[0,T]×R×R→R being continuous functions and
Δu(σj)=u(σ+j)−u(σ−j),Δu′(σj)=u′(σ+j)−u′(σ−j) |
Δv(σk)=v(σ+k)−v(σ−k),Δv′(σk)=v′(σ+k)−v′(σ−k), |
where u(σ+j),v(σ+k) and u(σ−j),v(σ−k) are the right limits and left limits respectively, Ej,E∗j,Ek,E∗k:R→R are continuous functions, and Dα,Iα are the α-order Riemann-Liouville fractional derivative and integral operators respectively.
The remaining article is arranged as follows: In Section 2, we present some basic definitions, theorems, and lemmas that will be used in our main results. In Section 3, we use suitable cases for the existence and uniqueness of solution for the proposed system (1.1) using Kransnoselskii's type fixed point theorem. In Section 4, we discuss different kinds of stabilities in the sense of Ulam under certain conditions. In Section 5, an example is given to support the main results.
In this section, we present some basics notations, definitions, and results that are used in the whole article.
Let T>0, ω=[0,T]. The Banach space of all continuous functions from ω into R is denoted by C(ω,R) with the norm
‖u‖=sup{|u(σ)|:σ∈ω} |
and the product of these spaces is also a Banach space with the norm
‖(u,v)‖=‖u‖+‖v‖. |
The piecewise continuous functions with 1<α,β≤2 are denoted as follows:
ϑ1=PC2−α(ω,R+)={u:ω→R+,u(σ+j),u(σ−j) and Δu′(σ+j),u′(σ−j) exist for j=1,2,…,p}, |
ϑ2=PC2−β(ω,R+)={v:ω→R+,v(σ+k),v(σ−k) and Δv′(σ+k),v′(σ−k) exist for k=1,2,…,q}, |
with the norms
‖u‖ϑ1=sup{|σ2−αu(σ)|:σ∈ω}, |
‖v‖ϑ2=sup{|σ2−βv(σ)|:σ∈ω}, |
respectively. Their product ϑ=ϑ1×ϑ2 is also a Banach space with the norm ‖(u,v)‖ϑ=‖u‖ϑ1+‖v‖ϑ2.
Definition 2.1. [1] The Riemann-Liouville fractional integral of order α>0 for a function u:R+→R is defined as
Iαu(σ)=1Γ(α)∫σ0(σ−π)α−1u(π)dπ, |
where Γ(⋅) is the Euler gamma function defined by Γ(α)=∫∞0e−σσα−1dσ,α>0.
Definition 2.2. For a function u:R+→R, the Riemann-Liouville derivative of fractional order α>0, p=[α]+1, is defined as
Dαu(σ)=1Γ(p−α)(ddσ)p∫σ0(σ−π)p−α−1u(π)dπ, |
provided that integral on the right side exists. [α] denotes the integer part of the real number α. For more properties, the reader may refer to [1].
Lemma 2.1. [1] Let u be any function, and let α>0, then the Riemann-Liouville fractional derivative for the Homogeneous differential equation
Dαu(σ)=0,α>0, |
has a solution
u(σ)=c1σα−1+c2σα−2+⋯+cp−1σα−p−1+cpσα−p, |
and for non-homogeneous differential equation
Dαu(σ)=ϕ1(σ),α>0, |
has a solution
IαDαu(σ)=Iαϕ1(σ)+c1σα−1+c2σα−2+⋯+cp−1σα−p−1+cpσα−p, |
where p=[α]+1 and ci,i=1,2,…,p, are real constants.
Theorem 2.1. (Altman [5]) Let Λ≠0 be a convex and closed subset of Banach space ϑ. Consider two operators ℑ1,ℑ2 such that
(1) ℑ1(u,v)+ℑ2(u,v)∈Λ;
(2) ℑ1 is a contractive operator;
(3) ℑ2 is a compact and continuous operator.
Then there exists (u,v)∈Λ such that ℑ1(u,v)+ℑ2(u,v)=(u,v)∈ϑ.
The following definitions and remarks are taken from [21,24].
Definition 2.3. The given system (1.1) is HU stable if there exists Nα,β=max{Nα,Nβ}>0 such that, for κ=max{κα,,κβ}>0 and for every solution (ξ,ζ)∈ϑ of the inequality
{{|Dαξ(σ)−ϕ1(σ,Iαξ(σ),Iβζ(σ))|≤κα, σ∈ω,|Δξ(σj)−Ej(ξ(σj))|≤κα, j=1,2,…,p,|Δξ′(σj)−E∗j(ξ(σj))|≤κα, j=1,2,…,p,{|Dβζ(σ)−ϕ2(σ,Iαξ(σ),Iβζ(σ))|≤κβ, σ∈ω,|Δζ(σk)−Ek(ζ(σk))|≤κβ, k=1,2,…,q,|Δζ′(σk)−E∗k(ζ(σk))|≤κβ, k=1,2,…,q, | (2.1) |
there exists a solution (u,v)∈ϑ with
‖(u,v)−(ξ,ζ)‖ϑ≤Nα,βκ,σ∈ω. |
Definition 2.4. The given system (1.1) is generalized HU stable if there exists N′∈C(R+,R+) with N′(0)=0 such that, for any approximate solution (ξ,ζ)∈ϑ of inequality (2.1), there exists a solution (u,v)∈ϑ of (1.1) satisfying
‖(u,v)−(ξ,ζ)‖ϑ≤N′(κ),σ∈ω. |
Definition 2.5. The given system (1.1) is HUR stable with respect to ψα,β=max{ψα,ψβ} with ψα,β∈C(ω,R) if there exists a constant Nψα,ψβ=max{Nψα,Nψβ}>0 such that, for any κ=max{κα,,κβ}>0 and for any approximate solution (ξ,ζ)∈ϑ of the inequality
{{|Dαξ(σ)−ϕ1(σ,Iαξ(σ),Iβζ(σ))|≤ψα(σ)κα, σ∈ω,|Δξ(σj)−Ej(ξ(σj))|≤ψα(σ)κα, j=1,2,…,p,|Δξ′(σj)−E∗j(ξ(σj))|≤ψα(σ)κα, j=1,2,…,p,{|Dβζ(σ)−ϕ2(σ,Iαξ(σ),Iβζ(σ))|≤ψβ(σ)κβ, σ∈ω,|Δζ(σk)−Ek(ζ(σk))|≤ψβ(σ)κβ, k=1,2,…,q,|Δζ′(σk)−E∗k(ζ(σk))|≤ψβ(σ)κβ, k=1,2,…,q, | (2.2) |
there exists a solution (u,v)∈ϑ with
‖(u,v)−(ξ,ζ)‖ϑ≤Nψα,ψβψα,β(σ)κ,σ∈ω. |
Definition 2.6. The given system (1.1) is generalized HUR stable with respect to ψα,β=max{ψα,ψβ} with ψα,β∈C(ω,R) if there exists a constant Nψα,ψβ=max{Nψα,Nψβ}>0 such that, for any approximate solution (ξ,ζ)∈ϑ of inequality (2.2), there exists a solution (u,v)∈ϑ of (1.1) satisfying
‖(u,v)−(ξ,ζ)‖ϑ≤Nψα,ψβψα,β(σ),σ∈ω. |
Remark 2.1. Let (ξ,ζ)∈ϑ be a solution of inequalities (2.1) if there exist functions Kϕ1,Lϕ2∈C(ω,R) depending on ξ,ζ respectively such that
(1) |Kϕ1(σ)|≤κα,|Lϕ2(σ)|≤κβ,σ∈ω;
(2)
{{Dαξ(σ)=ϕ1(σ,Iαξ(σ),Iβζ(σ))+Kϕ1(σ),Δξ(σj)=Ej(ξ(σj))+Kϕ1j, j=1,2,…,p,Δξ′(σj)=E∗j(ξ(σj))+Kϕ1j, j=1,2,…,p,{Dβζ(σ)=ϕ2(t,Iαξ(σ),Iβζ(σ))+Lϕ2(σ),Δζ(σk)=Ek(ζ(σk))+Lϕ2k, k=1,2,…,q,Δζ′(σk)=E∗k(ζ(σk))+Lϕ2k, k=1,2,…,q. | (2.3) |
In this section, we discuss the existence and uniqueness of solution of the proposed system (1.1).
Theorem 3.1. Let α,β∈(1,2] and ϕ1 be any linear and continuous function. The fractional impulsive differential equation
{Dαu(σ)=ϕ1(σ,Iαu(σ),Iβv(σ)),σ∈ω,σ≠σj,j=1,2,…,p,Δu(σj)=Ej(u(σj)),Δu′(σj)=E∗j(u(σj)),j=1,2,…,p,ν1Dα−2u(σ)|σ=0=u1,μ1u(σ)|σ=T+ν2Iα−1u(σ)|σ=T=u2, | (3.1) |
has a solution
u(σ)={{σα−1u2μ1Tα−1−σα−1u1Tν1Γ(α−1)+σα−2u1ν1Γ(α−1)+1Γ(α)∫σ0(σ−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ−σα−1T1−αΓ(α)∫Tσ1(T−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ−ν2σα−1T1−αμ1Γ(α−1)∫T0(T−π)α−2u(π)dπ−σα−1T[((α−1)−(α−2)Tσ−11)σ2−α1E1(u(σ1))+(T−σ1)σ2−α1E∗1(u(σ1))+(T−σ1)σ2−α1Γ(α−1)∫σ10(σ1−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+((α−1)−(α−2)Tσ−11)σ2−α1Γ(α)∫σ10(σ1−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ],σ∈[0,σ1],{σα−1u2μ1Tα−1−σα−1u1Tν1Γ(α−1)+σα−2u1ν1Γ(α−1)+1Γ(α)∫σσz(σ−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ−σα−1T1−αΓ(α)∫Tσz(T−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ−ν2σα−1T1−αμ1Γ(α−1)∫T0(T−π)α−2u(π)dπ−σα−1Tz∑j=1[((α−1)−(α−2)Tσ−1j)σ2−αjEj(u(σj))+(T−σj)σ2−αjE∗j(u(σj))+(T−σj)σ2−αjΓ(α−1)∫σjσj−1(σj−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+((α−1)−(α−2)Tσ−1j)σ2−αjΓ(α)∫σjσj−1(σj−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ]+z∑j=1[((α−1)−(α−2)σσ−1j)σα−2σ2−αjEj(u(σj))+(σ−σj)σα−2σ2−αjE∗j(u(σj))+(σ−σj)σα−2σ2−αjΓ(α−1)∫σjσj−1(σj−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+((α−1)−(α−2)σσ−1j)σα−2σ2−αjΓ(α)∫σjσj−1(σj−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ],σ∈(σj,σj+1];z=1,2,…,p. | (3.2) |
Proof. Consider
Dαu(σ)=ϕ1(σ,Iαu(σ),Iβv(σ)),σ∈ω,α∈(1,2]. | (3.3) |
For σ∈[0,σ1], Lemma 2.1 gives
{u(σ)=1Γ(α)∫σ0(σ−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ+a1σα−1+a2σα−2,u′(σ)=1Γ(α−1)∫σ0(σ−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+a1(α−1)σα−2+a2(α−2)σα−3. | (3.4) |
Again, for σ∈(σ1,σ2], Lemma 2.1 gives
{u(σ)=1Γ(α)∫σσ1(σ−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ+b1σα−1+b2σα−2,u′(σ)=1Γ(α−1)∫σσ1(σ−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+b1(α−1)σα−2+b2(α−2)σα−3. | (3.5) |
Hence it follows that
{u(σ−1)=1Γ(α)∫σ10(σ1−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ+a1σα−11+a2σα−21,u(σ+1)=b1σα−11+b2σα−21,u′(σ−1)=1Γ(α−1)∫σ10(σ1−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+a1(α−1)σα−21+a2(α−2)σα−31,u′(σ+1)=b1(α−1)σα−21+b2(α−2)σα−31. |
Using
{Δu(σ1)=u(σ+1)−u(σ−1)=E1(u(σ1)),Δu′(σ1)=u′(σ+1)−u′(σ−1)=E∗1(u(σ1)), |
we obtain
{b1=a1−(α−2)σ1−α1E1(u(σ1))+σ2−α1E∗1(u(σ1))+σ2−α1Γ(α−1)∫σ10(σ1−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ−(α−2)σ1−α1Γ(α)∫σ10(σ1−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ,b2=a2+(α−1)σ2−α1E1(u(σ1))−σ3−α1E∗1(u(σ1))−σ3−α1Γ(α−1)∫σ10(σ1−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+(α−1)σ2−α1Γ(α)∫σ10(σ1−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ. |
Substituting the values of b1, b2 in (3.5), we get
{u(σ)=a1σα−1+a2σα−2+((α−1)−(α−2)σσ−11)σα−2σ2−α1E1(u(σ1))+(σ−σ1)σα−2σ2−α1E∗1(u(σ1))+1Γ(α)∫σσ1(σ−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ+((α−1)−(α−2)σσ−11)σα−2σ2−α1Γ(α)∫σ10(σ1−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ+(σ−σ1)σα−2σ2−α1Γ(α−1)∫σ10(σ1−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ,u′(σ)=a1(α−1)σα−2+a2(α−2)σα−3+(α−1)(α−2)(σ−1−σ−11)σα−2σ2−α1E1(u(σ1))+((α−1)−(α−2)σ−1σ1)σα−2σ2−α1E∗1(u(σ1))+1Γ(α−1)∫σσ1(σ−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+((α−1)−(α−2)σ−1σ1)σα−2σ2−α1Γ(α−1)∫σ10(σ1−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+(α−1)(α−2)(σ−1−σ−11)σα−2σ2−α1Γ(α)∫σ10(σ1−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ. |
Similarly, for σ∈(σj,σj+1],
u(σ)=a1σα−1+a2σα−2+z∑j=1((α−1)−(α−2)σσ−1j)σα−2σ2−αjEj(u(σj))+z∑j=1(σ−σj)σα−2σ2−αjE∗j(u(σj))+1Γ(α)∫σσz(σ−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ+z∑j=1(σ−σj)σα−2σ2−αjΓ(α−1)∫σjσj−1(σj−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+z∑j=1((α−1)−(α−2)σσ−1j)σα−2σ2−αjΓ(α)∫σjσj−1(σj−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ. | (3.6) |
Finally, after applying conditions ν1Dα−2u(σ)|σ=0=u1, and μ1u(σ)|σ=T+ν2Iα−1u(σ)|σ=T=u2 to (3.6) and finding the values of a1 and a2, we obtain Eq (2.2).
Corollary 1. In view of Theorem 3.1, our coupled system (1.1) has the following solution:
u(σ)={{σα−1u2μ1Tα−1−σα−1u1Tν1Γ(α−1)+σα−2u1ν1Γ(α−1)+1Γ(α)∫σ0(σ−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ−σα−1T1−αΓ(α)∫Tσ1(T−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ−ν2σα−1T1−αμ1Γ(α−1)∫T0(T−π)α−2u(π)dπ−σα−1T[((α−1)−(α−2)Tσ−11)σ2−α1E1(u(σ1))+(T−σ1)σ2−α1E∗1(u(σ1))+(T−σ1)σ2−α1Γ(α−1)∫σ10(σ1−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+((α−1)−(α−2)Tσ−11)σ2−α1Γ(α)∫σ10(σ1−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ],σ∈[0,σ1],{σα−1u2μ1Tα−1−σα−1u1Tν1Γ(α−1)+σα−2u1ν1Γ(α−1)+1Γ(α)∫σσz(σ−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ−σα−1T1−αΓ(α)∫Tσz(T−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ−ν2σα−1T1−αμ1Γ(α−1)∫T0(T−π)α−2u(π)dπ−σα−1Tz∑j=1[((α−1)−(α−2)Tσ−1j)σ2−αjEj(u(σj))+(T−σj)σ2−αjE∗j(u(σj))+(T−σj)σ2−αjΓ(α−1)∫σjσj−1(σj−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+((α−1)−(α−2)Tσ−1j)σ2−αjΓ(α)∫σjσj−1(σj−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ]+z∑j=1[((α−1)−(α−2)σσ−1j)σα−2σ2−αjEj(u(σj))+(σ−σj)σα−2σ2−αjE∗j(u(σj))+(σ−σj)σα−2σ2−αjΓ(α−1)∫σjσj−1(σj−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+((α−1)−(α−2)σσ−1j)σα−2σ2−αjΓ(α)∫σjσj−1(σj−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ],σ∈(σj,σj+1];z=1,2,…,p. | (3.7) |
and
v(σ)={{σβ−1v2μ2Tβ−1−σβ−1v1Tν3Γ(β−1)+σβ−2v1ν3Γ(β−1)+1Γ(β)∫σ0(σ−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ−σβ−1T1−βΓ(β)∫Tσ1(T−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ−ν4σβ−1T1−βμ2Γ(β−1)∫T0(T−π)β−2v(π)dπ−σβ−1T[((β−1)−(β−2)Tσ−11)σ2−β1E1(v(σ1))+(T−σ1)σ2−β1E∗1(v(σ1))+(T−σ1)σ2−β1Γ(β−1)∫σ10(σ1−π)β−2ϕ2(π,Iαu(π),Iβv(π))dπ+((β−1)−(β−2)Tσ−11)σ2−β1Γ(β)∫σ10(σ1−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ],σ∈[0,σ1],{σβ−1v2μ2Tβ−1−σβ−1v1Tν3Γ(β−1)+σβ−2v1ν3Γ(β−1)+1Γ(β)∫σσz(σ−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ−σβ−1T1−βΓ(β)∫Tσz(T−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ−ν4σβ−1T1−βμ2Γ(β−1)∫T0(T−π)β−2v(π)dπ−σβ−1Tz∑k=1[((β−1)−(β−2)Tσ−1k)σ2−βkEk(v(σk))+(T−σk)σ2−βkE∗k(v(σk))+(T−σk)σ2−βkΓ(β−1)∫σkσk−1(σk−π)β−2ϕ2(π,Iαu(π),Iβv(π))dπ+((β−1)−(β−2)Tσ−1k)σ2−βkΓ(β)∫σkσk−1(σk−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ]+z∑k=1[((β−1)−(β−2)σσ−1k)σβ−2σ2−βkEk(v(σk))+(σ−σk)σβ−2σ2−βkE∗k(v(σk))+(σ−σk)σβ−2σ2−βkΓ(β−1)∫σkσk−1(σk−π)β−2ϕ2(π,Iαu(π),Iβv(π))dπ+((β−1)−(β−2)σσ−1k)σβ−2σ2−βkΓ(β)∫σkσk−1(σk−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ],σ∈(σk,σk+1];z=1,2,…,q. | (3.8) |
Now, for transformation of the given system (1.1) into a fixed point problem, let the operators ℑ1,ℑ2:ϑ→ϑ be define as follows:
ℑ1(u,v)(σ)=(ℑ∗1(u(σ)),ℑ∗∗1(v(σ))),ℑ2(u,v)(σ)=(ℑ∗2(u,v)(σ),ℑ∗∗2(u,v)(σ)), |
ℑ1(u,v)(σ)={ℑ∗1(u(σ))={σα−1u2μ1Tα−1−σα−1u1Tν1Γ(α−1)+σα−2u1ν1Γ(α−1)−ν2σα−1T1−αμ1Γ(α−1)∫T0(T−π)α−2u(π)dπ−σα−1Tz∑j=1[((α−1)−(α−2)Tσ−1j)σ2−αjEj(u(σj))+(T−σj)σ2−αjE∗j(u(σj))]+z∑j=1[((α−1)−(α−2)σσ−1j)σα−2σ2−αjEj(u(σj))+(σ−σj)σα−2σ2−αjE∗j(u(σj))],σ∈(σj,σj+1];z=1,2,…,p,ℑ∗∗1(v(σ))={σβ−1v2μ2Tβ−1−σβ−1v1Tν3Γ(β−1)+σβ−2v1ν3Γ(β−1)−ν4σβ−1T1−βμ2Γ(β−1)∫T0(T−π)β−2v(π)dπ−σβ−1Tz∑k=1[((β−1)−(β−2)Tσ−1k)σ2−βkEk(v(σk))+(T−σk)σ2−βkE∗k(v(σk))]+z∑k=1[((β−1)−(β−2)σσ−1k)σβ−2σ2−βkEk(v(σk))+(σ−σk)σβ−2σ2−βkE∗k(v(σk))],σ∈(σk,σk+1];z=1,2,…,q, | (3.9) |
and
ℑ2(u,v)(σ)={ℑ∗2(u,v)(σ)={1Γ(α)∫σσz(σ−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ−σα−1T1−αΓ(α)∫Tσz(T−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ−σα−1Tz∑j=1[(T−σj)σ2−αjΓ(α−1)∫σjσj−1(σj−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+((α−1)−(α−2)Tσ−1j)σ2−αjΓ(α)∫σjσj−1(σj−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ]+z∑j=1[(σ−σj)σα−2σ2−αjΓ(α−1)∫σjσj−1(σj−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+((α−1)−(α−2)σσ−1j)σα−2σ2−αjΓ(α)∫σjσj−1(σj−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ],σ∈(σj,σj+1];z=1,2,…,p,ℑ∗∗2(u,v)(σ)={1Γ(β)∫σσz(σ−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ−σβ−1T1−βΓ(β)∫Tσz(T−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ−σβ−1Tz∑k=1[(T−σk)σ2−βkΓ(β−1)∫σkσk−1(σk−π)β−2ϕ2(π,Iαu(π),Iβv(π))dπ+((β−1)−(β−2)Tσ−1k)σ2−βkΓ(β)∫σkσk−1(σk−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ]+z∑k=1[(σ−σk)σβ−2σ2−βkΓ(β−1)∫σkσk−1(σk−π)β−2ϕ2(π,Iαu(π),Iβv(π))dπ+((β−1)−(β−2)σσ−1k)σβ−2σ2−βkΓ(β)∫σkσk−1(σk−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ],σ∈(σk,σk+1];z=1,2,…,q. | (3.10) |
For additional analysis, the following hypothesis needs to hold:
(H1) ● For σ∈ω there exist bounded functions o,τ,υ∈ϑ such that
|ϕ1(σ,x1(σ),x2(σ))|≤o(σ)+τ(σ)|x1(σ)|+υ(σ)|x2(σ)| |
with o1=supσ∈ωo(σ), τ1=supσ∈ωτ(σ), and υ1=supσ∈ωυ(σ)<1.
● Similarly, for σ∈ω there exist bounded functions o∗,τ∗,υ∗∈ϑ such that
|ϕ2(σ,x1(σ),x2(σ))|≤o∗(σ)+τ∗(σ)|x1(σ)|+υ∗(σ)|x2(σ)| |
with o2=supσ∈ωo∗(σ), τ2=supσ∈ωτ∗(σ), and υ2=supσ∈ωυ∗(σ)<1.
(H2) Ej,E∗j:R→R are continuous and there exist constants GE,GE∗,G′E,G′E∗,ˆGE,ˆGE∗,ˆG′E,ˆG′E∗>0 such that, for any (u,v)∈ϑ,
|Ez(u)|≤GE|u|+G′E,|Ez(v)|≤ˆGE|v|+ˆG′E,|E∗z(u)|≤GE∗|u|+G′E∗,|E∗z(v)|≤ˆGE∗|v|+ˆG′E∗, |
where z=1,2,…,p.
(H3) ● For all x1,x2,x∗1,x∗2∈R and for each σ∈ω, there exist constants Lϕ1>0, 0<L∗ϕ1<1 such that
|ϕ1(σ,x1,x2)−ϕ1(σ,x∗1,x∗2)|≤Lϕ1|x1−x∗1|+L∗ϕ1|x2−x∗2|. |
● Similarly, for all x1,x2,x∗1,x∗2∈R and for each σ∈ω, there exist constants Lϕ2>0, 0<L∗ϕ2<1 such that
|ϕ2(σ,x1,x2)−ϕ2(σ,x∗1,x∗2)|≤Lϕ2|x1−x∗1|+L∗ϕ2|x2−x∗2|. |
(H4) Ez,E∗z:R→R are continuous and there exist constants LE,LE∗,L∗E,L∗E∗ such that, for any (u,v),(u∗,v∗)∈ϑ,
|Ez(u(σ))−Ez(u∗(σ))|≤LE|u−u∗|,|Ez(v(σ))−Ez(v∗(σ))|≤L∗E|v−v∗|,|E∗z(u(σ))−E∗z(u∗(σ))|≤LE∗|u−u∗|,|E∗z(v(σ))−E∗z(v∗(σ))|≤L∗E∗|v−v∗|. |
Here we use Kransnoselskii's fixed point theorem to show that the operator ℑ1+ℑ2 has at least one fixed point. Therefore, we choose a closed ball
ϑr={(u,v)∈ϑ,‖(u,v)‖≤r,‖u‖≤r2and‖v‖≤r2}⊂ϑ, |
where
r≥G1+G∗1+o1G3+o2G∗31−(G2+G∗2+G3G4+G∗3G∗4). |
Theorem 3.2. If hypotheses (H1)–(H4) are hold, then the given system (1.1) has at least one solution.
Proof. 1) For any (u,v)∈ϑr, we have
‖ℑ1(u,v)+ℑ2(u,v)‖ϑ≤‖ℑ∗1(u)‖ϑ1+‖ℑ∗∗1(v)‖ϑ2+‖ℑ∗2(u,v)‖ϑ1+‖ℑ∗∗2(u,v)‖ϑ2. | (3.11) |
From (3.9), we get
|σ2−αℑ∗1(u(σ))|≤|σu2μ1Tα−1|+|σu1Tν1Γ(α−1)|+|u1ν1Γ(α−1)|+ν2|σ||T1−α|μ1Γ(α−1)∫T0|(T−π)α−2||u(π)|dπ+z∑j=1|((α−1)−(α−2)σσ−1j)−σT((α−1)−(α−2)Tσ−1j)||σ2−αj||Ej(u(σj))|+z∑j=1|(σ−σj)−σT(T−σj)||σ2−αj||E∗j(u(σj))|,z=1,2,…,p. | (3.12) |
This implies that
‖ℑ∗1(u)‖ϑ1≤|σu2μ1Tα−1|+|σu1Tν1Γ(α−1)|+|u1ν1Γ(α−1)|+ν2|σ|μ1Γ(α)‖u‖+z(α−1)|σ2−αz||1−σT|(GE‖u‖+G′E)+z|σ3−αz||σT−1|(GE∗‖u‖+G′E∗)≤G1+G2‖u‖. | (3.13) |
Similarly, we can obtain
‖ℑ∗∗1(v)‖ϑ2≤G∗1+G∗2‖v‖, | (3.14) |
where
G1=zG′E(α−1)|σ2−αz||1−σT|+zG′E∗|σ3−αz||σT−1|+|σu2μ1Tα−1|+|σu1Tν1Γ(α−1)|+|u1ν1Γ(α−1)|,G2=zGE(α−1)|σ2−αz||1−σT|+zGE∗|σ3−αz||σT−1|+ν2|σ|μ1Γ(α),forz=1,2,…,p,andG∗1=zˆG′E(β−1)|σ2−βz||1−σT|+zˆG′E∗|σ3−βz||σT−1|+|σv2μ2Tβ−1|+|σv1Tν3Γ(β−1)|+|v1ν3Γ(β−1)|,G∗2=zˆGE(β−1)|σ2−βz||1−σT|+zˆGE∗|σ3−βz||σT−1|+ν4|σ|μ2Γ(β),forz=1,2,…,q. |
Also, we have
|σ2−αℑ∗2(u,v)|≤|σ2−α|Γ(α)∫σσz|(σ−π)α−1||y(π)|dπ+|σ||T1−α|Γ(α)∫Tσz|(T−π)α−1||y(π)|dπ+σTz∑j=1[|(T−σj)||σ2−αj|Γ(α−1)∫σjσj−1|(σj−π)α−2||y(π)|dπ+|((α−1)−(α−2)Tσ−1j)||σ2−αj|Γ(α)∫σjσj−1|(σj−π)α−1||y(π)|dπ]+z∑j=1[|(σ−σj)||σ2−αj|Γ(α−1)∫σjσj−1|(σj−π)α−2||y(π)|dπ+|((α−1)−(α−2)σσ−1j)||σ2−αj|Γ(α)∫σjσj−1|(σj−π)α−1||y(π)|dπ] forz=1,2,…,p. | (3.15) |
Now by (H1)
|y(σ)|=|ϕ1(σ,Iαu(σ),Iβv(σ))|≤o(σ)+τ(σ)|Iαu(σ)|+υ(σ)|Iβv(σ)|≤o(σ)+τ(σ)1Γ(α)∫σ0|(σ−π)α−1||u(π)|dπ+υ(σ)1Γ(β)∫σ0|(σ−π)β−1||v(π)|dπ. |
Now, taking supσ∈ω on both sides, we get
‖y‖≤o1+τ1|σα|‖u‖Γ(α+1)+υ1|σβ|‖v‖Γ(β+1). | (3.16) |
Now taking supσ∈ω of (3.15) and using (3.16) in (3.15), we get
‖ℑ∗2(u,v)‖ϑ1≤(o1+τ1|σα|‖u‖Γ(α+1)+υ1|σβ|‖v‖Γ(β+1))(|σ2−α||(σ−σz)α|Γ(α+1)+|σ||T1−α||(T−σz)α|Γ(α+1)+z|σ||σ2−αz|T[|(T−σz)||(σz−σz−1)α−1|Γ(α)+|((α−1)−(α−2)Tσ−1z)||(σz−σz−1)α|Γ(α+1)]+z|(σ−σz)||σ2−αz||(σz−σz−1)α−1|Γ(α)+z|((α−1)−(α−2)σσ−1z)||σ2−αz||(σz−σz−1)α|Γ(α+1))≤o1G3+τ1|σα|‖u‖G3Γ(α+1)+υ1|σβ|‖v‖G3Γ(β+1)≤o1G3+G3G4‖(u,v)‖. | (3.17) |
Similarly,
‖ℑ∗∗2(u,v)‖ϑ2≤o2G∗3+G∗3G∗4‖(u,v)‖, | (3.18) |
where
G3=|σ2−α||(σ−σz)α|Γ(α+1)+|σ||T1−α||(T−σz)α|Γ(α+1)+z|σ||σ2−αz|T[|(T−σz)||(σz−σz−1)α−1|Γ(α)+|((α−1)−(α−2)Tσ−1z)||(σz−σz−1)α|Γ(α+1)]+z|(σ−σz)||σ2−αz||(σz−σz−1)α−1|Γ(α)+z|((α−1)−(α−2)σσ−1z)||σ2−αz||(σz−σz−1)α|Γ(α+1),z=1,2,…,p,G∗3=|σ2−β||(σ−σz)β|Γ(β+1)+|σ||T1−β||(T−σz)β|Γ(β+1)+z|σ||σ2−βz|T[|(T−σz)||(σz−σz−1)β−1|Γ(β)+|((β−1)−(β−2)Tσ−1z)||(σz−σz−1)β|Γ(β+1)]+z|(σ−σz)||σ2−βz||(σz−σz−1)β−1|Γ(β)+z|((β−1)−(β−2)σσ−1z)||σ2−βz||(σz−σz−1)β|Γ(β+1),z=1,2,…,q,G4=max{τ1|σα|Γ(α+1),υ1|σβ|Γ(β+1)}andG∗4=max{τ2|σα|Γ(α+1),υ2|σβ|Γ(β+1)}. |
Putting (3.13), (3.14), (3.17) and (3.18) in (3.11), we get
‖ℑ1(u,v)+ℑ2(u,v)‖ϑ≤G1+G2‖u‖+G∗1+G∗2‖v‖+o1G3+G3G4‖(u,v)‖+o2G∗3+G∗3G∗4‖(u,v)‖≤G1+G∗1+o1G3+o2G∗3+(G2+G∗2+G3G4+G∗3G∗4)‖(u,v)‖≤r. |
Hence, ‖ℑ1(u,v)+ℑ2(u,v)‖ϑ∈ϑr.
2) Next, for any σ∈ω, (u,v),(ξ,ζ)∈ϑ
‖ℑ1(u,v)−ℑ1(ξ,ξ)‖ϑ≤‖ℑ∗1(u)−ℑ∗1(ξ)‖ϑ1+‖ℑ∗∗1(v)−ℑ∗∗1(ξ)‖ϑ2≤|ν2||σ||T1−α||μ1|Γ(α−1)∫T0|(T−π)α−2||u(π)−ξ(π)|dπ+z∑j=1|((α−1)−(α−2)σσ−1j)−σT((α−1)−(α−2)Tσ−1j)|×|σ2−αj||Ej(u(σj))−Ej(ξ(σj))|+z∑j=1|(σ−σj)−σT(T−σj)||σ2−αj||E∗j(u(σj))−E∗j(ξ(σj))|+|ν4||T1−β||μ2|Γ(β−1)∫T0|(T−π)β−2||v(π)−ζ(π)|dπ+z∑k=1|((β−1)−(β−2)σσ−1k)−σT((β−1)−(β−2)Tσ−1k)|×|σ2−βk||Ek(v(σk))−Ek(ζ(σk))|+z∑k=1|(σ−σk)−σT(T−σk)||σ2−βk||E∗k(v(σk))−E∗k(ζ(σk))|≤(z(α−1)|σ2−αz||1−σT|LE+z|σ3−αz||σT−1|LE∗+|ν2||σ||μ1|Γ(α))‖u−ξ‖+(z(β−1)|σ2−β|z|1−σT|L∗E+z|σ3−βz||σT−1|L∗E∗+|ν4||σ||μ2|Γ(β))‖v−ζ‖≤L(ϱ1+ϱ2)‖(u−ξ,v−ζ)‖. |
Here L=max{LE,LE∗,L∗E,L∗E∗},
ϱ1=z(α−1)|σ2−αz||1−σT|+z|σ3−αz||σT−1|+|ν2||σ||μ1|Γ(α),z=1,2,…,p, |
and
ϱ2=z(β−1)|σ2−β|z|1−σT|+z|σ3−βz||σT−1|+|ν4||σ||μ2|Γ(β),z=1,2,…,q. |
Therefore, ℑ1 is a contractive operator.
3) Now, for the continuity and compactness of ℑ2, we make a sequence Ts=(us,vs) in ϑr such that (us,vs)→(u,v) for s→∞ in ϑr. Thus, we have
‖ℑ2(us,vs)−ℑ2(u,v)‖ϑ≤‖ℑ∗2(us,vs)−ℑ∗2(u,v)‖ϑ1+‖ℑ∗∗2(us,vs)−ℑ∗∗2(u,v)‖ϑ2≤(Lϕ1|σα|‖us−u‖Γ(α+1)+L∗ϕ1|σβ|‖vs−v‖Γ(β+1))(|σ2−α||(σ−σz)α|Γ(α+1)+|σ||T1−α||(T−σz)α|Γ(α+1)+z|σ||σ2−αz|T[|(T−σz)||(σz−σz−1)α−1|Γ(α)+|((α−1)−(α−2)Tσ−1z)||(σz−σz−1)α|Γ(α+1)]+z|(σ−σz)||σ2−αz||(σz−σz−1)α−1|Γ(α)+z|((α−1)−(α−2)σσ−1z)||σ2−αz||(σz−σz−1)α|Γ(α+1))+(Lϕ2|σα|‖us−u‖Γ(α+1)+L∗ϕ2|σβ|‖vs−v‖Γ(β+1))(|σ2−β||(σ−σz)β|Γ(β+1)+|σ||T1−β||(T−σz)β|Γ(β+1)+z|σ||σ2−βz|T[|(T−σz)||(σz−σz−1)β−1|Γ(β)+|((β−1)−(β−2)Tσ−1z)||(σz−σz−1)β|Γ(β+1)]+z|(σ−σz)||σ2−βz||(σz−σz−1)β−1|Γ(β)+z|((β−1)−(β−2)σσ−1z)||σ2−βz||(σz−σz−1)β|Γ(β+1))≤G3(Lϕ1|σα|‖us−u‖Γ(α+1)+L∗ϕ1|σβ|‖vs−v‖Γ(β+1))+G∗3(Lϕ2|σα|‖us−u‖Γ(α+1)+L∗ϕ2|σβ|‖vs−v‖Γ(β+1)). |
This implies ‖ℑ2(us,vs)−ℑ2(u,v)‖ϑ→0 as s→∞, therefore ℑ2 is continuous.
Next, we show that ℑ2 is uniformly bounded on ϑr. From (3.17) and (3.18), we have
‖ℑ2(u,v)‖ϑ≤‖ℑ∗2(u,v)‖ϑ1+‖ℑ∗∗2(u,v)‖ϑ2≤o1G3+o2G∗3+(G3G4+G∗3G∗4)‖(u,v)‖≤r. |
Thus, ℑ2 is uniformly bounded on ϑr.
For equicontinuity, suppose η1,η2∈ω with η1<η2, and for any (u,v)∈ϑr⊂ϑ where ϑr is clearly bounded, we have
‖ℑ∗2(u,v)(η1)−ℑ∗2(u,v)(η2)‖ϑ1=max|σ2−α(ℑ∗2(u,v)(η1)−ℑ∗2(u,v)(η2))|≤(o1+τ1|σα|‖u‖Γ(α+1)+υ1|σβ|‖v‖Γ(β+1))(|σ2−α||((η1−σz)α−(η2−σz)α)|Γ(α+1)+|σ2−α||ηα−11−ηα−12||T1−α||(T−σz)α|Γ(α+1)+[|(ηα−21−ηα−22)|+|(ηα−11−ηα−12)|T]×[z|σ2−α||σ3−αz||(σz−σz−1)α−1|Γ(α)+z(α−1)|σ2−α||σ2−αz||(σz−σz−1)α|Γ(α+1)]). |
This implies that
‖ℑ∗2(u,v)(η1)−ℑ∗2(u,v)(η2)‖ϑ1→0asη1→η2. |
In the same way, we have
‖ℑ∗∗2(u,v)(η1)−ℑ∗∗2(u,v)(η2)‖ϑ2→0asη1→η2. |
Hence
‖ℑ2(u,v)(η1)−ℑ2(u,v)(η2)‖ϑ→0asη1→η2. |
Thus, ℑ2 is equicontinuous. So ℑ2 is relatively compact on ϑr. Hence, by the Arzelˊa–Ascoli Theorem, ℑ2 is compact on ϑr. Thus all the condition of Theorem 2.1 are satisfied. So the given system (1.1) has at least one solution.
Theorem 3.3. Let hypotheses (H3), (H4) be satisfied with
Δ1+Δ3+(Δ2Lϕ1+Δ4Lϕ2)|σα|Γ(α+1)+(Δ2L∗ϕ1+Δ4L∗ϕ2)|σβ|Γ(β+1)<1, | (3.19) |
then the given system (1.1) has unique solution.
Proof. First we define an operator φ=(φ1,φ2):ϑ→ϑ, i.e., φ(u,v)(σ)=(φ1(u,v),φ2(u,v))(σ), where
φ1(u,v)(σ)=σα−1u2μ1Tα−1−σα−1u1Tν1Γ(α−1)+σα−2u1ν1Γ(α−1)+1Γ(α)∫σσz(σ−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ−σα−1T1−αΓ(α)∫Tσz(T−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ−ν2σα−1T1−αμ1Γ(α−1)∫T0(T−π)α−2u(π)dπ−σα−1Tz∑j=1[((α−1)−(α−2)Tσ−1j)σ2−αjEj(u(σj))+(T−σj)σ2−αjE∗j(u(σj))+(T−σj)σ2−αjΓ(α−1)∫σjσj−1(σj−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+((α−1)−(α−2)Tσ−1j)σ2−αjΓ(α)∫σjσj−1(σj−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ]+z∑j=1[((α−1)−(α−2)σσ−1j)σα−2σ2−αjEj(u(σj))+(σ−σj)σα−2σ2−αjE∗j(u(σj))+(σ−σj)σα−2σ2−αjΓ(α−1)∫σjσj−1(σj−π)α−2ϕ1(π,Iαu(π),Iβv(π))dπ+((α−1)−(α−2)σσ−1j)σα−2σ2−αjΓ(α)∫σjσj−1(σj−π)α−1ϕ1(π,Iαu(π),Iβv(π))dπ],for z=1,2,…,p, |
and
φ2(u,v)(σ)=σβ−1v2μ2Tβ−1−σβ−1v1Tν3Γ(β−1)+σβ−2v1ν3Γ(β−1)+1Γ(β)∫σσz(σ−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ−σβ−1T1−βΓ(β)∫Tσz(T−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ−ν4σβ−1T1−βμ2Γ(β−1)∫T0(T−π)β−2v(π)dπ−σβ−1Tz∑k=1[((β−1)−(β−2)Tσ−1k)σ2−βkEk(v(σk))+(T−σk)σ2−βkE∗k(v(σk))+(T−σk)σ2−βkΓ(β−1)∫σkσk−1(σk−π)β−2ϕ2(π,Iαu(π),Iβv(π))dπ+((β−1)−(β−2)Tσ−1k)σ2−βkΓ(β)∫σkσk−1(σk−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ]+z∑k=1[((β−1)−(β−2)σσ−1k)σβ−2σ2−βkEk(v(σk))+(σ−σk)σβ−2σ2−βkE∗k(v(σk))+(σ−σk)σβ−2σ2−βkΓ(β−1)∫σkσk−1(σk−π)β−2ϕ2(π,Iαu(π),Iβv(π))dπ+((β−1)−(β−2)σσ−1k)σβ−2σ2−βkΓ(β)∫σkσk−1(σk−π)β−1ϕ2(π,Iαu(π),Iβv(π))dπ],for z=1,2,…,q. |
In view of Theorem 3.2, we have
|σ2−α(φ1(u,v)−φ1(ξ,ζ))|≤(L∗ϕ1|σβ|Γ(β+1))(|σ2−α||(σ−σz)α|Γ(α+1)+|σ||T1−α||(T−σz)α|Γ(α+1)+z|σ||σ2−αz|T[|(T−σz)||(σz−σz−1)α−1|Γ(α)+|((α−1)−(α−2)Tσ−1z)||(σz−σz−1)α|Γ(α+1)]+z|(σ−σz)||σ2−αz||(σz−σz−1)α−1|Γ(α)+z|((α−1)−(α−2)σσ−1z)||σ2−αz||(σz−σz−1)α|Γ(α+1))|v−ζ|+[(Lϕ1|σα|Γ(α+1))(|σ2−α||(σ−σz)α|Γ(α+1)+|σ||T1−α||(T−σz)α|Γ(α+1)+z|σ||σ2−αz|T[|(T−σz)||(σz−σz−1)α−1|Γ(α)+|((α−1)−(α−2)Tσ−1z)||(σz−σz−1)α|Γ(α+1)]+z|(σ−σz)||σ2−αz||(σz−σz−1)α−1|Γ(α)+z|((α−1)−(α−2)σσ−1z)||σ2−αz||(σz−σz−1)α|Γ(α+1))+(z(α−1)|σ2−αz||1−σT|LE+z|σ3−αz||σT−1|LE∗+|ν2||σ||μ1|Γ(α))]|u−ξ|. |
Taking supσ∈ω, we get
‖φ1(u,v)−φ1(ξ,ζ)‖ϑ1≤(Δ1+Δ2Lϕ1|σα|Γ(α+1)+Δ2L∗ϕ1|σβ|Γ(β+1))‖(u,v)−(ξ,ζ)‖ forz=1,2,…,p, |
where
Δ1=z(α−1)|σ2−αz||1−σT|LE+z|σ3−αz||σT−1|LE∗+|ν2||σ||μ1|Γ(α),Δ2=|σ2−α||(σ−σz)α|Γ(α+1)+|σ||T1−α||(T−σz)α|Γ(α+1)+z|σ||σ2−αz|T[|(T−σz)||(σz−σz−1)α−1|Γ(α)+|((α−1)−(α−2)Tσ−1z)||(σz−σz−1)α|Γ(α+1)]+z|(σ−σz)||σ2−αz||(σz−σz−1)α−1|Γ(α)+z|((α−1)−(α−2)σσ−1z)||σ2−αz||(σz−σz−1)α|Γ(α+1), forz=1,2,…,p. |
Similarly,
‖φ2(u,v)−φ2(ξ,ζ)‖ϑ2≤(Δ3+Δ4Lϕ2|σα|Γ(α+1)+Δ4L∗ϕ2|σβ|Γ(β+1))‖(u,v)−(ξ,ζ)‖ forz=1,2,…,q, |
where
Δ3=z(β−1)|σ2−βz||1−σT|L∗E+z|σ3−βz||σT−1|L∗E∗+|ν4||σ||μ2|Γ(β),Δ4=|σ2−β||(σ−σz)β|Γ(β+1)+|σ||T1−β||(T−σz)β|Γ(β+1)+z|σ||σ2−βz|T[|(T−σz)||(σz−σz−1)β−1|Γ(β)+|((β−1)−(β−2)Tσ−1z)||(σz−σz−1)β|Γ(β+1)]+z|(σ−σz)||σ2−βz||(σz−σz−1)β−1|Γ(β)+z|((β−1)−(β−2)σσ−1z)||σ2−βz||(σz−σz−1)β|Γ(β+1), forz=1,2,…,q. |
Hence
‖φ(u,v)−φ(ξ,ζ)‖ϑ≤(Δ1+Δ3+(Δ2Lϕ1+Δ4Lϕ2)|σα|Γ(α+1)+(Δ2L∗ϕ1+Δ4L∗ϕ2)|σβ|Γ(β+1))‖(u,v)−(ξ,ζ)‖. |
This implies that the operator φ is a contraction. Therefore, (1.1) has a unique solution.
In this section, we study different kinds of stabilities, like HU, generalized HU, HUR, and generalized HUR stability of the proposed system.
Theorem 4.1. If assumptions (H3), (H4) and inequality (3.19) are satisfied and
F=1−(Δ2L∗ϕ1|σβ|Γ(β+1))(Δ4Lϕ2|σα|Γ(α+1))[1−(Δ1+Δ2Lϕ1|σα|Γ(α+1))][1−(Δ3+Δ4L∗ϕ2|σβ|Γ(β+1))]>0, |
then the unique solution of the coupled system (1.1) is HU stable and consequently generalized HU stable.
Proof. Let (ξ,ζ)∈ϑ is a solution of inequality (2.1), and let (u,v)∈ϑ be the unique solution of the coupled system given by
{{Dαu(σ)−ϕ1(σ,Iαu(σ),Iβv(σ))=0, σ∈ω, σ≠σj, j=1,2,…,p,Δu(σj)−Ej(u(σj))=0,Δu′(σj)−E∗j(u(σj))=0, j=1,2,…,p,ν1Dα−2u(σ)|σ=0=u1,μ1u(σ)|σ=T+ν2Iα−1u(σ)|σ=T=u2,{Dβv(σ)−ϕ2(σ,Iαu(σ),Iβv(σ))=0, σ∈ω, σ≠σk, k=1,2,…,q,Δv(σk)−Ek(v(σk))=0,Δv′(σk)−E∗k(v(σk))=0, k=1,2,…,q,ν3Dβ−2v(σ)|σ=0=v1,μ2v(σ)|σ=T+ν4Iβ−1v(σ)|σ=T=v2. | (4.1) |
By Remark 2.1 we have
{{Dαξ(σ)=ϕ1(σ,Iαξ(σ),Iβζ(σ))+Kϕ1(σ),Δξ(σj)=Ej(ξ(σj))+Kϕ1j, j=1,2,…,p,Δξ′(σj)=E∗j(ξ(σj))+Kϕ1j, j=1,2,…,p,{Dβζ(σ)=ϕ2(σ,Iαξ(σ),Iβζ(σ))+Lϕ2(σ),Δζ(σk)=Ek(ζ(σk))+Lϕ2k, k=1,2,…,q,Δζ′(σk)=E∗k(ζ(σk))+Lϕ2k, k=1,2,…,q. | (4.2) |
By Corollary 1, the solution of problem (4.2) is
ξ(σ)=σα−1u2μ1Tα−1−σα−1u1Tν1Γ(α−1)+σα−2u1ν1Γ(α−1)−ν2σα−1T1−αμ1Γ(α−1)∫T0(T−π)α−2ξ(π)dπ+1Γ(α)∫σσz(σ−π)α−1(ϕ1(π,Iαξ(π),Iβζ(π))+Kϕ1(π))dπ−σα−1T1−αΓ(α)∫Tσz(T−π)α−1(ϕ1(π,Iαξ(π),Iβζ(π))+Kϕ1(π))dπ−σα−1Tz∑j=1[((α−1)−(α−2)Tσ−1j)σ2−αj(Ej(ξ(σj))+Kϕ1j)+(T−σj)σ2−αj(E∗j(ξ(σj))+Kϕ1j)+(T−σj)σ2−αjΓ(α−1)∫σjσj−1(σj−π)α−2(ϕ1(π,Iαξ(π),Iβζ(π))+Kϕ1(π))dπ+((α−1)−(α−2)Tσ−1j)σ2−αjΓ(α)∫σjσj−1(σj−π)α−1(ϕ1(π,Iαξ(π),Iβζ(π))+Kϕ1(π))dπ]+z∑j=1[((α−1)−(α−2)σσ−1j)σα−2σ2−αj(Ej(ξ(σj))+Kϕ1j)+(σ−σj)σα−2σ2−αj(E∗j(ξ(σj))+Kϕ1j)+(σ−σj)σα−2σ2−αjΓ(α−1)∫σjσj−1(σj−π)α−2(ϕ1(π,Iαξ(π),Iβζ(π))+Kϕ1(π))dπ+((α−1)−(α−2)σσ−1j)σα−2σ2−αjΓ(α)∫σjσj−1(σj−π)α−1(ϕ1(π,Iαξ(π),Iβζ(π))+Kϕ1(π))dπ],z=1,2,…,p, | (4.3) |
and
ζ(σ)=σβ−1v2μ2Tβ−1−σβ−1v1Tν3Γ(β−1)+σβ−2v1ν3Γ(β−1)−ν4σβ−1T1−βμ2Γ(β−1)∫T0(T−π)β−2ζ(π)dπ+1Γ(β)∫σσz(σ−π)β−1(ϕ2(π,Iαξ(π),Iβζ(π))+Lϕ2(π))dπ−σβ−1T1−βΓ(β)∫Tσz(T−π)β−1(ϕ2(π,Iαξ(π),Iβζ(π))+Lϕ2(π))dπ−σβ−1Tz∑k=1[((β−1)−(β−2)Tσ−1k)σ2−βk(Ek(ζ(σk))+Lϕ2k)+(T−σk)σ2−βk(E∗k(ζ(σk))+Lϕ2k)+(T−σk)σ2−βkΓ(β−1)∫σkσk−1(σk−π)β−2(ϕ2(π,Iαξ(π),Iβζ(π))+Lϕ2(π))dπ+((β−1)−(β−2)Tσ−1k)σ2−βkΓ(β)∫σkσk−1(σk−π)β−1(ϕ2(π,Iαξ(π),Iβζ(π))+Lϕ2(π))dπ]+z∑k=1[((β−1)−(β−2)σσ−1k)σ2−βk(Ek(ζ(σk))+Lϕ2k)+(σ−σk)σβ−2σ2−βk(E∗k(ζ(σk))+Lϕ2k)+(σ−σk)σβ−2σ2−βkΓ(β−1)∫σkσk−1(σk−π)β−2(ϕ2(π,Iαξ(π),Iβζ(π))+Lϕ2(π))dπ+((β−1)−(β−2)σσ−1k)σβ−2σ2−βkΓ(β)∫σkσk−1(σk−π)β−1(ϕ2(π,Iαξ(π),Iβζ(π))+Lϕ2(π))dπ],z=1,2,…,q. | (4.4) |
We consider
|σ2−α(u(σ)−ξ(σ))|≤|σ2−α|Γ(α)∫σσz|(σ−π)α−1||ϕ1(π,Iαu(π),Iβv(π))−ϕ1(π,Iαξ(π),Iβζ(π))|dπ+|σ||T1−α|Γ(α)∫Tσz|(T−π)α−1||ϕ1(π,Iαu(π),Iβv(π))−ϕ1(π,Iαξ(π),Iβζ(π))|dπ+|ν2||σ||T1−α||μ1|Γ(α−1)∫T0|(T−π)α−2||u(π)−ξ(π)|dπ+z∑j=1|((α−1)−(α−2)σσ−1j)−σT((α−1)−(α−2)Tσ−1j)|×|σ2−αj||Ej(u(σj))−Ej(ξ(σj))|+z∑j=1|(σ−σj)−σT(T−σj)||σ2−αj||E∗j(u(σj))−E∗j(ξ(σj))|+|σ|Tz∑j=1[|(T−σj)||σ2−αj|Γ(α−1)×∫σjσj−1|(σj−π)α−2||ϕ1(π,Iαu(π),Iβv(π))−ϕ1(π,Iαξ(π),Iβζ(π))|dπ+|((α−1)−(α−2)Tσ−1j)||σ2−αj|Γ(α)×∫σjσj−1|(σj−π)α−1||ϕ1(π,Iαu(π),Iβv(π))−ϕ1(π,Iαξ(π),Iβζ(π))|dπ]+z∑j=1[|(σ−σj)||σ2−αj|Γ(α−1)×∫σjσj−1|(σj−π)α−2||ϕ1(π,Iαu(π),Iβv(π))−ϕ1(π,Iαξ(π),Iβζ(π))|dπ+|((α−1)−(α−2)σσ−1j)||σ2−αj|Γ(α)×∫σjσj−1|(σj−π)α−1||ϕ1(π,Iαu(π),Iβv(π))−ϕ1(π,Iαξ(π),Iβζ(π))|dπ] |
+|σ2−α|Γ(α)∫σσz|(σ−π)α−1||Kϕ1(π)|dπ+|σ||T1−α|Γ(α)∫Tσz|(T−π)α−1||Kϕ1(π)|dπ+z∑j=1|((α−1)−(α−2)σσ−1j)−σT((α−1)−(α−2)Tσ−1j)||σ2−αj||Kϕ1j|+z∑j=1|(σ−σj)−σT(T−σj)||σ2−αj||Kϕ1j|+σTz∑j=1[|(T−σj)||σ2−αj|Γ(α−1)∫σjσj−1|(σj−π)α−2||Kϕ1(π)|dπ+|(α−1)−(α−2)T|σ−1j|||σ2−αj|Γ(α)∫σjσj−1|(σj−π)α−1||Kϕ1(π)|dπ]+z∑j=1[|(σ−σj)||σ2−αj|Γ(α−1)∫σjσj−1|(σj−π)α−2||Kϕ1(π)|dπ+|((α−1)−(α−2)σσ−1j)||σ2−αj|Γ(α)∫σjσj−1|(σj−π)α−1||Kϕ1(π)|dπ]. |
As in Theorem 3.3, we get
‖u−ξ‖ϑ1≤(Δ1+Δ2Lϕ1|σα|Γ(α+1))‖u−ξ‖ϑ1+(Δ2L∗ϕ1|σβ|Γ(β+1))‖v−ζ‖ϑ1+(Δ2+z(α−1)|σ2−αz||1−σT|+z|σ3−αz||σT−1|+|ν2||σ||μ1|Γ(α))κα,z=1,2,…,p, | (4.5) |
and
‖v−ζ‖ϑ2≤(Δ4Lϕ2|σα|Γ(α+1))‖u−ξ‖ϑ2+(Δ3+Δ4L∗ϕ2|σβ|Γ(β+1))‖v−ζ‖ϑ2+(Δ4+z(β−1)|σ2−βz||1−σT|+z|σ3−βz||σT−1|+|ν4||σ||μ2|Γ(β))κβ,z=1,2,…,q. | (4.6) |
From (4.5) and (4.6), we have
‖u−ξ‖ϑ1−(Δ2L∗ϕ1|σβ|Γ(β+1))1−(Δ1+Δ2Lϕ1|σα|Γ(α+1))‖v−ζ‖ϑ1≤(Δ2+z(α−1)|σ2−αz||1−σT|+z|σ3−αz||σT−1|+|ν2||σ||μ1|Γ(α))1−(Δ1+Δ2Lϕ1|σα|Γ(α+1))κα |
and
‖v−ζ‖ϑ2−(Δ4Lϕ2|σα|Γ(α+1))1−(Δ3+Δ4L∗ϕ2|σβ|Γ(β+1))‖u−ξ‖ϑ2≤(Δ4+z(β−1)|σ2−βz||1−σT|+z|σ3−βz||σT−1|+|ν4||σ||μ2|Γ(β))1−(Δ3+Δ4L∗ϕ2|σβ|Γ(β+1))κβ |
respectively. Let
P1=(Δ2L∗ϕ1|σβ|Γ(β+1))1−(Δ1+Δ2Lϕ1|σα|Γ(α+1)),P2=(Δ2+z(α−1)|σ2−αz||1−σT|+z|σ3−αz||σT−1|+|ν2||σ||μ1|Γ(α))1−(Δ1+Δ2Lϕ1|σα|Γ(α+1)),P3=(Δ4Lϕ2|σα|Γ(α+1))1−(Δ3+Δ4L∗ϕ2|σβ|Γ(β+1)),andP4=(Δ4+z(β−1)|σ2−βz||1−σT|+z|σ3−βz||σT−1|+|ν4||σ||μ2|Γ(β))1−(Δ3+Δ4L∗ϕ2|σβ|Γ(β+1)). |
Then the last two inequalities can be written in a matrix form as follows:
[1−P1−P31][‖u−ξ‖ϑ1‖v−ζ‖ϑ2]≤[P2καP4κβ] |
[‖u−ξ‖ϑ1‖v−ζ‖ϑ2]≤[1FP1FP3F1F][P2καP4κβ], | (4.7) |
where
F=1−(Δ2L∗ϕ1|σβ|Γ(β+1))(Δ4Lϕ2|σα|Γ(α+1))[1−(Δ1+Δ2Lϕ1|σα|Γ(α+1))][1−(Δ3+Δ4L∗ϕ2|σβ|Γ(β+1))]>0. |
From system (4.7) we have
‖u−ξ‖ϑ1≤P2καF+P1P4κβF,‖v−ζ‖ϑ2≤P2P3καF+P4κβF, |
which implies that
‖u−ξ‖ϑ1+‖v−ζ‖ϑ2≤P2καF+P1P4κβF+P2P3καF+P4κβF. |
If κ=max{κα,κβ} and Nα,β=P2F+P1P4F+P2P3F+P4F, then
‖(u,v)−(ξ,ζ)‖ϑ≤Nα,βκ. |
Thus system (1.1) is HU stable. Also, if
‖(u,v)−(ξ,ζ)‖ϑ≤Nα,βN′(κ), |
with N′(0)=0, then the given system (1.1) is generalized HU stable.
For the next result, we assume the following:
(H5) Let there exists two nondecreasing functions wα,wβ∈C(ω,R+) such that
Iαwα(σ)≤Lαwα(σ)andIβwβ(σ)≤Lβwβ(σ),whereLα,Lβ>0. | (4.8) |
Theorem 4.2. If assumptions (boldsymbol)–(H5) and inequality (3.19) are satisfied and
F=1−(Δ2L∗ϕ1|σβ|Γ(β+1))(Δ4Lϕ2|σα|Γ(α+1))[1−(Δ1+Δ2Lϕ1|σα|Γ(α+1))][1−(Δ3+Δ4L∗ϕ2|σβ|Γ(β+1))]>0, |
then the unique solution of the given system (1.1) is HUR stable and accordingly generalized HUR stable.
Proof. With the help of Definitions 2.5 and 2.6, we can achieve our result doing the same steps as in Theorem 4.1.
Here we present a specific example, as follows.
Example 5.1. Let
{{D65u(σ)−2+I65u(σ)+I54v(σ)80eσ+90(1+I65u(σ)+I54v(σ))=0, σ≠32,Δu(32)=E1(u(32))=|u(32)|70+|u(32)|,Δu′(32)=E∗1(u(32))=|u(32)|70+|u(32)|,D−45u(σ)|σ=0=u1,−50u(σ)|σ=e+185I15u(σ)|σ=e=u2,{D54v(σ)−σcos(u(σ))−v(σ)sin(σ)95−u(σ)95+u(σ)=0, σ≠32,Δv(32)=E1(v(32))=|v(32)|70+|v(32)|,Δv′(32)=E∗1(v(32))=|v(32)|70+|v(32)|,D−34v(σ)|σ=0=v1,−50v(σ)|σ=e+185I14v(σ)|σ=e=v2. | (5.1) |
From system (5.1), we see that α=65, β=54, μ1=μ2=−50, ν1=ν3=1, ν2=ν4=185, T=e, σ1=32, and u1,u2,v1,v2∈R.
Set
ϕ1(σ,u,v)=2+I65u(σ)+I54v(σ)80eσ+90(1+I65u(σ)+I54v(σ)),ϕ2(σ,u,v)=σcos(u(σ))−v(σ)sin(σ)95−u(σ)95+u(σ). |
Now, for all u,u∗,v,v∗∈R, and σ∈[0,e], we obtain
|ϕ1(σ,u,v)−ϕ1(σ,u∗,v∗)|=180e90|u−u∗|+180e90|v−v∗| |
and
|ϕ2(σ,u,v)−ϕ1(σ,u∗,v∗)|=195|u−u∗|+195|v−v∗|. |
These satisfy condition (H3) with Lϕ1=L∗ϕ1=180e90, Lϕ2=L∗ϕ2=195.
Set
E1(u(32))=|u(32)|70+|u(32)|,E∗1(u(32))=|u(32)|70+|u(32)|,E1(v(32))=|v(32)|70+|v(32)|andE∗1(v(32))=|v(32)|70+|v(32)|. |
Then we have
|E1(u(32))−E1(u∗(32))|=170|u−u∗|,|E∗1(u(32))−E∗1(u∗(32))|=170|u−u∗|,|E1(v(32))−E1(v∗(32))|=170|v−v∗|and|E∗1(v(32))−E∗1(v∗(32))|=170|v−v∗|. |
These satisfy condition (H4) with LE=L∗E=LE∗=L∗E∗=170.
From Theorem 3.3, we use the inequality and get
Δ1+Δ3+(Δ2Lϕ1+Δ4Lϕ2)|σα|Γ(α+1)+(Δ2L∗ϕ1+Δ4L∗ϕ2)|σβ|Γ(β+1)≈0.976847<1, |
hence (5.1) has a unique solution, so (5.1) has a solution (u,v)∈ϑ. The solution of (5.1) is given by
u(σ)={{σ15u2−50e15−σ15u1eΓ(15)+σ−45u1Γ(15)+1Γ(65)∫σ0(σ−π)15ϕ1(π,Iαu(π),Iβv(π))dπ−σ15e−15Γ(65)∫e32(e−π)15ϕ1(π,Iαu(π),Iβv(π))dπ+185σ15e−1550Γ(15)∫e0(e−π)−45u(π)dπ−σ15e[((15)+e(45)(32)−1)(32)45E1(u(32))+(e−32)(32)45E∗1(u(32))+(e−32)(32)45Γ(15)∫320(32−π)−45ϕ1(π,Iαu(π),Iβv(π))dπ+((15)+e(45)(32)−1)(32)45Γ(65)∫320(32−π)15ϕ1(π,Iαu(π),Iβv(π))dπ],σ∈[0,32],{σ15u2−50e15−σ15u1eΓ(15)+σ−45u1Γ(15)+1Γ(65)∫σ32(σ−π)15ϕ1(π,Iαu(π),Iβv(π))dπ−σ15e−15Γ(65)∫e32(e−π)152+I65u(π)+I54v(π)80eπ+90(1+I65u(π)+I54v(π))dπ+185σ15e−1550Γ(15)∫e0(e−π)−45u(π)dπ−σ15e[((15)+e(45)(32)−1)(32)45E1(u(32))+(e−32)(32)45E∗1(u(32))+(e−32)(32)45Γ(15)∫320(32−π)−45ϕ1(π,Iαu(π),Iβv(π))dπ+((15)+e(45)(32)−1)(32)45Γ(65)∫320(32−π)15ϕ1(π,Iαu(π),Iβv(π))dπ]+[((15)+σ(45)(32)−1)(32)45σ−45E1(u(32))+(σ−32)(32)45σ−45E∗1(u(32))+(σ−32)(32)45σ−45Γ(15)∫320(32−π)−45ϕ1(π,Iαu(π),Iβv(π))dπ+((15)+σ(45)(32)−1)(32)45σ−45Γ(65)∫320(32−π)15ϕ1(π,Iαu(π),Iβv(π))dπ],σ∈(32,e] |
and
v(σ)={{σ14v2−50e14−σ14v1eΓ(14)+σ−34v1Γ(14)+1Γ(54)∫σ0(σ−π)14ϕ2(π,Iαu(π),Iβv(π))dπ−σ14e−14Γ(54)∫e32(e−π)14ϕ2(π,Iαu(π),Iβv(π))dπ+185σ14e−1450Γ(14)∫e0(e−π)−34v(π)dπ−σ14e[((14)+e(34)(32)−1)(32)34E1(v(32))+(e−32)(32)34E∗1(v(32))+(e−32)(32)34Γ(14)∫320(32−π)−34ϕ2(π,Iαu(π),Iβv(π))dπ+((14)+e(34)(32)−1)(32)34Γ(54)∫320(32−π)14ϕ2(π,Iαu(π),Iβv(π))dπ],σ∈[0,32],{σ14v2−50e14−σ14v1eΓ(14)+σ−34v1Γ(14)+1Γ(54)∫σ32(σ−π)14ϕ2(π,Iαu(π),Iβv(π))dπ−σ14e−14Γ(54)∫e32(e−π)14ϕ2(π,Iαu(π),Iβv(π))dπ−185σ14e−14−50Γ(14)∫e0(e−π)−34v(π)dπ−σ14e[((14)+e(34)(32)−1)(32)34E1(v(32))+(e−32)(32)34E∗1(v(32))+(e−32)(32)34Γ(14)∫320(32−π)−34ϕ2(π,Iαu(π),Iβv(π))dπ+((14)+e(34)(32)−1)(32)34Γ(54)∫320(32−π)14ϕ2(π,Iαu(π),Iβv(π))dπ]+[((14)+σ(34)(32)−1)(32)34σ−34E1(v(32))+(σ−32)σ−34(32)34E∗1(v(32))+(σ−32)(32)34σ−34Γ(14)∫320(32−π)−34ϕ2(π,Iαu(π),Iβv(π))dπ+((14)+σ(34)(32)−1)(32)34σ−34Γ(54)∫320(32−π)14ϕ2(π,Iαu(π),Iβv(π))dπ],σ∈(32,e]. |
(i) If we take ϕ1(σ,Iαu(σ),Iβv(σ))=180eσ+90, ϕ2(σ,Iαu(σ),Iβv(σ))=σcos(σ)−sin(σ)95−195, E1(u(32))=E∗1(u(32))=E1(v(32))=E∗1(v(32))=170, and u(σ)=v(σ)=σ then with the constant values u1=v1=115, u2=v2=2, the graph of the solution is shown in Figure 1.
(ii) If we take ϕ1(σ,Iαu(σ),Iβv(σ))=σ+180eσ+90, ϕ2(σ,Iαu(σ),Iβv(σ))=σ2+195−σ95, E1(u(32))=E∗1(u(32))=E1(v(32))=E∗1(v(32))=170, and u(σ)=v(σ)=σ then with the constant values u1=v1=−115, u2=v2=−2, the graph of the solution is shown in Figure 2.
From Theorem 4.1, we use the inequality and get
F=1−(Δ2L∗ϕ1|σβ|Γ(β+1))(Δ4Lϕ2|σα|Γ(α+1))[1−(Δ1+Δ2Lϕ1|σα|Γ(α+1))][1−(Δ3+Δ4L∗ϕ2|σβ|Γ(β+1))]≈1>0, |
thus, the given system (5.1) is HU stable and also generalized HU stable. Likewise, we can justify the condition of Theorems 3.2 and 4.2.
In this article, we used the Kransnoselskii's fixed point theorem and acquired the necessary cases for the existence and uniqueness of solution for the given fractional integro-differential Eqs (1.1). Furthermore, under specific assumptions and conditions, we proved different kinds of Ulam's stability of system (1.1). The concept of Ulam's stability is very important because it gives a relationship between approximate and exact solutions, so our results may be very helpful in approximation theory and numerical analysis. The mentioned stability is rarely investigated for impulsive fractional integro-differential equations. Finally, we illustrated the main results by giving a suitable example.
This research was supported by the Natural Science Foundation of Jiangxi Province (Grant Nos. 20192BAB201011, 20192BCBL23030 and 20192ACBL21053) and the National Natural Science Foundation of China (Grant No. 11861053).
The authors declare that they have no conflict of interest.
[1] | B. Ahmad, J. J. Nieto, Riemann-Liouville fractional differential equations with fractional boundary conditions, Fixed Point Theor., 13 (2012), 329-336. |
[2] | B. Ahmad, S. Sivasundaram, On four point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order, Appl. Math. Comput., 217 (2010), 480-487. |
[3] | N. Ahmad, Z. Ali, K. Shah, A. Zada, G. Rahman, Analysis of implicit type nonlinear dynamical problem of impulsive fractional differential equations, Complexity, 2018 (2018), 1-15. |
[4] |
Z. Ali, A. Zada, K. Shah, Ulam stability to a toppled systems of nonlinear implicit fractional order boundary value problem, Bound. Value Probl., 2018 (2018), 1-16. doi: 10.1186/s13661-017-0918-2
![]() |
[5] | M. Altman, A fixed point theorem for completely continuous operators in Banach spaces, Bull. Acad. Polon. Sci. Cl. Ⅲ, 3 (1955), 409-413. |
[6] | M. Benchohra, D. Seba, Impulsive fractional differential equations in Banach spaces, Electron. J. Qual. Theo., 8 (2009), 1-14. |
[7] |
M. El-Shahed, J. J. Nieto, Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order, Comput. Math. Appl., 59 (2010), 3438-3443. doi: 10.1016/j.camwa.2010.03.031
![]() |
[8] |
M. Feckan, Y. Zhou, J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci., 17 (2012), 3050-3060. doi: 10.1016/j.cnsns.2011.11.017
![]() |
[9] |
X. Hao, L. Zhang, L. Liu, Positive solutions of higher order fractional integral boundary value problem with a parameter, Nonlinear Anal-Model., 24 (2019), 210-223. doi: 10.15388/NA.2019.2.4
![]() |
[10] | X. Hao, L. Zhang, Positive solutions of a fractional thermostat model with a parameter, Symmetry, 11 (2019), 1-9. |
[11] |
X. Hao, H. Sun, L. Liu, Existence results for fractional integral boundary value problem involving fractional derivatives on an infinite interval, Math. Meth. Appl. Sci., 41 (2018), 6984-6996. doi: 10.1002/mma.5210
![]() |
[12] |
S. M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., 19 (2006), 854-858. doi: 10.1016/j.aml.2005.11.004
![]() |
[13] | R. A. Khan, K. Shah, Existence and uniqueness of solutions to fractional order multi-point boundary value problems, Commun. Appl. Anal., 19 (2015), 515-526. |
[14] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equation, North-Holl and Mathematics Studies, 2006, 1-523. |
[15] |
N. Kosmatov, Initial value problems of fractional order with fractional impulsive conditions, Results Math., 63 (2013), 1289-1310. doi: 10.1007/s00025-012-0269-3
![]() |
[16] | V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, 2009, 1-170. |
[17] | M. Obloza, Hyers stability of the linear differential equation, Rocznik Nauk-Dydakt, Prace Mat., 13 (1993), 259-270. |
[18] |
K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. softw., 41 (2010), 9-12. doi: 10.1016/j.advengsoft.2008.12.012
![]() |
[19] | I. Podlubny, Fractional differential equations, Academic Press, 1998. |
[20] | U. Riaz, A. Zada, Z. Ali, Y. Cui, J. Xu, Analysis of nonlinear coupled systems of impulsive fractional differential equations with Hadamard derivatives, Math. Probl. Eng., 2019 (2019), 1-20. |
[21] |
U. Riaz, A. Zada, Z. Ali, Y. Cui, J. Xu, Analysis of coupled systems of implicit impulsive fractional differential equations involving Hadamard derivatives, Adv. Differ. Equ., 2019 (2019), 1-27. doi: 10.1186/s13662-018-1939-6
![]() |
[22] | F. A. Rihan, Numerical Modeling of Fractional Order Biological Systems, Abstr. Appl. Anal., 2013 (2013), 1-11. |
[23] |
R. Rizwan, A. Zada, X. Wang, Stability analysis of non linear implicit fractional Langevin equation with non-instantaneous impulses, Adv. Differ. Equ., 2019 (2019), 1-31. doi: 10.1186/s13662-018-1939-6
![]() |
[24] | I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathina J. Math, 26 (2010), 103-107. |
[25] | J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in fractional calculus, Springer, 2007. |
[26] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science, 1993. |
[27] | K. Shah, R. A. Khan, Existence and uniqueness of positive solutions to a coupled system of nonlinear fractional order differential equations with anti-periodic boundary conditions, Differ. Equ. Appl., 7 (2015), 245-262. |
[28] | V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of particles, Fields and Media, Springer, 2010. |
[29] | S. M. Ulam, A Collection of the Mathematical Problems, Interscience, 1960. |
[30] | B. M. Vintagre, I. Podlybni, A. Hernandez, V. Feliu, Some approximations of fractional order operators used in control theory and applications, Fract. Calc. Appl. Anal., 4 (2000), 47-66. |
[31] | J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theo., 2011 (2011), 1-10. |
[32] |
J. Wang, A. Zada, H. Waheed, Stability analysis of a coupled system of nonlinear implicit fractional anti-periodic boundary value problem, Math. Method. Appl. Sci., 42 (2019), 6706-6732. doi: 10.1002/mma.5773
![]() |
[33] |
A. Zada, S. Ali, Stability Analysis of multi-point boundary value problem for sequential fractional differential equations with non-instantaneous impulses, Int. J. Nonlin. Sci. Num., 19 (2018), 763-774. doi: 10.1515/ijnsns-2018-0040
![]() |
[34] |
A. Zada, S. Ali, Stability of integral Caputo-type boundary value problem with non-instantaneous impulses, Int. J. Appl. Comput. Math., 5 (2019), 55. doi: 10.1007/s40819-019-0640-0
![]() |
[35] |
A. Zada, W. Ali, S. Farina, Hyers-Ulam stability of nonlinear differential equations with fractional integrable impulses, Math. Method. App. Sci., 40 (2017), 5502-5514. doi: 10.1002/mma.4405
![]() |
[36] |
A. Zada, S. Ali, Y. Li, Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition, Adv. Differ. Equ., 2017, (2017), 1-26. doi: 10.1186/s13662-016-1057-2
![]() |
[37] | A. Zada, W. Ali, C. Park, Ulam's type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall-Bellman-Bihari's type, Appl. Math. Comput., 350 (2019), 60-65. |
[38] | A. Zada, B. Dayyan, Stability analysis for a class of implicit fractional differential equations with instantaneous impulses and Riemann-Liouville boundary conditions, Annals of the University of Craiova, Mathematics and Computer Science Series, 47 (2020), 88-110. |
[39] | A. Zada, F. Khan, U. Riaz, T. Li, Hyers-Ulam stability of linear summation equations, Punjab University Journal of Mathematics, 49 (2017), 19-24. |
[40] |
A. Zada, U. Riaz, F. Khan, Hyers-Ulam stability of impulsive integral equations, B. Unione Mat. Ital., 12 (2019), 453-467. doi: 10.1007/s40574-018-0180-2
![]() |
1. | Narges Peykrayegan, Mehdi Ghovatmand, Mohammad Hadi Noori Skandari, Dumitru Baleanu, An approximate approach for fractional singular delay integro-differential equations, 2022, 7, 2473-6988, 9156, 10.3934/math.2022507 | |
2. | Mehboob Alam, Akbar Zada, Implementation of q-calculus on q-integro-differential equation involving anti-periodic boundary conditions with three criteria, 2022, 154, 09600779, 111625, 10.1016/j.chaos.2021.111625 | |
3. | Binlin Zhang, Rafia Majeed, Mehboob Alam, On Fractional Langevin Equations with Stieltjes Integral Conditions, 2022, 10, 2227-7390, 3877, 10.3390/math10203877 | |
4. | Mehboob Alam, Akbar Zada, Usman Riaz, On a Coupled Impulsive Fractional Integrodifferential System with Hadamard Derivatives, 2022, 21, 1575-5460, 10.1007/s12346-021-00535-0 | |
5. | Mehboob Alam, Dildar Shah, Hyers–Ulam stability of coupled implicit fractional integro-differential equations with Riemann–Liouville derivatives, 2021, 150, 09600779, 111122, 10.1016/j.chaos.2021.111122 | |
6. | Akbar Zada, Mehboob Alam, Khansa Hina Khalid, Ramsha Iqbal, Ioan-Lucian Popa, Analysis of Q-Fractional Implicit Differential Equation with Nonlocal Riemann–Liouville and Erdélyi-Kober Q-Fractional Integral Conditions, 2022, 21, 1575-5460, 10.1007/s12346-022-00623-9 | |
7. | Ravi Agarwal, Snezhana Hristova, Donal O'Regan, Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential equations with Riemann-Liouville derivatives, 2022, 7, 2473-6988, 2973, 10.3934/math.2022164 | |
8. | Mehboob Alam, Aftab Khan, Muhammad Asif, Analysis of implicit system of fractional order via generalized boundary conditions, 2023, 0170-4214, 10.1002/mma.9139 | |
9. | Mehboob Alam, Khansa Hina Khalid, Analysis of q ‐fractional coupled implicit systems involving the nonlocal Riemann–Liouville and Erdélyi–Kober q ‐fractional integral conditions , 2023, 0170-4214, 10.1002/mma.9208 | |
10. | Rafia Majeed, Binlin Zhang, Mehboob Alam, Fractional Langevin Coupled System with Stieltjes Integral Conditions, 2023, 11, 2227-7390, 2278, 10.3390/math11102278 | |
11. | Mehboob Alam, Akbar Zada, Sumbel Begum, Usman Riaz, Analysis of Fractional Integro-differential System with Impulses, 2023, 9, 2349-5103, 10.1007/s40819-023-01584-6 | |
12. | Akbar Zada, Usman Riaz, Junaid Jamshed, Mehboob Alam, Afef Kallekh, Analysis of impulsive Caputo fractional integro‐differential equations with delay, 2024, 0170-4214, 10.1002/mma.10426 |