Research article Special Issues

On the distribution of primitive roots and Lehmer numbers

  • Received: 20 April 2023 Revised: 17 September 2023 Accepted: 19 September 2023 Published: 27 October 2023
  • In this paper, we study the number of the Lehmer primitive roots solutions of a multivariate linear equation and the number of $ 1\leq x\leq p-1 $ such that for $ f(x)\in {\mathbb{F}}_p[x] $, $ k $ polynomials $ f(x+c_1), f(x+c_2), \ldots, f(x+c_k) $ are Lehmer primitive roots modulo prime $ p $, and obtain asymptotic formulae for these utilizing the properties of Gauss sums and the generalized Kloosterman sums.

    Citation: Jiafan Zhang. On the distribution of primitive roots and Lehmer numbers[J]. Electronic Research Archive, 2023, 31(11): 6913-6927. doi: 10.3934/era.2023350

    Related Papers:

  • In this paper, we study the number of the Lehmer primitive roots solutions of a multivariate linear equation and the number of $ 1\leq x\leq p-1 $ such that for $ f(x)\in {\mathbb{F}}_p[x] $, $ k $ polynomials $ f(x+c_1), f(x+c_2), \ldots, f(x+c_k) $ are Lehmer primitive roots modulo prime $ p $, and obtain asymptotic formulae for these utilizing the properties of Gauss sums and the generalized Kloosterman sums.



    加载中


    [1] E. Vegh, A note on the distribution of the primitive roots of a prime, J. Number Theory, 3 (1971), 13–18. https://doi.org/10.1016/0022-314X(71)90046-1 doi: 10.1016/0022-314X(71)90046-1
    [2] R. Guy, Unsolved Problems in Number Theory, 3rd ed., Problem Books in Mathematics, Springer-Verlag, New York, 2004. https://doi.org/10.1007/978-0-387-26677-0_2
    [3] S. Cohen, Consecutive primitive roots in a finite field, Proc. Amer. Math. Soc., 93 (1985), 189–197. https://doi.org/10.1090/S0002-9939-1985-0770516-9 doi: 10.1090/S0002-9939-1985-0770516-9
    [4] S. Golomb, Algebraic constructions for Costas arrays, J. Combin. Theory Ser. A, 37 (1984), 13–21. https://doi.org/10.1016/0097-3165(84)90015-3 doi: 10.1016/0097-3165(84)90015-3
    [5] Q. Sun, On primitive roots in a finite field (Chinese, with English summary), Sichuan Daxue Xuebao, 25 (1988), 133–139.
    [6] S. Cohen, T. Oliveira e Silva, N. Sutherland, T. Trudgian, Linear combinations of primitive elements of a finite field, Finite Fields Appl., 51 (2018), 388–406. https://doi.org/10.1016/j.ffa.2018.02.009 doi: 10.1016/j.ffa.2018.02.009
    [7] L. Carlitz, Sets of primitive roots, Compos. Math., 13 (1958), 65–70.
    [8] E. Vegh, Pairs of consecutive primitive roots modulo a prime, Proc. Amer. Math. Soc., 19 (1968), 1169–1170. https://doi.org/10.1090/S0002-9939-1968-0230680-7 doi: 10.1090/S0002-9939-1968-0230680-7
    [9] W. Zhang, T. Wang, The primitive roots and a problem related to the Golomb conjecture, AIMS Math., 5 (2020), 3899–3905. https://doi.org/10.3934/math.2020252 doi: 10.3934/math.2020252
    [10] L. Carlitz, Distribution of primitive roots in a finite field, Quart. J. Math., 4 (1953), 4–10. https://doi.org/10.1093/qmath/4.1.4 doi: 10.1093/qmath/4.1.4
    [11] C. Cobeli, A. Zaharescu, On the distribution of primitive roots mod $p$, Acta Arith., 83 (1998), 143–153. https://doi.org/10.4064/aa-83-2-143-153 doi: 10.4064/aa-83-2-143-153
    [12] W. Zhang, A problem of D.H.Lehmer and its generalization, Compos. Math., 91 (1994), 47–51. https://doi.org/10.1007/s10114-004-0329-z doi: 10.1007/s10114-004-0329-z
    [13] T. Wang, X. Wang, On Golomb's conjecture and Lehmer's numbers, Open Math., 15 (2017), 1003–1009. https://doi.org/10.1515/math-2017-0083 doi: 10.1515/math-2017-0083
    [14] S. Cohen, T. Trudgian, Lehmer numbers and primitive roots modulo a prime, J. Number Theory, 203 (2019), 68–79. https://doi.org/10.1016/j.jnt.2019.03.004 doi: 10.1016/j.jnt.2019.03.004
    [15] T. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976. https://doi.org/10.1007/978-1-4757-5579-4
    [16] W. Narkiewicz, Classical Problems in Number Theory, Polish Scientifc Publishers, 1986.
    [17] W. Schmidt, Equations over finite fields, An elementary approach. Lecture Notes in Math. 536, Springer, New York, 1976. https://doi.org/10.1007/BFb0080437
    [18] L. Goubin, C. Mauduit, A. S$\acute{a}$rk$\ddot{o}$zy, Construction of large families of pseudorandom binary sequences, J. Number Theory, 106 (2004), 56–69. https://doi.org/10.1016/j.jnt.2003.12.002 doi: 10.1016/j.jnt.2003.12.002
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(815) PDF downloads(52) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog