Research article Special Issues

On the reciprocal sums of products of $ m $th-order linear recurrence sequences

  • Received: 16 February 2023 Revised: 18 May 2023 Accepted: 26 July 2023 Published: 25 August 2023
  • In this paper, we use the method of error estimation to consider the reciprocal sums of products of any $ m $th-order linear recurrence sequences $ \left \{ u_{n} \right \} $. Specifically, we find that a series of sequences are "asymptotically equivalent" to the reciprocal sums of products of any $ m $th-order linear recurrence sequences $ \left \{ u_{n} \right \} $.

    Citation: Tingting Du, Zhengang Wu. On the reciprocal sums of products of $ m $th-order linear recurrence sequences[J]. Electronic Research Archive, 2023, 31(9): 5766-5779. doi: 10.3934/era.2023293

    Related Papers:

  • In this paper, we use the method of error estimation to consider the reciprocal sums of products of any $ m $th-order linear recurrence sequences $ \left \{ u_{n} \right \} $. Specifically, we find that a series of sequences are "asymptotically equivalent" to the reciprocal sums of products of any $ m $th-order linear recurrence sequences $ \left \{ u_{n} \right \} $.



    加载中


    [1] H. Ohtsuka, S. Nakamura, On the sum of reciprocal Fibonacci numbers, Fibonacci Quart., 46/47 (2008/2009), 153–159.
    [2] W. P. Zhang, T. T. Wang, The infinite sum of reciprocal Pell numbers, Appl. Math. Comput., 218 (2012), 6164–6167. https://doi.org/10.1016/j.amc.2011.11.090 doi: 10.1016/j.amc.2011.11.090
    [3] S. H. Holliday, T. Komatsu, On the sum of reciprocal generalized Fibonacci numbers, Integers., 11 (2011), 441–455. https://doi.org/10.1515/integ.2011.031 doi: 10.1515/integ.2011.031
    [4] G. Choi, Y. Choo, On the reciprocal sums of products of Fibonacci and Lucas numbers, Filomat., 32 (2018), 2911–2920. https://doi.org/10.2298/FIL1808911C doi: 10.2298/FIL1808911C
    [5] R. Liu, A. Y. Wang, Sums of products of two reciprocal Fibonacci numbers, Adv. Differ. Equ., 2016 (2016), 136. https://doi.org/10.1186/s13662-016-0860-0 doi: 10.1186/s13662-016-0860-0
    [6] A. Y. Wang, F. Zhang, The reciprocal sums of even and odd terms in the Fibonacci sequence, J. Inequal. Appl., 2015 (2015), 376. https://doi.org/10.1186/s13660-015-0902-2 doi: 10.1186/s13660-015-0902-2
    [7] M. Başbük, Y. Yazlik, On the sum of reciprocal of generalized bi-periodic Fibonacci numbers, Miskolc. Math. Notes., 17 (2016), 35–41. https://doi.org/10.18514/MMN.2016.1667 doi: 10.18514/MMN.2016.1667
    [8] Z. G. Wu, W. P. Zhang, Several identities involving the Fibonacci polynomials and Lucas polynomials, J. Inequal. Appl., 2013 (2013), 205. https://doi.org/10.1186/1029-242X-2013-205 doi: 10.1186/1029-242X-2013-205
    [9] G. Choi, Y. Choo, On the reciprocal sums of square of generalized bi-periodic Fibonacci numbers, Miskolc. Math. Notes., 19 (2018), 201–209. https://doi.org/10.18514/MMN.2018.2390 doi: 10.18514/MMN.2018.2390
    [10] Z. G. Wu, Several identities relating to Riemann zeta-Function, Bull. Math. Soc. Sci. Math. Roumanie., 59 (2016), 285–294.
    [11] X. Lin, Some identities related to Riemann zeta-function, J. Inequal. Appl., 2016 (2016), 32. https://doi.org/10.1186/s13660-016-0980-9 doi: 10.1186/s13660-016-0980-9
    [12] X. Lin, Partial reciprocal sums of the Mathieu series, J. Inequal. Appl., 2017 (2017), 60. https://doi.org/10.1186/s13660-017-1327-x doi: 10.1186/s13660-017-1327-x
    [13] X. Lin, X. X. Li, A reciprocal sum related to the Riemann $\zeta$-function, J. Math. Inequal., 11 (2017), 209–215. https://doi.org/10.7153/jmi-11-20 doi: 10.7153/jmi-11-20
    [14] H. Xu, Some computational formulas related the Riemann zeta-function tails, J. Inequal. Appl., 2016 (2016), 132. https://doi.org/10.1186/s13660-016-1068-2 doi: 10.1186/s13660-016-1068-2
    [15] D. Kim, K. Song, The inverses of tails of the Riemann zeta function, J. Inequal. Appl., 2018 (2018), 157. https://doi.org/10.1186/s13660-018-1743-6 doi: 10.1186/s13660-018-1743-6
    [16] Z. G. Wu, H. Zhang, On the reciprocal sums of higher-order sequences, Adv. Differ. Equ., 2013 (2013), 189. https://doi.org/10.1186/1687-1847-2013-189 doi: 10.1186/1687-1847-2013-189
    [17] E. Kilic, T. Arikan, More on the infinite sum of reciprocal Fibonacci, Pell and higher order recurrences, Appl. Math. Comput., 219 (2013), 7783–7788. https://doi.org/10.1016/j.amc.2013.02.003 doi: 10.1016/j.amc.2013.02.003
    [18] Z. G. Wu, J. Zhang, On the higher power sums of reciprocal higher-order sequences, Sci. World J., 2014 (2014), 521358. https://doi.org/10.1155/2014/521358 doi: 10.1155/2014/521358
    [19] P. Trojovský, On the sum of reciprocal of polynomial applied to higher order recurrences, Mathematics., 7 (2019), 638. https://doi.org/10.3390/math7070638 doi: 10.3390/math7070638
    [20] T. T. Du, Z. G. Wu, On the reciprocal products of generalized Fibonacci sequences, J. Inequal. Appl., 2022, (2022), 154. https://doi.org/10.1186/s13660-022-02889-8 doi: 10.1186/s13660-022-02889-8
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(807) PDF downloads(33) Cited by(0)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog