Citation: Xiaoming Wang, Mehboob Alam, Akbar Zada. On coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives[J]. AIMS Mathematics, 2021, 6(2): 1561-1595. doi: 10.3934/math.2021094
[1] | B. Ahmad, J. J. Nieto, Riemann-Liouville fractional differential equations with fractional boundary conditions, Fixed Point Theor., 13 (2012), 329-336. |
[2] | B. Ahmad, S. Sivasundaram, On four point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order, Appl. Math. Comput., 217 (2010), 480-487. |
[3] | N. Ahmad, Z. Ali, K. Shah, A. Zada, G. Rahman, Analysis of implicit type nonlinear dynamical problem of impulsive fractional differential equations, Complexity, 2018 (2018), 1-15. |
[4] | Z. Ali, A. Zada, K. Shah, Ulam stability to a toppled systems of nonlinear implicit fractional order boundary value problem, Bound. Value Probl., 2018 (2018), 1-16. doi: 10.1186/s13661-017-0918-2 |
[5] | M. Altman, A fixed point theorem for completely continuous operators in Banach spaces, Bull. Acad. Polon. Sci. Cl. Ⅲ, 3 (1955), 409-413. |
[6] | M. Benchohra, D. Seba, Impulsive fractional differential equations in Banach spaces, Electron. J. Qual. Theo., 8 (2009), 1-14. |
[7] | M. El-Shahed, J. J. Nieto, Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order, Comput. Math. Appl., 59 (2010), 3438-3443. doi: 10.1016/j.camwa.2010.03.031 |
[8] | M. Feckan, Y. Zhou, J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci., 17 (2012), 3050-3060. doi: 10.1016/j.cnsns.2011.11.017 |
[9] | X. Hao, L. Zhang, L. Liu, Positive solutions of higher order fractional integral boundary value problem with a parameter, Nonlinear Anal-Model., 24 (2019), 210-223. doi: 10.15388/NA.2019.2.4 |
[10] | X. Hao, L. Zhang, Positive solutions of a fractional thermostat model with a parameter, Symmetry, 11 (2019), 1-9. |
[11] | X. Hao, H. Sun, L. Liu, Existence results for fractional integral boundary value problem involving fractional derivatives on an infinite interval, Math. Meth. Appl. Sci., 41 (2018), 6984-6996. doi: 10.1002/mma.5210 |
[12] | S. M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., 19 (2006), 854-858. doi: 10.1016/j.aml.2005.11.004 |
[13] | R. A. Khan, K. Shah, Existence and uniqueness of solutions to fractional order multi-point boundary value problems, Commun. Appl. Anal., 19 (2015), 515-526. |
[14] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equation, North-Holl and Mathematics Studies, 2006, 1-523. |
[15] | N. Kosmatov, Initial value problems of fractional order with fractional impulsive conditions, Results Math., 63 (2013), 1289-1310. doi: 10.1007/s00025-012-0269-3 |
[16] | V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, 2009, 1-170. |
[17] | M. Obloza, Hyers stability of the linear differential equation, Rocznik Nauk-Dydakt, Prace Mat., 13 (1993), 259-270. |
[18] | K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. softw., 41 (2010), 9-12. doi: 10.1016/j.advengsoft.2008.12.012 |
[19] | I. Podlubny, Fractional differential equations, Academic Press, 1998. |
[20] | U. Riaz, A. Zada, Z. Ali, Y. Cui, J. Xu, Analysis of nonlinear coupled systems of impulsive fractional differential equations with Hadamard derivatives, Math. Probl. Eng., 2019 (2019), 1-20. |
[21] | U. Riaz, A. Zada, Z. Ali, Y. Cui, J. Xu, Analysis of coupled systems of implicit impulsive fractional differential equations involving Hadamard derivatives, Adv. Differ. Equ., 2019 (2019), 1-27. doi: 10.1186/s13662-018-1939-6 |
[22] | F. A. Rihan, Numerical Modeling of Fractional Order Biological Systems, Abstr. Appl. Anal., 2013 (2013), 1-11. |
[23] | R. Rizwan, A. Zada, X. Wang, Stability analysis of non linear implicit fractional Langevin equation with non-instantaneous impulses, Adv. Differ. Equ., 2019 (2019), 1-31. doi: 10.1186/s13662-018-1939-6 |
[24] | I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathina J. Math, 26 (2010), 103-107. |
[25] | J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in fractional calculus, Springer, 2007. |
[26] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science, 1993. |
[27] | K. Shah, R. A. Khan, Existence and uniqueness of positive solutions to a coupled system of nonlinear fractional order differential equations with anti-periodic boundary conditions, Differ. Equ. Appl., 7 (2015), 245-262. |
[28] | V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of particles, Fields and Media, Springer, 2010. |
[29] | S. M. Ulam, A Collection of the Mathematical Problems, Interscience, 1960. |
[30] | B. M. Vintagre, I. Podlybni, A. Hernandez, V. Feliu, Some approximations of fractional order operators used in control theory and applications, Fract. Calc. Appl. Anal., 4 (2000), 47-66. |
[31] | J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theo., 2011 (2011), 1-10. |
[32] | J. Wang, A. Zada, H. Waheed, Stability analysis of a coupled system of nonlinear implicit fractional anti-periodic boundary value problem, Math. Method. Appl. Sci., 42 (2019), 6706-6732. doi: 10.1002/mma.5773 |
[33] | A. Zada, S. Ali, Stability Analysis of multi-point boundary value problem for sequential fractional differential equations with non-instantaneous impulses, Int. J. Nonlin. Sci. Num., 19 (2018), 763-774. doi: 10.1515/ijnsns-2018-0040 |
[34] | A. Zada, S. Ali, Stability of integral Caputo-type boundary value problem with non-instantaneous impulses, Int. J. Appl. Comput. Math., 5 (2019), 55. doi: 10.1007/s40819-019-0640-0 |
[35] | A. Zada, W. Ali, S. Farina, Hyers-Ulam stability of nonlinear differential equations with fractional integrable impulses, Math. Method. App. Sci., 40 (2017), 5502-5514. doi: 10.1002/mma.4405 |
[36] | A. Zada, S. Ali, Y. Li, Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition, Adv. Differ. Equ., 2017, (2017), 1-26. doi: 10.1186/s13662-016-1057-2 |
[37] | A. Zada, W. Ali, C. Park, Ulam's type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall-Bellman-Bihari's type, Appl. Math. Comput., 350 (2019), 60-65. |
[38] | A. Zada, B. Dayyan, Stability analysis for a class of implicit fractional differential equations with instantaneous impulses and Riemann-Liouville boundary conditions, Annals of the University of Craiova, Mathematics and Computer Science Series, 47 (2020), 88-110. |
[39] | A. Zada, F. Khan, U. Riaz, T. Li, Hyers-Ulam stability of linear summation equations, Punjab University Journal of Mathematics, 49 (2017), 19-24. |
[40] | A. Zada, U. Riaz, F. Khan, Hyers-Ulam stability of impulsive integral equations, B. Unione Mat. Ital., 12 (2019), 453-467. doi: 10.1007/s40574-018-0180-2 |