Loading [MathJax]/jax/output/SVG/jax.js
Research article

On coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives

  • Received: 08 October 2020 Accepted: 16 November 2020 Published: 24 November 2020
  • MSC : 26A33, 34A08, 34B27

  • In this paper, we investigate the existence, uniqueness and stability of coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives. To prove the existence and uniqueness results for afore mentioned system, we use the techniques of Kransnoselskiios type fixed point theorem. Furthermore, different kinds of Ulam stabilities are discussed along with examples, to demonstrate the validity of main results.

    Citation: Xiaoming Wang, Mehboob Alam, Akbar Zada. On coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives[J]. AIMS Mathematics, 2021, 6(2): 1561-1595. doi: 10.3934/math.2021094

    Related Papers:

    [1] Ravi Agarwal, Snezhana Hristova, Donal O'Regan . Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential equations with Riemann-Liouville derivatives. AIMS Mathematics, 2022, 7(2): 2973-2988. doi: 10.3934/math.2022164
    [2] Hasanen A. Hammad, Hassen Aydi, Manuel De la Sen . The existence and stability results of multi-order boundary value problems involving Riemann-Liouville fractional operators. AIMS Mathematics, 2023, 8(5): 11325-11349. doi: 10.3934/math.2023574
    [3] Ymnah Alruwaily, Lamya Almaghamsi, Kulandhaivel Karthikeyan, El-sayed El-hady . Existence and uniqueness for a coupled system of fractional equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2023, 8(5): 10067-10094. doi: 10.3934/math.2023510
    [4] Md. Asaduzzaman, Md. Zulfikar Ali . Existence of positive solution to the boundary value problems for coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2019, 4(3): 880-895. doi: 10.3934/math.2019.3.880
    [5] Khalid K. Ali, K. R. Raslan, Amira Abd-Elall Ibrahim, Mohamed S. Mohamed . On study the fractional Caputo-Fabrizio integro differential equation including the fractional q-integral of the Riemann-Liouville type. AIMS Mathematics, 2023, 8(8): 18206-18222. doi: 10.3934/math.2023925
    [6] Veliappan Vijayaraj, Chokkalingam Ravichandran, Thongchai Botmart, Kottakkaran Sooppy Nisar, Kasthurisamy Jothimani . Existence and data dependence results for neutral fractional order integro-differential equations. AIMS Mathematics, 2023, 8(1): 1055-1071. doi: 10.3934/math.2023052
    [7] Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263
    [8] Thabet Abdeljawad, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay. AIMS Mathematics, 2024, 9(3): 7372-7395. doi: 10.3934/math.2024357
    [9] Pinghua Yang, Caixia Yang . The new general solution for a class of fractional-order impulsive differential equations involving the Riemann-Liouville type Hadamard fractional derivative. AIMS Mathematics, 2023, 8(5): 11837-11850. doi: 10.3934/math.2023599
    [10] Bashir Ahmad, Ahmed Alsaedi, Sotiris K. Ntouyas . Nonlinear Langevin equations and inclusions involving mixed fractional order derivatives and variable coefficient with fractional nonlocal-terminal conditions. AIMS Mathematics, 2019, 4(3): 626-647. doi: 10.3934/math.2019.3.626
  • In this paper, we investigate the existence, uniqueness and stability of coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives. To prove the existence and uniqueness results for afore mentioned system, we use the techniques of Kransnoselskiios type fixed point theorem. Furthermore, different kinds of Ulam stabilities are discussed along with examples, to demonstrate the validity of main results.


    Fractional order differential equations are the generalizations of the classical integer order differential equations. The idea about the fractional order derivative was introduced at the end of the sixteenth century (1695) when Leibniz used the notation dndσn for nth order derivative. By writing a letter to him, L'Hospital asked the question: what would be the result if n=12? Leibniz answered in such words, "An apparent Paradox, from which one day useful consequences will be drawn", and this question became the foundation of fractional calculus. Fractional calculus has become a speedily developing area and its applications can be found in diverse fields ranging from physical sciences, porous media, electrochemistry, economics, electromagnetics, medicine and engineering to biological sciences. Progressively, fractional differential equations play a very important role in fields such as thermodynamics, statistical physics, nonlinear oscillation of earthquakes, viscoelasticity, defence, optics, control, signal processing, electrical circuits, astronomy etc. There are some outstanding articles which provide the main theoretical tools for the qualitative analysis of this research field, and at the same time, shows the interconnection as well as the distinction between integral models, classical and fractional differential equations, see [14,16,18,19,22,25,26,28,30]

    Impulsive fractional differential equations are used to describe both physical, social sciences and many dynamical systems such as evolution processes pharmacotherapy. There are two types of impulsive fractional differential equations the first one is instantaneous impulsive fractional differential equations while the other one is non-instantaneous impulsive fractional differential equations. In last few decades, the theory of impulsive fractional differential equations are well utilized in medicine, mechanical engineering, ecology, biology and astronomy etc. There are some remarkable monographs [3,6,8,15,20,23,33,34], considering fractional differential equations with impulses.

    The most preferable research area in the field of fractional differential equations (FDEs), which received great attention from the researchers is the theory regarding the existence of solutions. Many researchers developed some interesting results about the existence of solutions of different boundary value problems (BVPs) using different fixed point theorems. For details we refer the reader to [2,7,9,10,11,13,27]. Most of the time, it is quite intricate to find the exact solutions of nonlinear differential equations, in such a situation different approximation techniques are introduced. The difference between exact and approximate solutions is nowadays dealt with using Hyers-Ulam (HU) type stabilities, which were first introduced in 1940 by Ulam [29] and then answered by Hyers in the following year in the context of Banach spaces. Many researchers investigated HU type stabilities for different problems with different approaches [12,17,31,35,36,37,39,40].

    Zada and Dayyan [38], investigated the existence, uniqueness and Ulam's type stability for the implicit fractional differential equation with instantaneous impulses and Riemann-Liouville fractional integral boundary conditions having the following form

    {cDα0,σu(σ)ϕ1(σ,u(σ),cDαu(σ))=0,σσjI,0<α1,Δu(σj)Ej(u(σj))=0,j=1,2,,q1,η1u(σ)|σ=0+ξ1Iαu(σ)|σ=0=ν1,η2u(σ)|σ=T+ξ2Iαu(σ)|σ=T=ν2,

    where I=[0,T], and cDα0,σ is a generalization of classical Caputo derivative of order α with lower bound at 0, ϕ1:I×R×RR is a continuous function. Furthermore, u(σ+j) and u(σ+j) represent the right-sided and left-sided limits respectively at σ=σj for j=1,2,,q1.

    Ali et al. [4], studied a coupled system for the existence and uniqueness of solution using Riemann-Liouville derivative

    {Dαu(σ)=ϕ1(σ,v(σ),Dαu(σ)),Dβv(σ)=ϕ2(σ,u(σ),Dβv(σ)),σJ,Dα1u(0+)=β1Dα1u(T),Dα1u(0+)=γ1Dα1u(T),Dβ1v(0+)=β2Dβ1v(T),Dβ1v(0+)=γ2Dβ1v(T),

    where σJ=[0,T], T>0, α,β(1,2], and β1,β2,γ1,γ21. Dα, Dβ are the Riemann-Liouville fractional derivatives and ϕ1,ϕ2:[0,1]×R×RR are continuous functions.

    Wang et al. [32], presented stability of the following coupled system of implicit fractional integro-differential equations having anti-periodic boundary conditions:

    {cDαu(σ)ϕ1(σ,v(σ),cDαu(σ))1Γ(γ1)σ0(σs)γ11f(s,v(s),cDαu(s))ds=0,σJ,cDβv(σ)ϕ2(σ,u(σ),cDβv(σ))1Γ(γ2)σ0(σs)γ21g(s,u(s),cDβv(s))ds=0,σJ,u(σ)|σ=0=u(σ)|σ=T=0,cDr1u(σ)|σ=0=cDr1u(σ)|σ=T,v(σ)|σ=0=v(σ)|σ=T=0,cDr2v(σ)|σ=0=cDr2v(σ)|σ=T,

    where 1<α,β2, 0r1,r22, γ1,γ2>0, and J=[0,T], T>0. ϕ1,ϕ2,f,g:J×R×RR are continuous functions.

    Motivated by the above work, we focus our attention on the following coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives of the form:

    {{Dαu(σ)ϕ1(σ,Iαu(σ),Iβv(σ))=0,  σω,  σσj,  j=1,2,,p,Δu(σj)Ej(u(σj))=0,Δu(σj)Ej(u(σj))=0,  j=1,2,,p,ν1Dα2u(σ)|σ=0=u1,μ1u(σ)|σ=T+ν2Iα1u(σ)|σ=T=u2,{Dβv(σ)ϕ2(σ,Iαu(σ),Iβv(σ))=0,  σω,  σσk,  k=1,2,,q,Δv(σk)Ek(v(σk))=0,Δv(σk)Ek(v(σk))=0,  k=1,2,,q,ν3Dβ2v(σ)|σ=0=v1,μ2v(σ)|σ=T+ν4Iβ1v(σ)|σ=T=v2, (1.1)

    where 1<α,β2, ϕ1,ϕ2:[0,T]×R×RR being continuous functions and

    Δu(σj)=u(σ+j)u(σj),Δu(σj)=u(σ+j)u(σj)
    Δv(σk)=v(σ+k)v(σk),Δv(σk)=v(σ+k)v(σk),

    where u(σ+j),v(σ+k) and u(σj),v(σk) are the right limits and left limits respectively, Ej,Ej,Ek,Ek:RR are continuous functions, and Dα,Iα are the α-order Riemann-Liouville fractional derivative and integral operators respectively.

    The remaining article is arranged as follows: In Section 2, we present some basic definitions, theorems, and lemmas that will be used in our main results. In Section 3, we use suitable cases for the existence and uniqueness of solution for the proposed system (1.1) using Kransnoselskii's type fixed point theorem. In Section 4, we discuss different kinds of stabilities in the sense of Ulam under certain conditions. In Section 5, an example is given to support the main results.

    In this section, we present some basics notations, definitions, and results that are used in the whole article.

    Let T>0, ω=[0,T]. The Banach space of all continuous functions from ω into R is denoted by C(ω,R) with the norm

    u=sup{|u(σ)|:σω}

    and the product of these spaces is also a Banach space with the norm

    (u,v)=u+v.

    The piecewise continuous functions with 1<α,β2 are denoted as follows:

    ϑ1=PC2α(ω,R+)={u:ωR+,u(σ+j),u(σj) and Δu(σ+j),u(σj) exist for j=1,2,,p},
    ϑ2=PC2β(ω,R+)={v:ωR+,v(σ+k),v(σk) and Δv(σ+k),v(σk) exist for k=1,2,,q},

    with the norms

    uϑ1=sup{|σ2αu(σ)|:σω},
    vϑ2=sup{|σ2βv(σ)|:σω},

    respectively. Their product ϑ=ϑ1×ϑ2 is also a Banach space with the norm (u,v)ϑ=uϑ1+vϑ2.

    Definition 2.1. [1] The Riemann-Liouville fractional integral of order α>0 for a function u:R+R is defined as

    Iαu(σ)=1Γ(α)σ0(σπ)α1u(π)dπ,

    where Γ() is the Euler gamma function defined by Γ(α)=0eσσα1dσ,α>0.

    Definition 2.2. For a function u:R+R, the Riemann-Liouville derivative of fractional order α>0, p=[α]+1, is defined as

    Dαu(σ)=1Γ(pα)(ddσ)pσ0(σπ)pα1u(π)dπ,

    provided that integral on the right side exists. [α] denotes the integer part of the real number α. For more properties, the reader may refer to [1].

    Lemma 2.1. [1] Let u be any function, and let α>0, then the Riemann-Liouville fractional derivative for the Homogeneous differential equation

    Dαu(σ)=0,α>0,

    has a solution

    u(σ)=c1σα1+c2σα2++cp1σαp1+cpσαp,

    and for non-homogeneous differential equation

    Dαu(σ)=ϕ1(σ),α>0,

    has a solution

    IαDαu(σ)=Iαϕ1(σ)+c1σα1+c2σα2++cp1σαp1+cpσαp,

    where p=[α]+1 and ci,i=1,2,,p, are real constants.

    Theorem 2.1. (Altman [5]) Let Λ0 be a convex and closed subset of Banach space ϑ. Consider two operators 1,2 such that

    (1) 1(u,v)+2(u,v)Λ;

    (2) 1 is a contractive operator;

    (3) 2 is a compact and continuous operator.

    Then there exists (u,v)Λ such that 1(u,v)+2(u,v)=(u,v)ϑ.

    The following definitions and remarks are taken from [21,24].

    Definition 2.3. The given system (1.1) is HU stable if there exists Nα,β=max{Nα,Nβ}>0 such that, for κ=max{κα,,κβ}>0 and for every solution (ξ,ζ)ϑ of the inequality

    {{|Dαξ(σ)ϕ1(σ,Iαξ(σ),Iβζ(σ))|κα,  σω,|Δξ(σj)Ej(ξ(σj))|κα,  j=1,2,,p,|Δξ(σj)Ej(ξ(σj))|κα,  j=1,2,,p,{|Dβζ(σ)ϕ2(σ,Iαξ(σ),Iβζ(σ))|κβ,  σω,|Δζ(σk)Ek(ζ(σk))|κβ,  k=1,2,,q,|Δζ(σk)Ek(ζ(σk))|κβ,  k=1,2,,q, (2.1)

    there exists a solution (u,v)ϑ with

    (u,v)(ξ,ζ)ϑNα,βκ,σω.

    Definition 2.4. The given system (1.1) is generalized HU stable if there exists NC(R+,R+) with N(0)=0 such that, for any approximate solution (ξ,ζ)ϑ of inequality (2.1), there exists a solution (u,v)ϑ of (1.1) satisfying

    (u,v)(ξ,ζ)ϑN(κ),σω.

    Definition 2.5. The given system (1.1) is HUR stable with respect to ψα,β=max{ψα,ψβ} with ψα,βC(ω,R) if there exists a constant Nψα,ψβ=max{Nψα,Nψβ}>0 such that, for any κ=max{κα,,κβ}>0 and for any approximate solution (ξ,ζ)ϑ of the inequality

    {{|Dαξ(σ)ϕ1(σ,Iαξ(σ),Iβζ(σ))|ψα(σ)κα,  σω,|Δξ(σj)Ej(ξ(σj))|ψα(σ)κα,  j=1,2,,p,|Δξ(σj)Ej(ξ(σj))|ψα(σ)κα,  j=1,2,,p,{|Dβζ(σ)ϕ2(σ,Iαξ(σ),Iβζ(σ))|ψβ(σ)κβ,  σω,|Δζ(σk)Ek(ζ(σk))|ψβ(σ)κβ,  k=1,2,,q,|Δζ(σk)Ek(ζ(σk))|ψβ(σ)κβ,  k=1,2,,q, (2.2)

    there exists a solution (u,v)ϑ with

    (u,v)(ξ,ζ)ϑNψα,ψβψα,β(σ)κ,σω.

    Definition 2.6. The given system (1.1) is generalized HUR stable with respect to ψα,β=max{ψα,ψβ} with ψα,βC(ω,R) if there exists a constant Nψα,ψβ=max{Nψα,Nψβ}>0 such that, for any approximate solution (ξ,ζ)ϑ of inequality (2.2), there exists a solution (u,v)ϑ of (1.1) satisfying

    (u,v)(ξ,ζ)ϑNψα,ψβψα,β(σ),σω.

    Remark 2.1. Let (ξ,ζ)ϑ be a solution of inequalities (2.1) if there exist functions Kϕ1,Lϕ2C(ω,R) depending on ξ,ζ respectively such that

    (1) |Kϕ1(σ)|κα,|Lϕ2(σ)|κβ,σω;

    (2)

    {{Dαξ(σ)=ϕ1(σ,Iαξ(σ),Iβζ(σ))+Kϕ1(σ),Δξ(σj)=Ej(ξ(σj))+Kϕ1j,  j=1,2,,p,Δξ(σj)=Ej(ξ(σj))+Kϕ1j,  j=1,2,,p,{Dβζ(σ)=ϕ2(t,Iαξ(σ),Iβζ(σ))+Lϕ2(σ),Δζ(σk)=Ek(ζ(σk))+Lϕ2k,  k=1,2,,q,Δζ(σk)=Ek(ζ(σk))+Lϕ2k,  k=1,2,,q. (2.3)

    In this section, we discuss the existence and uniqueness of solution of the proposed system (1.1).

    Theorem 3.1. Let α,β(1,2] and ϕ1 be any linear and continuous function. The fractional impulsive differential equation

    {Dαu(σ)=ϕ1(σ,Iαu(σ),Iβv(σ)),σω,σσj,j=1,2,,p,Δu(σj)=Ej(u(σj)),Δu(σj)=Ej(u(σj)),j=1,2,,p,ν1Dα2u(σ)|σ=0=u1,μ1u(σ)|σ=T+ν2Iα1u(σ)|σ=T=u2, (3.1)

    has a solution

    u(σ)={{σα1u2μ1Tα1σα1u1Tν1Γ(α1)+σα2u1ν1Γ(α1)+1Γ(α)σ0(σπ)α1ϕ1(π,Iαu(π),Iβv(π))dπσα1T1αΓ(α)Tσ1(Tπ)α1ϕ1(π,Iαu(π),Iβv(π))dπν2σα1T1αμ1Γ(α1)T0(Tπ)α2u(π)dπσα1T[((α1)(α2)Tσ11)σ2α1E1(u(σ1))+(Tσ1)σ2α1E1(u(σ1))+(Tσ1)σ2α1Γ(α1)σ10(σ1π)α2ϕ1(π,Iαu(π),Iβv(π))dπ+((α1)(α2)Tσ11)σ2α1Γ(α)σ10(σ1π)α1ϕ1(π,Iαu(π),Iβv(π))dπ],σ[0,σ1],{σα1u2μ1Tα1σα1u1Tν1Γ(α1)+σα2u1ν1Γ(α1)+1Γ(α)σσz(σπ)α1ϕ1(π,Iαu(π),Iβv(π))dπσα1T1αΓ(α)Tσz(Tπ)α1ϕ1(π,Iαu(π),Iβv(π))dπν2σα1T1αμ1Γ(α1)T0(Tπ)α2u(π)dπσα1Tzj=1[((α1)(α2)Tσ1j)σ2αjEj(u(σj))+(Tσj)σ2αjEj(u(σj))+(Tσj)σ2αjΓ(α1)σjσj1(σjπ)α2ϕ1(π,Iαu(π),Iβv(π))dπ+((α1)(α2)Tσ1j)σ2αjΓ(α)σjσj1(σjπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ]+zj=1[((α1)(α2)σσ1j)σα2σ2αjEj(u(σj))+(σσj)σα2σ2αjEj(u(σj))+(σσj)σα2σ2αjΓ(α1)σjσj1(σjπ)α2ϕ1(π,Iαu(π),Iβv(π))dπ+((α1)(α2)σσ1j)σα2σ2αjΓ(α)σjσj1(σjπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ],σ(σj,σj+1];z=1,2,,p. (3.2)

    Proof. Consider

    Dαu(σ)=ϕ1(σ,Iαu(σ),Iβv(σ)),σω,α(1,2]. (3.3)

    For σ[0,σ1], Lemma 2.1 gives

    {u(σ)=1Γ(α)σ0(σπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ+a1σα1+a2σα2,u(σ)=1Γ(α1)σ0(σπ)α2ϕ1(π,Iαu(π),Iβv(π))dπ+a1(α1)σα2+a2(α2)σα3. (3.4)

    Again, for σ(σ1,σ2], Lemma 2.1 gives

    {u(σ)=1Γ(α)σσ1(σπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ+b1σα1+b2σα2,u(σ)=1Γ(α1)σσ1(σπ)α2ϕ1(π,Iαu(π),Iβv(π))dπ+b1(α1)σα2+b2(α2)σα3. (3.5)

    Hence it follows that

    {u(σ1)=1Γ(α)σ10(σ1π)α1ϕ1(π,Iαu(π),Iβv(π))dπ+a1σα11+a2σα21,u(σ+1)=b1σα11+b2σα21,u(σ1)=1Γ(α1)σ10(σ1π)α2ϕ1(π,Iαu(π),Iβv(π))dπ+a1(α1)σα21+a2(α2)σα31,u(σ+1)=b1(α1)σα21+b2(α2)σα31.

    Using

    {Δu(σ1)=u(σ+1)u(σ1)=E1(u(σ1)),Δu(σ1)=u(σ+1)u(σ1)=E1(u(σ1)),

    we obtain

    {b1=a1(α2)σ1α1E1(u(σ1))+σ2α1E1(u(σ1))+σ2α1Γ(α1)σ10(σ1π)α2ϕ1(π,Iαu(π),Iβv(π))dπ(α2)σ1α1Γ(α)σ10(σ1π)α1ϕ1(π,Iαu(π),Iβv(π))dπ,b2=a2+(α1)σ2α1E1(u(σ1))σ3α1E1(u(σ1))σ3α1Γ(α1)σ10(σ1π)α2ϕ1(π,Iαu(π),Iβv(π))dπ+(α1)σ2α1Γ(α)σ10(σ1π)α1ϕ1(π,Iαu(π),Iβv(π))dπ.

    Substituting the values of b1, b2 in (3.5), we get

    {u(σ)=a1σα1+a2σα2+((α1)(α2)σσ11)σα2σ2α1E1(u(σ1))+(σσ1)σα2σ2α1E1(u(σ1))+1Γ(α)σσ1(σπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ+((α1)(α2)σσ11)σα2σ2α1Γ(α)σ10(σ1π)α1ϕ1(π,Iαu(π),Iβv(π))dπ+(σσ1)σα2σ2α1Γ(α1)σ10(σ1π)α2ϕ1(π,Iαu(π),Iβv(π))dπ,u(σ)=a1(α1)σα2+a2(α2)σα3+(α1)(α2)(σ1σ11)σα2σ2α1E1(u(σ1))+((α1)(α2)σ1σ1)σα2σ2α1E1(u(σ1))+1Γ(α1)σσ1(σπ)α2ϕ1(π,Iαu(π),Iβv(π))dπ+((α1)(α2)σ1σ1)σα2σ2α1Γ(α1)σ10(σ1π)α2ϕ1(π,Iαu(π),Iβv(π))dπ+(α1)(α2)(σ1σ11)σα2σ2α1Γ(α)σ10(σ1π)α1ϕ1(π,Iαu(π),Iβv(π))dπ.

    Similarly, for σ(σj,σj+1],

    u(σ)=a1σα1+a2σα2+zj=1((α1)(α2)σσ1j)σα2σ2αjEj(u(σj))+zj=1(σσj)σα2σ2αjEj(u(σj))+1Γ(α)σσz(σπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ+zj=1(σσj)σα2σ2αjΓ(α1)σjσj1(σjπ)α2ϕ1(π,Iαu(π),Iβv(π))dπ+zj=1((α1)(α2)σσ1j)σα2σ2αjΓ(α)σjσj1(σjπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ. (3.6)

    Finally, after applying conditions ν1Dα2u(σ)|σ=0=u1, and μ1u(σ)|σ=T+ν2Iα1u(σ)|σ=T=u2 to (3.6) and finding the values of a1 and a2, we obtain Eq (2.2).

    Corollary 1. In view of Theorem 3.1, our coupled system (1.1) has the following solution:

    u(σ)={{σα1u2μ1Tα1σα1u1Tν1Γ(α1)+σα2u1ν1Γ(α1)+1Γ(α)σ0(σπ)α1ϕ1(π,Iαu(π),Iβv(π))dπσα1T1αΓ(α)Tσ1(Tπ)α1ϕ1(π,Iαu(π),Iβv(π))dπν2σα1T1αμ1Γ(α1)T0(Tπ)α2u(π)dπσα1T[((α1)(α2)Tσ11)σ2α1E1(u(σ1))+(Tσ1)σ2α1E1(u(σ1))+(Tσ1)σ2α1Γ(α1)σ10(σ1π)α2ϕ1(π,Iαu(π),Iβv(π))dπ+((α1)(α2)Tσ11)σ2α1Γ(α)σ10(σ1π)α1ϕ1(π,Iαu(π),Iβv(π))dπ],σ[0,σ1],{σα1u2μ1Tα1σα1u1Tν1Γ(α1)+σα2u1ν1Γ(α1)+1Γ(α)σσz(σπ)α1ϕ1(π,Iαu(π),Iβv(π))dπσα1T1αΓ(α)Tσz(Tπ)α1ϕ1(π,Iαu(π),Iβv(π))dπν2σα1T1αμ1Γ(α1)T0(Tπ)α2u(π)dπσα1Tzj=1[((α1)(α2)Tσ1j)σ2αjEj(u(σj))+(Tσj)σ2αjEj(u(σj))+(Tσj)σ2αjΓ(α1)σjσj1(σjπ)α2ϕ1(π,Iαu(π),Iβv(π))dπ+((α1)(α2)Tσ1j)σ2αjΓ(α)σjσj1(σjπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ]+zj=1[((α1)(α2)σσ1j)σα2σ2αjEj(u(σj))+(σσj)σα2σ2αjEj(u(σj))+(σσj)σα2σ2αjΓ(α1)σjσj1(σjπ)α2ϕ1(π,Iαu(π),Iβv(π))dπ+((α1)(α2)σσ1j)σα2σ2αjΓ(α)σjσj1(σjπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ],σ(σj,σj+1];z=1,2,,p. (3.7)

    and

    v(σ)={{σβ1v2μ2Tβ1σβ1v1Tν3Γ(β1)+σβ2v1ν3Γ(β1)+1Γ(β)σ0(σπ)β1ϕ2(π,Iαu(π),Iβv(π))dπσβ1T1βΓ(β)Tσ1(Tπ)β1ϕ2(π,Iαu(π),Iβv(π))dπν4σβ1T1βμ2Γ(β1)T0(Tπ)β2v(π)dπσβ1T[((β1)(β2)Tσ11)σ2β1E1(v(σ1))+(Tσ1)σ2β1E1(v(σ1))+(Tσ1)σ2β1Γ(β1)σ10(σ1π)β2ϕ2(π,Iαu(π),Iβv(π))dπ+((β1)(β2)Tσ11)σ2β1Γ(β)σ10(σ1π)β1ϕ2(π,Iαu(π),Iβv(π))dπ],σ[0,σ1],{σβ1v2μ2Tβ1σβ1v1Tν3Γ(β1)+σβ2v1ν3Γ(β1)+1Γ(β)σσz(σπ)β1ϕ2(π,Iαu(π),Iβv(π))dπσβ1T1βΓ(β)Tσz(Tπ)β1ϕ2(π,Iαu(π),Iβv(π))dπν4σβ1T1βμ2Γ(β1)T0(Tπ)β2v(π)dπσβ1Tzk=1[((β1)(β2)Tσ1k)σ2βkEk(v(σk))+(Tσk)σ2βkEk(v(σk))+(Tσk)σ2βkΓ(β1)σkσk1(σkπ)β2ϕ2(π,Iαu(π),Iβv(π))dπ+((β1)(β2)Tσ1k)σ2βkΓ(β)σkσk1(σkπ)β1ϕ2(π,Iαu(π),Iβv(π))dπ]+zk=1[((β1)(β2)σσ1k)σβ2σ2βkEk(v(σk))+(σσk)σβ2σ2βkEk(v(σk))+(σσk)σβ2σ2βkΓ(β1)σkσk1(σkπ)β2ϕ2(π,Iαu(π),Iβv(π))dπ+((β1)(β2)σσ1k)σβ2σ2βkΓ(β)σkσk1(σkπ)β1ϕ2(π,Iαu(π),Iβv(π))dπ],σ(σk,σk+1];z=1,2,,q. (3.8)

    Now, for transformation of the given system (1.1) into a fixed point problem, let the operators 1,2:ϑϑ be define as follows:

    1(u,v)(σ)=(1(u(σ)),1(v(σ))),2(u,v)(σ)=(2(u,v)(σ),2(u,v)(σ)),
    1(u,v)(σ)={1(u(σ))={σα1u2μ1Tα1σα1u1Tν1Γ(α1)+σα2u1ν1Γ(α1)ν2σα1T1αμ1Γ(α1)T0(Tπ)α2u(π)dπσα1Tzj=1[((α1)(α2)Tσ1j)σ2αjEj(u(σj))+(Tσj)σ2αjEj(u(σj))]+zj=1[((α1)(α2)σσ1j)σα2σ2αjEj(u(σj))+(σσj)σα2σ2αjEj(u(σj))],σ(σj,σj+1];z=1,2,,p,1(v(σ))={σβ1v2μ2Tβ1σβ1v1Tν3Γ(β1)+σβ2v1ν3Γ(β1)ν4σβ1T1βμ2Γ(β1)T0(Tπ)β2v(π)dπσβ1Tzk=1[((β1)(β2)Tσ1k)σ2βkEk(v(σk))+(Tσk)σ2βkEk(v(σk))]+zk=1[((β1)(β2)σσ1k)σβ2σ2βkEk(v(σk))+(σσk)σβ2σ2βkEk(v(σk))],σ(σk,σk+1];z=1,2,,q, (3.9)

    and

    2(u,v)(σ)={2(u,v)(σ)={1Γ(α)σσz(σπ)α1ϕ1(π,Iαu(π),Iβv(π))dπσα1T1αΓ(α)Tσz(Tπ)α1ϕ1(π,Iαu(π),Iβv(π))dπσα1Tzj=1[(Tσj)σ2αjΓ(α1)σjσj1(σjπ)α2ϕ1(π,Iαu(π),Iβv(π))dπ+((α1)(α2)Tσ1j)σ2αjΓ(α)σjσj1(σjπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ]+zj=1[(σσj)σα2σ2αjΓ(α1)σjσj1(σjπ)α2ϕ1(π,Iαu(π),Iβv(π))dπ+((α1)(α2)σσ1j)σα2σ2αjΓ(α)σjσj1(σjπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ],σ(σj,σj+1];z=1,2,,p,2(u,v)(σ)={1Γ(β)σσz(σπ)β1ϕ2(π,Iαu(π),Iβv(π))dπσβ1T1βΓ(β)Tσz(Tπ)β1ϕ2(π,Iαu(π),Iβv(π))dπσβ1Tzk=1[(Tσk)σ2βkΓ(β1)σkσk1(σkπ)β2ϕ2(π,Iαu(π),Iβv(π))dπ+((β1)(β2)Tσ1k)σ2βkΓ(β)σkσk1(σkπ)β1ϕ2(π,Iαu(π),Iβv(π))dπ]+zk=1[(σσk)σβ2σ2βkΓ(β1)σkσk1(σkπ)β2ϕ2(π,Iαu(π),Iβv(π))dπ+((β1)(β2)σσ1k)σβ2σ2βkΓ(β)σkσk1(σkπ)β1ϕ2(π,Iαu(π),Iβv(π))dπ],σ(σk,σk+1];z=1,2,,q. (3.10)

    For additional analysis, the following hypothesis needs to hold:

    (H1) ● For σω there exist bounded functions o,τ,υϑ such that

    |ϕ1(σ,x1(σ),x2(σ))|o(σ)+τ(σ)|x1(σ)|+υ(σ)|x2(σ)|

    with o1=supσωo(σ), τ1=supσωτ(σ), and υ1=supσωυ(σ)<1.

    ● Similarly, for σω there exist bounded functions o,τ,υϑ such that

    |ϕ2(σ,x1(σ),x2(σ))|o(σ)+τ(σ)|x1(σ)|+υ(σ)|x2(σ)|

    with o2=supσωo(σ), τ2=supσωτ(σ), and υ2=supσωυ(σ)<1.

    (H2) Ej,Ej:RR are continuous and there exist constants GE,GE,GE,GE,ˆGE,ˆGE,ˆGE,ˆGE>0 such that, for any (u,v)ϑ,

    |Ez(u)|GE|u|+GE,|Ez(v)|ˆGE|v|+ˆGE,|Ez(u)|GE|u|+GE,|Ez(v)|ˆGE|v|+ˆGE,

    where z=1,2,,p.

    (H3) ● For all x1,x2,x1,x2R and for each σω, there exist constants Lϕ1>0, 0<Lϕ1<1 such that

    |ϕ1(σ,x1,x2)ϕ1(σ,x1,x2)|Lϕ1|x1x1|+Lϕ1|x2x2|.

    ● Similarly, for all x1,x2,x1,x2R and for each σω, there exist constants Lϕ2>0, 0<Lϕ2<1 such that

    |ϕ2(σ,x1,x2)ϕ2(σ,x1,x2)|Lϕ2|x1x1|+Lϕ2|x2x2|.

    (H4) Ez,Ez:RR are continuous and there exist constants LE,LE,LE,LE such that, for any (u,v),(u,v)ϑ,

    |Ez(u(σ))Ez(u(σ))|LE|uu|,|Ez(v(σ))Ez(v(σ))|LE|vv|,|Ez(u(σ))Ez(u(σ))|LE|uu|,|Ez(v(σ))Ez(v(σ))|LE|vv|.

    Here we use Kransnoselskii's fixed point theorem to show that the operator 1+2 has at least one fixed point. Therefore, we choose a closed ball

    ϑr={(u,v)ϑ,(u,v)r,ur2andvr2}ϑ,

    where

    rG1+G1+o1G3+o2G31(G2+G2+G3G4+G3G4).

    Theorem 3.2. If hypotheses (H1)(H4) are hold, then the given system (1.1) has at least one solution.

    Proof. 1) For any (u,v)ϑr, we have

    1(u,v)+2(u,v)ϑ1(u)ϑ1+1(v)ϑ2+2(u,v)ϑ1+2(u,v)ϑ2. (3.11)

    From (3.9), we get

    |σ2α1(u(σ))||σu2μ1Tα1|+|σu1Tν1Γ(α1)|+|u1ν1Γ(α1)|+ν2|σ||T1α|μ1Γ(α1)T0|(Tπ)α2||u(π)|dπ+zj=1|((α1)(α2)σσ1j)σT((α1)(α2)Tσ1j)||σ2αj||Ej(u(σj))|+zj=1|(σσj)σT(Tσj)||σ2αj||Ej(u(σj))|,z=1,2,,p. (3.12)

    This implies that

    1(u)ϑ1|σu2μ1Tα1|+|σu1Tν1Γ(α1)|+|u1ν1Γ(α1)|+ν2|σ|μ1Γ(α)u+z(α1)|σ2αz||1σT|(GEu+GE)+z|σ3αz||σT1|(GEu+GE)G1+G2u. (3.13)

    Similarly, we can obtain

    1(v)ϑ2G1+G2v, (3.14)

    where

    G1=zGE(α1)|σ2αz||1σT|+zGE|σ3αz||σT1|+|σu2μ1Tα1|+|σu1Tν1Γ(α1)|+|u1ν1Γ(α1)|,G2=zGE(α1)|σ2αz||1σT|+zGE|σ3αz||σT1|+ν2|σ|μ1Γ(α),forz=1,2,,p,andG1=zˆGE(β1)|σ2βz||1σT|+zˆGE|σ3βz||σT1|+|σv2μ2Tβ1|+|σv1Tν3Γ(β1)|+|v1ν3Γ(β1)|,G2=zˆGE(β1)|σ2βz||1σT|+zˆGE|σ3βz||σT1|+ν4|σ|μ2Γ(β),forz=1,2,,q.

    Also, we have

    |σ2α2(u,v)||σ2α|Γ(α)σσz|(σπ)α1||y(π)|dπ+|σ||T1α|Γ(α)Tσz|(Tπ)α1||y(π)|dπ+σTzj=1[|(Tσj)||σ2αj|Γ(α1)σjσj1|(σjπ)α2||y(π)|dπ+|((α1)(α2)Tσ1j)||σ2αj|Γ(α)σjσj1|(σjπ)α1||y(π)|dπ]+zj=1[|(σσj)||σ2αj|Γ(α1)σjσj1|(σjπ)α2||y(π)|dπ+|((α1)(α2)σσ1j)||σ2αj|Γ(α)σjσj1|(σjπ)α1||y(π)|dπ]   forz=1,2,,p. (3.15)

    Now by (H1)

    |y(σ)|=|ϕ1(σ,Iαu(σ),Iβv(σ))|o(σ)+τ(σ)|Iαu(σ)|+υ(σ)|Iβv(σ)|o(σ)+τ(σ)1Γ(α)σ0|(σπ)α1||u(π)|dπ+υ(σ)1Γ(β)σ0|(σπ)β1||v(π)|dπ.

    Now, taking supσω on both sides, we get

    yo1+τ1|σα|uΓ(α+1)+υ1|σβ|vΓ(β+1). (3.16)

    Now taking supσω of (3.15) and using (3.16) in (3.15), we get

    2(u,v)ϑ1(o1+τ1|σα|uΓ(α+1)+υ1|σβ|vΓ(β+1))(|σ2α||(σσz)α|Γ(α+1)+|σ||T1α||(Tσz)α|Γ(α+1)+z|σ||σ2αz|T[|(Tσz)||(σzσz1)α1|Γ(α)+|((α1)(α2)Tσ1z)||(σzσz1)α|Γ(α+1)]+z|(σσz)||σ2αz||(σzσz1)α1|Γ(α)+z|((α1)(α2)σσ1z)||σ2αz||(σzσz1)α|Γ(α+1))o1G3+τ1|σα|uG3Γ(α+1)+υ1|σβ|vG3Γ(β+1)o1G3+G3G4(u,v). (3.17)

    Similarly,

    2(u,v)ϑ2o2G3+G3G4(u,v), (3.18)

    where

    G3=|σ2α||(σσz)α|Γ(α+1)+|σ||T1α||(Tσz)α|Γ(α+1)+z|σ||σ2αz|T[|(Tσz)||(σzσz1)α1|Γ(α)+|((α1)(α2)Tσ1z)||(σzσz1)α|Γ(α+1)]+z|(σσz)||σ2αz||(σzσz1)α1|Γ(α)+z|((α1)(α2)σσ1z)||σ2αz||(σzσz1)α|Γ(α+1),z=1,2,,p,G3=|σ2β||(σσz)β|Γ(β+1)+|σ||T1β||(Tσz)β|Γ(β+1)+z|σ||σ2βz|T[|(Tσz)||(σzσz1)β1|Γ(β)+|((β1)(β2)Tσ1z)||(σzσz1)β|Γ(β+1)]+z|(σσz)||σ2βz||(σzσz1)β1|Γ(β)+z|((β1)(β2)σσ1z)||σ2βz||(σzσz1)β|Γ(β+1),z=1,2,,q,G4=max{τ1|σα|Γ(α+1),υ1|σβ|Γ(β+1)}andG4=max{τ2|σα|Γ(α+1),υ2|σβ|Γ(β+1)}.

    Putting (3.13), (3.14), (3.17) and (3.18) in (3.11), we get

    1(u,v)+2(u,v)ϑG1+G2u+G1+G2v+o1G3+G3G4(u,v)+o2G3+G3G4(u,v)G1+G1+o1G3+o2G3+(G2+G2+G3G4+G3G4)(u,v)r.

    Hence, 1(u,v)+2(u,v)ϑϑr.

    2) Next, for any σω, (u,v),(ξ,ζ)ϑ

    1(u,v)1(ξ,ξ)ϑ1(u)1(ξ)ϑ1+1(v)1(ξ)ϑ2|ν2||σ||T1α||μ1|Γ(α1)T0|(Tπ)α2||u(π)ξ(π)|dπ+zj=1|((α1)(α2)σσ1j)σT((α1)(α2)Tσ1j)|×|σ2αj||Ej(u(σj))Ej(ξ(σj))|+zj=1|(σσj)σT(Tσj)||σ2αj||Ej(u(σj))Ej(ξ(σj))|+|ν4||T1β||μ2|Γ(β1)T0|(Tπ)β2||v(π)ζ(π)|dπ+zk=1|((β1)(β2)σσ1k)σT((β1)(β2)Tσ1k)|×|σ2βk||Ek(v(σk))Ek(ζ(σk))|+zk=1|(σσk)σT(Tσk)||σ2βk||Ek(v(σk))Ek(ζ(σk))|(z(α1)|σ2αz||1σT|LE+z|σ3αz||σT1|LE+|ν2||σ||μ1|Γ(α))uξ+(z(β1)|σ2β|z|1σT|LE+z|σ3βz||σT1|LE+|ν4||σ||μ2|Γ(β))vζL(ϱ1+ϱ2)(uξ,vζ).

    Here L=max{LE,LE,LE,LE},

    ϱ1=z(α1)|σ2αz||1σT|+z|σ3αz||σT1|+|ν2||σ||μ1|Γ(α),z=1,2,,p,

    and

    ϱ2=z(β1)|σ2β|z|1σT|+z|σ3βz||σT1|+|ν4||σ||μ2|Γ(β),z=1,2,,q.

    Therefore, 1 is a contractive operator.

    3) Now, for the continuity and compactness of 2, we make a sequence Ts=(us,vs) in ϑr such that (us,vs)(u,v) for s in ϑr. Thus, we have

    2(us,vs)2(u,v)ϑ2(us,vs)2(u,v)ϑ1+2(us,vs)2(u,v)ϑ2(Lϕ1|σα|usuΓ(α+1)+Lϕ1|σβ|vsvΓ(β+1))(|σ2α||(σσz)α|Γ(α+1)+|σ||T1α||(Tσz)α|Γ(α+1)+z|σ||σ2αz|T[|(Tσz)||(σzσz1)α1|Γ(α)+|((α1)(α2)Tσ1z)||(σzσz1)α|Γ(α+1)]+z|(σσz)||σ2αz||(σzσz1)α1|Γ(α)+z|((α1)(α2)σσ1z)||σ2αz||(σzσz1)α|Γ(α+1))+(Lϕ2|σα|usuΓ(α+1)+Lϕ2|σβ|vsvΓ(β+1))(|σ2β||(σσz)β|Γ(β+1)+|σ||T1β||(Tσz)β|Γ(β+1)+z|σ||σ2βz|T[|(Tσz)||(σzσz1)β1|Γ(β)+|((β1)(β2)Tσ1z)||(σzσz1)β|Γ(β+1)]+z|(σσz)||σ2βz||(σzσz1)β1|Γ(β)+z|((β1)(β2)σσ1z)||σ2βz||(σzσz1)β|Γ(β+1))G3(Lϕ1|σα|usuΓ(α+1)+Lϕ1|σβ|vsvΓ(β+1))+G3(Lϕ2|σα|usuΓ(α+1)+Lϕ2|σβ|vsvΓ(β+1)).

    This implies 2(us,vs)2(u,v)ϑ0 as s, therefore 2 is continuous.

    Next, we show that 2 is uniformly bounded on ϑr. From (3.17) and (3.18), we have

    2(u,v)ϑ2(u,v)ϑ1+2(u,v)ϑ2o1G3+o2G3+(G3G4+G3G4)(u,v)r.

    Thus, 2 is uniformly bounded on ϑr.

    For equicontinuity, suppose η1,η2ω with η1<η2, and for any (u,v)ϑrϑ where ϑr is clearly bounded, we have

    2(u,v)(η1)2(u,v)(η2)ϑ1=max|σ2α(2(u,v)(η1)2(u,v)(η2))|(o1+τ1|σα|uΓ(α+1)+υ1|σβ|vΓ(β+1))(|σ2α||((η1σz)α(η2σz)α)|Γ(α+1)+|σ2α||ηα11ηα12||T1α||(Tσz)α|Γ(α+1)+[|(ηα21ηα22)|+|(ηα11ηα12)|T]×[z|σ2α||σ3αz||(σzσz1)α1|Γ(α)+z(α1)|σ2α||σ2αz||(σzσz1)α|Γ(α+1)]).

    This implies that

    2(u,v)(η1)2(u,v)(η2)ϑ10asη1η2.

    In the same way, we have

    2(u,v)(η1)2(u,v)(η2)ϑ20asη1η2.

    Hence

    2(u,v)(η1)2(u,v)(η2)ϑ0asη1η2.

    Thus, 2 is equicontinuous. So 2 is relatively compact on ϑr. Hence, by the Arzelˊa–Ascoli Theorem, 2 is compact on ϑr. Thus all the condition of Theorem 2.1 are satisfied. So the given system (1.1) has at least one solution.

    Theorem 3.3. Let hypotheses (H3), (H4) be satisfied with

    Δ1+Δ3+(Δ2Lϕ1+Δ4Lϕ2)|σα|Γ(α+1)+(Δ2Lϕ1+Δ4Lϕ2)|σβ|Γ(β+1)<1, (3.19)

    then the given system (1.1) has unique solution.

    Proof. First we define an operator φ=(φ1,φ2):ϑϑ, i.e., φ(u,v)(σ)=(φ1(u,v),φ2(u,v))(σ), where

    φ1(u,v)(σ)=σα1u2μ1Tα1σα1u1Tν1Γ(α1)+σα2u1ν1Γ(α1)+1Γ(α)σσz(σπ)α1ϕ1(π,Iαu(π),Iβv(π))dπσα1T1αΓ(α)Tσz(Tπ)α1ϕ1(π,Iαu(π),Iβv(π))dπν2σα1T1αμ1Γ(α1)T0(Tπ)α2u(π)dπσα1Tzj=1[((α1)(α2)Tσ1j)σ2αjEj(u(σj))+(Tσj)σ2αjEj(u(σj))+(Tσj)σ2αjΓ(α1)σjσj1(σjπ)α2ϕ1(π,Iαu(π),Iβv(π))dπ+((α1)(α2)Tσ1j)σ2αjΓ(α)σjσj1(σjπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ]+zj=1[((α1)(α2)σσ1j)σα2σ2αjEj(u(σj))+(σσj)σα2σ2αjEj(u(σj))+(σσj)σα2σ2αjΓ(α1)σjσj1(σjπ)α2ϕ1(π,Iαu(π),Iβv(π))dπ+((α1)(α2)σσ1j)σα2σ2αjΓ(α)σjσj1(σjπ)α1ϕ1(π,Iαu(π),Iβv(π))dπ],for  z=1,2,,p,

    and

    φ2(u,v)(σ)=σβ1v2μ2Tβ1σβ1v1Tν3Γ(β1)+σβ2v1ν3Γ(β1)+1Γ(β)σσz(σπ)β1ϕ2(π,Iαu(π),Iβv(π))dπσβ1T1βΓ(β)Tσz(Tπ)β1ϕ2(π,Iαu(π),Iβv(π))dπν4σβ1T1βμ2Γ(β1)T0(Tπ)β2v(π)dπσβ1Tzk=1[((β1)(β2)Tσ1k)σ2βkEk(v(σk))+(Tσk)σ2βkEk(v(σk))+(Tσk)σ2βkΓ(β1)σkσk1(σkπ)β2ϕ2(π,Iαu(π),Iβv(π))dπ+((β1)(β2)Tσ1k)σ2βkΓ(β)σkσk1(σkπ)β1ϕ2(π,Iαu(π),Iβv(π))dπ]+zk=1[((β1)(β2)σσ1k)σβ2σ2βkEk(v(σk))+(σσk)σβ2σ2βkEk(v(σk))+(σσk)σβ2σ2βkΓ(β1)σkσk1(σkπ)β2ϕ2(π,Iαu(π),Iβv(π))dπ+((β1)(β2)σσ1k)σβ2σ2βkΓ(β)σkσk1(σkπ)β1ϕ2(π,Iαu(π),Iβv(π))dπ],for  z=1,2,,q.

    In view of Theorem 3.2, we have

    |σ2α(φ1(u,v)φ1(ξ,ζ))|(Lϕ1|σβ|Γ(β+1))(|σ2α||(σσz)α|Γ(α+1)+|σ||T1α||(Tσz)α|Γ(α+1)+z|σ||σ2αz|T[|(Tσz)||(σzσz1)α1|Γ(α)+|((α1)(α2)Tσ1z)||(σzσz1)α|Γ(α+1)]+z|(σσz)||σ2αz||(σzσz1)α1|Γ(α)+z|((α1)(α2)σσ1z)||σ2αz||(σzσz1)α|Γ(α+1))|vζ|+[(Lϕ1|σα|Γ(α+1))(|σ2α||(σσz)α|Γ(α+1)+|σ||T1α||(Tσz)α|Γ(α+1)+z|σ||σ2αz|T[|(Tσz)||(σzσz1)α1|Γ(α)+|((α1)(α2)Tσ1z)||(σzσz1)α|Γ(α+1)]+z|(σσz)||σ2αz||(σzσz1)α1|Γ(α)+z|((α1)(α2)σσ1z)||σ2αz||(σzσz1)α|Γ(α+1))+(z(α1)|σ2αz||1σT|LE+z|σ3αz||σT1|LE+|ν2||σ||μ1|Γ(α))]|uξ|.

    Taking supσω, we get

    φ1(u,v)φ1(ξ,ζ)ϑ1(Δ1+Δ2Lϕ1|σα|Γ(α+1)+Δ2Lϕ1|σβ|Γ(β+1))(u,v)(ξ,ζ)   forz=1,2,,p,

    where

    Δ1=z(α1)|σ2αz||1σT|LE+z|σ3αz||σT1|LE+|ν2||σ||μ1|Γ(α),Δ2=|σ2α||(σσz)α|Γ(α+1)+|σ||T1α||(Tσz)α|Γ(α+1)+z|σ||σ2αz|T[|(Tσz)||(σzσz1)α1|Γ(α)+|((α1)(α2)Tσ1z)||(σzσz1)α|Γ(α+1)]+z|(σσz)||σ2αz||(σzσz1)α1|Γ(α)+z|((α1)(α2)σσ1z)||σ2αz||(σzσz1)α|Γ(α+1),   forz=1,2,,p.

    Similarly,

    φ2(u,v)φ2(ξ,ζ)ϑ2(Δ3+Δ4Lϕ2|σα|Γ(α+1)+Δ4Lϕ2|σβ|Γ(β+1))(u,v)(ξ,ζ)   forz=1,2,,q,

    where

    Δ3=z(β1)|σ2βz||1σT|LE+z|σ3βz||σT1|LE+|ν4||σ||μ2|Γ(β),Δ4=|σ2β||(σσz)β|Γ(β+1)+|σ||T1β||(Tσz)β|Γ(β+1)+z|σ||σ2βz|T[|(Tσz)||(σzσz1)β1|Γ(β)+|((β1)(β2)Tσ1z)||(σzσz1)β|Γ(β+1)]+z|(σσz)||σ2βz||(σzσz1)β1|Γ(β)+z|((β1)(β2)σσ1z)||σ2βz||(σzσz1)β|Γ(β+1),   forz=1,2,,q.

    Hence

    φ(u,v)φ(ξ,ζ)ϑ(Δ1+Δ3+(Δ2Lϕ1+Δ4Lϕ2)|σα|Γ(α+1)+(Δ2Lϕ1+Δ4Lϕ2)|σβ|Γ(β+1))(u,v)(ξ,ζ).

    This implies that the operator φ is a contraction. Therefore, (1.1) has a unique solution.

    In this section, we study different kinds of stabilities, like HU, generalized HU, HUR, and generalized HUR stability of the proposed system.

    Theorem 4.1. If assumptions (H3), (H4) and inequality (3.19) are satisfied and

    F=1(Δ2Lϕ1|σβ|Γ(β+1))(Δ4Lϕ2|σα|Γ(α+1))[1(Δ1+Δ2Lϕ1|σα|Γ(α+1))][1(Δ3+Δ4Lϕ2|σβ|Γ(β+1))]>0,

    then the unique solution of the coupled system (1.1) is HU stable and consequently generalized HU stable.

    Proof. Let (ξ,ζ)ϑ is a solution of inequality (2.1), and let (u,v)ϑ be the unique solution of the coupled system given by

    {{Dαu(σ)ϕ1(σ,Iαu(σ),Iβv(σ))=0,  σω,  σσj,  j=1,2,,p,Δu(σj)Ej(u(σj))=0,Δu(σj)Ej(u(σj))=0,  j=1,2,,p,ν1Dα2u(σ)|σ=0=u1,μ1u(σ)|σ=T+ν2Iα1u(σ)|σ=T=u2,{Dβv(σ)ϕ2(σ,Iαu(σ),Iβv(σ))=0,  σω,  σσk,  k=1,2,,q,Δv(σk)Ek(v(σk))=0,Δv(σk)Ek(v(σk))=0,  k=1,2,,q,ν3Dβ2v(σ)|σ=0=v1,μ2v(σ)|σ=T+ν4Iβ1v(σ)|σ=T=v2. (4.1)

    By Remark 2.1 we have

    {{Dαξ(σ)=ϕ1(σ,Iαξ(σ),Iβζ(σ))+Kϕ1(σ),Δξ(σj)=Ej(ξ(σj))+Kϕ1j,  j=1,2,,p,Δξ(σj)=Ej(ξ(σj))+Kϕ1j,  j=1,2,,p,{Dβζ(σ)=ϕ2(σ,Iαξ(σ),Iβζ(σ))+Lϕ2(σ),Δζ(σk)=Ek(ζ(σk))+Lϕ2k,  k=1,2,,q,Δζ(σk)=Ek(ζ(σk))+Lϕ2k,  k=1,2,,q. (4.2)

    By Corollary 1, the solution of problem (4.2) is

    ξ(σ)=σα1u2μ1Tα1σα1u1Tν1Γ(α1)+σα2u1ν1Γ(α1)ν2σα1T1αμ1Γ(α1)T0(Tπ)α2ξ(π)dπ+1Γ(α)σσz(σπ)α1(ϕ1(π,Iαξ(π),Iβζ(π))+Kϕ1(π))dπσα1T1αΓ(α)Tσz(Tπ)α1(ϕ1(π,Iαξ(π),Iβζ(π))+Kϕ1(π))dπσα1Tzj=1[((α1)(α2)Tσ1j)σ2αj(Ej(ξ(σj))+Kϕ1j)+(Tσj)σ2αj(Ej(ξ(σj))+Kϕ1j)+(Tσj)σ2αjΓ(α1)σjσj1(σjπ)α2(ϕ1(π,Iαξ(π),Iβζ(π))+Kϕ1(π))dπ+((α1)(α2)Tσ1j)σ2αjΓ(α)σjσj1(σjπ)α1(ϕ1(π,Iαξ(π),Iβζ(π))+Kϕ1(π))dπ]+zj=1[((α1)(α2)σσ1j)σα2σ2αj(Ej(ξ(σj))+Kϕ1j)+(σσj)σα2σ2αj(Ej(ξ(σj))+Kϕ1j)+(σσj)σα2σ2αjΓ(α1)σjσj1(σjπ)α2(ϕ1(π,Iαξ(π),Iβζ(π))+Kϕ1(π))dπ+((α1)(α2)σσ1j)σα2σ2αjΓ(α)σjσj1(σjπ)α1(ϕ1(π,Iαξ(π),Iβζ(π))+Kϕ1(π))dπ],z=1,2,,p, (4.3)

    and

    ζ(σ)=σβ1v2μ2Tβ1σβ1v1Tν3Γ(β1)+σβ2v1ν3Γ(β1)ν4σβ1T1βμ2Γ(β1)T0(Tπ)β2ζ(π)dπ+1Γ(β)σσz(σπ)β1(ϕ2(π,Iαξ(π),Iβζ(π))+Lϕ2(π))dπσβ1T1βΓ(β)Tσz(Tπ)β1(ϕ2(π,Iαξ(π),Iβζ(π))+Lϕ2(π))dπσβ1Tzk=1[((β1)(β2)Tσ1k)σ2βk(Ek(ζ(σk))+Lϕ2k)+(Tσk)σ2βk(Ek(ζ(σk))+Lϕ2k)+(Tσk)σ2βkΓ(β1)σkσk1(σkπ)β2(ϕ2(π,Iαξ(π),Iβζ(π))+Lϕ2(π))dπ+((β1)(β2)Tσ1k)σ2βkΓ(β)σkσk1(σkπ)β1(ϕ2(π,Iαξ(π),Iβζ(π))+Lϕ2(π))dπ]+zk=1[((β1)(β2)σσ1k)σ2βk(Ek(ζ(σk))+Lϕ2k)+(σσk)σβ2σ2βk(Ek(ζ(σk))+Lϕ2k)+(σσk)σβ2σ2βkΓ(β1)σkσk1(σkπ)β2(ϕ2(π,Iαξ(π),Iβζ(π))+Lϕ2(π))dπ+((β1)(β2)σσ1k)σβ2σ2βkΓ(β)σkσk1(σkπ)β1(ϕ2(π,Iαξ(π),Iβζ(π))+Lϕ2(π))dπ],z=1,2,,q. (4.4)

    We consider

    |σ2α(u(σ)ξ(σ))||σ2α|Γ(α)σσz|(σπ)α1||ϕ1(π,Iαu(π),Iβv(π))ϕ1(π,Iαξ(π),Iβζ(π))|dπ+|σ||T1α|Γ(α)Tσz|(Tπ)α1||ϕ1(π,Iαu(π),Iβv(π))ϕ1(π,Iαξ(π),Iβζ(π))|dπ+|ν2||σ||T1α||μ1|Γ(α1)T0|(Tπ)α2||u(π)ξ(π)|dπ+zj=1|((α1)(α2)σσ1j)σT((α1)(α2)Tσ1j)|×|σ2αj||Ej(u(σj))Ej(ξ(σj))|+zj=1|(σσj)σT(Tσj)||σ2αj||Ej(u(σj))Ej(ξ(σj))|+|σ|Tzj=1[|(Tσj)||σ2αj|Γ(α1)×σjσj1|(σjπ)α2||ϕ1(π,Iαu(π),Iβv(π))ϕ1(π,Iαξ(π),Iβζ(π))|dπ+|((α1)(α2)Tσ1j)||σ2αj|Γ(α)×σjσj1|(σjπ)α1||ϕ1(π,Iαu(π),Iβv(π))ϕ1(π,Iαξ(π),Iβζ(π))|dπ]+zj=1[|(σσj)||σ2αj|Γ(α1)×σjσj1|(σjπ)α2||ϕ1(π,Iαu(π),Iβv(π))ϕ1(π,Iαξ(π),Iβζ(π))|dπ+|((α1)(α2)σσ1j)||σ2αj|Γ(α)×σjσj1|(σjπ)α1||ϕ1(π,Iαu(π),Iβv(π))ϕ1(π,Iαξ(π),Iβζ(π))|dπ]
    +|σ2α|Γ(α)σσz|(σπ)α1||Kϕ1(π)|dπ+|σ||T1α|Γ(α)Tσz|(Tπ)α1||Kϕ1(π)|dπ+zj=1|((α1)(α2)σσ1j)σT((α1)(α2)Tσ1j)||σ2αj||Kϕ1j|+zj=1|(σσj)σT(Tσj)||σ2αj||Kϕ1j|+σTzj=1[|(Tσj)||σ2αj|Γ(α1)σjσj1|(σjπ)α2||Kϕ1(π)|dπ+|(α1)(α2)T|σ1j|||σ2αj|Γ(α)σjσj1|(σjπ)α1||Kϕ1(π)|dπ]+zj=1[|(σσj)||σ2αj|Γ(α1)σjσj1|(σjπ)α2||Kϕ1(π)|dπ+|((α1)(α2)σσ1j)||σ2αj|Γ(α)σjσj1|(σjπ)α1||Kϕ1(π)|dπ].

    As in Theorem 3.3, we get

    uξϑ1(Δ1+Δ2Lϕ1|σα|Γ(α+1))uξϑ1+(Δ2Lϕ1|σβ|Γ(β+1))vζϑ1+(Δ2+z(α1)|σ2αz||1σT|+z|σ3αz||σT1|+|ν2||σ||μ1|Γ(α))κα,z=1,2,,p, (4.5)

    and

    vζϑ2(Δ4Lϕ2|σα|Γ(α+1))uξϑ2+(Δ3+Δ4Lϕ2|σβ|Γ(β+1))vζϑ2+(Δ4+z(β1)|σ2βz||1σT|+z|σ3βz||σT1|+|ν4||σ||μ2|Γ(β))κβ,z=1,2,,q. (4.6)

    From (4.5) and (4.6), we have

    uξϑ1(Δ2Lϕ1|σβ|Γ(β+1))1(Δ1+Δ2Lϕ1|σα|Γ(α+1))vζϑ1(Δ2+z(α1)|σ2αz||1σT|+z|σ3αz||σT1|+|ν2||σ||μ1|Γ(α))1(Δ1+Δ2Lϕ1|σα|Γ(α+1))κα

    and

    vζϑ2(Δ4Lϕ2|σα|Γ(α+1))1(Δ3+Δ4Lϕ2|σβ|Γ(β+1))uξϑ2(Δ4+z(β1)|σ2βz||1σT|+z|σ3βz||σT1|+|ν4||σ||μ2|Γ(β))1(Δ3+Δ4Lϕ2|σβ|Γ(β+1))κβ

    respectively. Let

    P1=(Δ2Lϕ1|σβ|Γ(β+1))1(Δ1+Δ2Lϕ1|σα|Γ(α+1)),P2=(Δ2+z(α1)|σ2αz||1σT|+z|σ3αz||σT1|+|ν2||σ||μ1|Γ(α))1(Δ1+Δ2Lϕ1|σα|Γ(α+1)),P3=(Δ4Lϕ2|σα|Γ(α+1))1(Δ3+Δ4Lϕ2|σβ|Γ(β+1)),andP4=(Δ4+z(β1)|σ2βz||1σT|+z|σ3βz||σT1|+|ν4||σ||μ2|Γ(β))1(Δ3+Δ4Lϕ2|σβ|Γ(β+1)).

    Then the last two inequalities can be written in a matrix form as follows:

    [1P1P31][uξϑ1vζϑ2][P2καP4κβ]
    [uξϑ1vζϑ2][1FP1FP3F1F][P2καP4κβ], (4.7)

    where

    F=1(Δ2Lϕ1|σβ|Γ(β+1))(Δ4Lϕ2|σα|Γ(α+1))[1(Δ1+Δ2Lϕ1|σα|Γ(α+1))][1(Δ3+Δ4Lϕ2|σβ|Γ(β+1))]>0.

    From system (4.7) we have

    uξϑ1P2καF+P1P4κβF,vζϑ2P2P3καF+P4κβF,

    which implies that

    uξϑ1+vζϑ2P2καF+P1P4κβF+P2P3καF+P4κβF.

    If κ=max{κα,κβ} and Nα,β=P2F+P1P4F+P2P3F+P4F, then

    (u,v)(ξ,ζ)ϑNα,βκ.

    Thus system (1.1) is HU stable. Also, if

    (u,v)(ξ,ζ)ϑNα,βN(κ),

    with N(0)=0, then the given system (1.1) is generalized HU stable.

    For the next result, we assume the following:

    (H5) Let there exists two nondecreasing functions wα,wβC(ω,R+) such that

    Iαwα(σ)Lαwα(σ)andIβwβ(σ)Lβwβ(σ),whereLα,Lβ>0. (4.8)

    Theorem 4.2. If assumptions (boldsymbol)(H5) and inequality (3.19) are satisfied and

    F=1(Δ2Lϕ1|σβ|Γ(β+1))(Δ4Lϕ2|σα|Γ(α+1))[1(Δ1+Δ2Lϕ1|σα|Γ(α+1))][1(Δ3+Δ4Lϕ2|σβ|Γ(β+1))]>0,

    then the unique solution of the given system (1.1) is HUR stable and accordingly generalized HUR stable.

    Proof. With the help of Definitions 2.5 and 2.6, we can achieve our result doing the same steps as in Theorem 4.1.

    Here we present a specific example, as follows.

    Example 5.1. Let

    {{D65u(σ)2+I65u(σ)+I54v(σ)80eσ+90(1+I65u(σ)+I54v(σ))=0,  σ32,Δu(32)=E1(u(32))=|u(32)|70+|u(32)|,Δu(32)=E1(u(32))=|u(32)|70+|u(32)|,D45u(σ)|σ=0=u1,50u(σ)|σ=e+185I15u(σ)|σ=e=u2,{D54v(σ)σcos(u(σ))v(σ)sin(σ)95u(σ)95+u(σ)=0,  σ32,Δv(32)=E1(v(32))=|v(32)|70+|v(32)|,Δv(32)=E1(v(32))=|v(32)|70+|v(32)|,D34v(σ)|σ=0=v1,50v(σ)|σ=e+185I14v(σ)|σ=e=v2. (5.1)

    From system (5.1), we see that α=65, β=54, μ1=μ2=50, ν1=ν3=1, ν2=ν4=185, T=e, σ1=32, and u1,u2,v1,v2R.

    Set

    ϕ1(σ,u,v)=2+I65u(σ)+I54v(σ)80eσ+90(1+I65u(σ)+I54v(σ)),ϕ2(σ,u,v)=σcos(u(σ))v(σ)sin(σ)95u(σ)95+u(σ).

    Now, for all u,u,v,vR, and σ[0,e], we obtain

    |ϕ1(σ,u,v)ϕ1(σ,u,v)|=180e90|uu|+180e90|vv|

    and

    |ϕ2(σ,u,v)ϕ1(σ,u,v)|=195|uu|+195|vv|.

    These satisfy condition (H3) with Lϕ1=Lϕ1=180e90, Lϕ2=Lϕ2=195.

    Set

    E1(u(32))=|u(32)|70+|u(32)|,E1(u(32))=|u(32)|70+|u(32)|,E1(v(32))=|v(32)|70+|v(32)|andE1(v(32))=|v(32)|70+|v(32)|.

    Then we have

    |E1(u(32))E1(u(32))|=170|uu|,|E1(u(32))E1(u(32))|=170|uu|,|E1(v(32))E1(v(32))|=170|vv|and|E1(v(32))E1(v(32))|=170|vv|.

    These satisfy condition (H4) with LE=LE=LE=LE=170.

    From Theorem 3.3, we use the inequality and get

    Δ1+Δ3+(Δ2Lϕ1+Δ4Lϕ2)|σα|Γ(α+1)+(Δ2Lϕ1+Δ4Lϕ2)|σβ|Γ(β+1)0.976847<1,

    hence (5.1) has a unique solution, so (5.1) has a solution (u,v)ϑ. The solution of (5.1) is given by

    u(σ)={{σ15u250e15σ15u1eΓ(15)+σ45u1Γ(15)+1Γ(65)σ0(σπ)15ϕ1(π,Iαu(π),Iβv(π))dπσ15e15Γ(65)e32(eπ)15ϕ1(π,Iαu(π),Iβv(π))dπ+185σ15e1550Γ(15)e0(eπ)45u(π)dπσ15e[((15)+e(45)(32)1)(32)45E1(u(32))+(e32)(32)45E1(u(32))+(e32)(32)45Γ(15)320(32π)45ϕ1(π,Iαu(π),Iβv(π))dπ+((15)+e(45)(32)1)(32)45Γ(65)320(32π)15ϕ1(π,Iαu(π),Iβv(π))dπ],σ[0,32],{σ15u250e15σ15u1eΓ(15)+σ45u1Γ(15)+1Γ(65)σ32(σπ)15ϕ1(π,Iαu(π),Iβv(π))dπσ15e15Γ(65)e32(eπ)152+I65u(π)+I54v(π)80eπ+90(1+I65u(π)+I54v(π))dπ+185σ15e1550Γ(15)e0(eπ)45u(π)dπσ15e[((15)+e(45)(32)1)(32)45E1(u(32))+(e32)(32)45E1(u(32))+(e32)(32)45Γ(15)320(32π)45ϕ1(π,Iαu(π),Iβv(π))dπ+((15)+e(45)(32)1)(32)45Γ(65)320(32π)15ϕ1(π,Iαu(π),Iβv(π))dπ]+[((15)+σ(45)(32)1)(32)45σ45E1(u(32))+(σ32)(32)45σ45E1(u(32))+(σ32)(32)45σ45Γ(15)320(32π)45ϕ1(π,Iαu(π),Iβv(π))dπ+((15)+σ(45)(32)1)(32)45σ45Γ(65)320(32π)15ϕ1(π,Iαu(π),Iβv(π))dπ],σ(32,e]

    and

    v(σ)={{σ14v250e14σ14v1eΓ(14)+σ34v1Γ(14)+1Γ(54)σ0(σπ)14ϕ2(π,Iαu(π),Iβv(π))dπσ14e14Γ(54)e32(eπ)14ϕ2(π,Iαu(π),Iβv(π))dπ+185σ14e1450Γ(14)e0(eπ)34v(π)dπσ14e[((14)+e(34)(32)1)(32)34E1(v(32))+(e32)(32)34E1(v(32))+(e32)(32)34Γ(14)320(32π)34ϕ2(π,Iαu(π),Iβv(π))dπ+((14)+e(34)(32)1)(32)34Γ(54)320(32π)14ϕ2(π,Iαu(π),Iβv(π))dπ],σ[0,32],{σ14v250e14σ14v1eΓ(14)+σ34v1Γ(14)+1Γ(54)σ32(σπ)14ϕ2(π,Iαu(π),Iβv(π))dπσ14e14Γ(54)e32(eπ)14ϕ2(π,Iαu(π),Iβv(π))dπ185σ14e1450Γ(14)e0(eπ)34v(π)dπσ14e[((14)+e(34)(32)1)(32)34E1(v(32))+(e32)(32)34E1(v(32))+(e32)(32)34Γ(14)320(32π)34ϕ2(π,Iαu(π),Iβv(π))dπ+((14)+e(34)(32)1)(32)34Γ(54)320(32π)14ϕ2(π,Iαu(π),Iβv(π))dπ]+[((14)+σ(34)(32)1)(32)34σ34E1(v(32))+(σ32)σ34(32)34E1(v(32))+(σ32)(32)34σ34Γ(14)320(32π)34ϕ2(π,Iαu(π),Iβv(π))dπ+((14)+σ(34)(32)1)(32)34σ34Γ(54)320(32π)14ϕ2(π,Iαu(π),Iβv(π))dπ],σ(32,e].

    (i) If we take ϕ1(σ,Iαu(σ),Iβv(σ))=180eσ+90, ϕ2(σ,Iαu(σ),Iβv(σ))=σcos(σ)sin(σ)95195, E1(u(32))=E1(u(32))=E1(v(32))=E1(v(32))=170, and u(σ)=v(σ)=σ then with the constant values u1=v1=115, u2=v2=2, the graph of the solution is shown in Figure 1.

    Figure 1.  The graph of the solution in case (ⅰ).

    (ii) If we take ϕ1(σ,Iαu(σ),Iβv(σ))=σ+180eσ+90, ϕ2(σ,Iαu(σ),Iβv(σ))=σ2+195σ95, E1(u(32))=E1(u(32))=E1(v(32))=E1(v(32))=170, and u(σ)=v(σ)=σ then with the constant values u1=v1=115, u2=v2=2, the graph of the solution is shown in Figure 2.

    Figure 2.  The graph of the solution in case (ⅱ).

    From Theorem 4.1, we use the inequality and get

    F=1(Δ2Lϕ1|σβ|Γ(β+1))(Δ4Lϕ2|σα|Γ(α+1))[1(Δ1+Δ2Lϕ1|σα|Γ(α+1))][1(Δ3+Δ4Lϕ2|σβ|Γ(β+1))]1>0,

    thus, the given system (5.1) is HU stable and also generalized HU stable. Likewise, we can justify the condition of Theorems 3.2 and 4.2.

    In this article, we used the Kransnoselskii's fixed point theorem and acquired the necessary cases for the existence and uniqueness of solution for the given fractional integro-differential Eqs (1.1). Furthermore, under specific assumptions and conditions, we proved different kinds of Ulam's stability of system (1.1). The concept of Ulam's stability is very important because it gives a relationship between approximate and exact solutions, so our results may be very helpful in approximation theory and numerical analysis. The mentioned stability is rarely investigated for impulsive fractional integro-differential equations. Finally, we illustrated the main results by giving a suitable example.

    This research was supported by the Natural Science Foundation of Jiangxi Province (Grant Nos. 20192BAB201011, 20192BCBL23030 and 20192ACBL21053) and the National Natural Science Foundation of China (Grant No. 11861053).

    The authors declare that they have no conflict of interest.



    [1] B. Ahmad, J. J. Nieto, Riemann-Liouville fractional differential equations with fractional boundary conditions, Fixed Point Theor., 13 (2012), 329-336.
    [2] B. Ahmad, S. Sivasundaram, On four point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order, Appl. Math. Comput., 217 (2010), 480-487.
    [3] N. Ahmad, Z. Ali, K. Shah, A. Zada, G. Rahman, Analysis of implicit type nonlinear dynamical problem of impulsive fractional differential equations, Complexity, 2018 (2018), 1-15.
    [4] Z. Ali, A. Zada, K. Shah, Ulam stability to a toppled systems of nonlinear implicit fractional order boundary value problem, Bound. Value Probl., 2018 (2018), 1-16. doi: 10.1186/s13661-017-0918-2
    [5] M. Altman, A fixed point theorem for completely continuous operators in Banach spaces, Bull. Acad. Polon. Sci. Cl. Ⅲ, 3 (1955), 409-413.
    [6] M. Benchohra, D. Seba, Impulsive fractional differential equations in Banach spaces, Electron. J. Qual. Theo., 8 (2009), 1-14.
    [7] M. El-Shahed, J. J. Nieto, Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order, Comput. Math. Appl., 59 (2010), 3438-3443. doi: 10.1016/j.camwa.2010.03.031
    [8] M. Feckan, Y. Zhou, J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci., 17 (2012), 3050-3060. doi: 10.1016/j.cnsns.2011.11.017
    [9] X. Hao, L. Zhang, L. Liu, Positive solutions of higher order fractional integral boundary value problem with a parameter, Nonlinear Anal-Model., 24 (2019), 210-223. doi: 10.15388/NA.2019.2.4
    [10] X. Hao, L. Zhang, Positive solutions of a fractional thermostat model with a parameter, Symmetry, 11 (2019), 1-9.
    [11] X. Hao, H. Sun, L. Liu, Existence results for fractional integral boundary value problem involving fractional derivatives on an infinite interval, Math. Meth. Appl. Sci., 41 (2018), 6984-6996. doi: 10.1002/mma.5210
    [12] S. M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., 19 (2006), 854-858. doi: 10.1016/j.aml.2005.11.004
    [13] R. A. Khan, K. Shah, Existence and uniqueness of solutions to fractional order multi-point boundary value problems, Commun. Appl. Anal., 19 (2015), 515-526.
    [14] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equation, North-Holl and Mathematics Studies, 2006, 1-523.
    [15] N. Kosmatov, Initial value problems of fractional order with fractional impulsive conditions, Results Math., 63 (2013), 1289-1310. doi: 10.1007/s00025-012-0269-3
    [16] V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, 2009, 1-170.
    [17] M. Obloza, Hyers stability of the linear differential equation, Rocznik Nauk-Dydakt, Prace Mat., 13 (1993), 259-270.
    [18] K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. softw., 41 (2010), 9-12. doi: 10.1016/j.advengsoft.2008.12.012
    [19] I. Podlubny, Fractional differential equations, Academic Press, 1998.
    [20] U. Riaz, A. Zada, Z. Ali, Y. Cui, J. Xu, Analysis of nonlinear coupled systems of impulsive fractional differential equations with Hadamard derivatives, Math. Probl. Eng., 2019 (2019), 1-20.
    [21] U. Riaz, A. Zada, Z. Ali, Y. Cui, J. Xu, Analysis of coupled systems of implicit impulsive fractional differential equations involving Hadamard derivatives, Adv. Differ. Equ., 2019 (2019), 1-27. doi: 10.1186/s13662-018-1939-6
    [22] F. A. Rihan, Numerical Modeling of Fractional Order Biological Systems, Abstr. Appl. Anal., 2013 (2013), 1-11.
    [23] R. Rizwan, A. Zada, X. Wang, Stability analysis of non linear implicit fractional Langevin equation with non-instantaneous impulses, Adv. Differ. Equ., 2019 (2019), 1-31. doi: 10.1186/s13662-018-1939-6
    [24] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathina J. Math, 26 (2010), 103-107.
    [25] J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in fractional calculus, Springer, 2007.
    [26] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science, 1993.
    [27] K. Shah, R. A. Khan, Existence and uniqueness of positive solutions to a coupled system of nonlinear fractional order differential equations with anti-periodic boundary conditions, Differ. Equ. Appl., 7 (2015), 245-262.
    [28] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of particles, Fields and Media, Springer, 2010.
    [29] S. M. Ulam, A Collection of the Mathematical Problems, Interscience, 1960.
    [30] B. M. Vintagre, I. Podlybni, A. Hernandez, V. Feliu, Some approximations of fractional order operators used in control theory and applications, Fract. Calc. Appl. Anal., 4 (2000), 47-66.
    [31] J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theo., 2011 (2011), 1-10.
    [32] J. Wang, A. Zada, H. Waheed, Stability analysis of a coupled system of nonlinear implicit fractional anti-periodic boundary value problem, Math. Method. Appl. Sci., 42 (2019), 6706-6732. doi: 10.1002/mma.5773
    [33] A. Zada, S. Ali, Stability Analysis of multi-point boundary value problem for sequential fractional differential equations with non-instantaneous impulses, Int. J. Nonlin. Sci. Num., 19 (2018), 763-774. doi: 10.1515/ijnsns-2018-0040
    [34] A. Zada, S. Ali, Stability of integral Caputo-type boundary value problem with non-instantaneous impulses, Int. J. Appl. Comput. Math., 5 (2019), 55. doi: 10.1007/s40819-019-0640-0
    [35] A. Zada, W. Ali, S. Farina, Hyers-Ulam stability of nonlinear differential equations with fractional integrable impulses, Math. Method. App. Sci., 40 (2017), 5502-5514. doi: 10.1002/mma.4405
    [36] A. Zada, S. Ali, Y. Li, Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition, Adv. Differ. Equ., 2017, (2017), 1-26. doi: 10.1186/s13662-016-1057-2
    [37] A. Zada, W. Ali, C. Park, Ulam's type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall-Bellman-Bihari's type, Appl. Math. Comput., 350 (2019), 60-65.
    [38] A. Zada, B. Dayyan, Stability analysis for a class of implicit fractional differential equations with instantaneous impulses and Riemann-Liouville boundary conditions, Annals of the University of Craiova, Mathematics and Computer Science Series, 47 (2020), 88-110.
    [39] A. Zada, F. Khan, U. Riaz, T. Li, Hyers-Ulam stability of linear summation equations, Punjab University Journal of Mathematics, 49 (2017), 19-24.
    [40] A. Zada, U. Riaz, F. Khan, Hyers-Ulam stability of impulsive integral equations, B. Unione Mat. Ital., 12 (2019), 453-467. doi: 10.1007/s40574-018-0180-2
  • This article has been cited by:

    1. Narges Peykrayegan, Mehdi Ghovatmand, Mohammad Hadi Noori Skandari, Dumitru Baleanu, An approximate approach for fractional singular delay integro-differential equations, 2022, 7, 2473-6988, 9156, 10.3934/math.2022507
    2. Mehboob Alam, Akbar Zada, Implementation of q-calculus on q-integro-differential equation involving anti-periodic boundary conditions with three criteria, 2022, 154, 09600779, 111625, 10.1016/j.chaos.2021.111625
    3. Binlin Zhang, Rafia Majeed, Mehboob Alam, On Fractional Langevin Equations with Stieltjes Integral Conditions, 2022, 10, 2227-7390, 3877, 10.3390/math10203877
    4. Mehboob Alam, Akbar Zada, Usman Riaz, On a Coupled Impulsive Fractional Integrodifferential System with Hadamard Derivatives, 2022, 21, 1575-5460, 10.1007/s12346-021-00535-0
    5. Mehboob Alam, Dildar Shah, Hyers–Ulam stability of coupled implicit fractional integro-differential equations with Riemann–Liouville derivatives, 2021, 150, 09600779, 111122, 10.1016/j.chaos.2021.111122
    6. Akbar Zada, Mehboob Alam, Khansa Hina Khalid, Ramsha Iqbal, Ioan-Lucian Popa, Analysis of Q-Fractional Implicit Differential Equation with Nonlocal Riemann–Liouville and Erdélyi-Kober Q-Fractional Integral Conditions, 2022, 21, 1575-5460, 10.1007/s12346-022-00623-9
    7. Ravi Agarwal, Snezhana Hristova, Donal O'Regan, Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential equations with Riemann-Liouville derivatives, 2022, 7, 2473-6988, 2973, 10.3934/math.2022164
    8. Mehboob Alam, Aftab Khan, Muhammad Asif, Analysis of implicit system of fractional order via generalized boundary conditions, 2023, 0170-4214, 10.1002/mma.9139
    9. Mehboob Alam, Khansa Hina Khalid, Analysis of q ‐fractional coupled implicit systems involving the nonlocal Riemann–Liouville and Erdélyi–Kober q ‐fractional integral conditions , 2023, 0170-4214, 10.1002/mma.9208
    10. Rafia Majeed, Binlin Zhang, Mehboob Alam, Fractional Langevin Coupled System with Stieltjes Integral Conditions, 2023, 11, 2227-7390, 2278, 10.3390/math11102278
    11. Mehboob Alam, Akbar Zada, Sumbel Begum, Usman Riaz, Analysis of Fractional Integro-differential System with Impulses, 2023, 9, 2349-5103, 10.1007/s40819-023-01584-6
    12. Akbar Zada, Usman Riaz, Junaid Jamshed, Mehboob Alam, Afef Kallekh, Analysis of impulsive Caputo fractional integro‐differential equations with delay, 2024, 0170-4214, 10.1002/mma.10426
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4129) PDF downloads(258) Cited by(12)

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog