In this paper, we study the number of the Lehmer primitive roots solutions of a multivariate linear equation and the number of $ 1\leq x\leq p-1 $ such that for $ f(x)\in {\mathbb{F}}_p[x] $, $ k $ polynomials $ f(x+c_1), f(x+c_2), \ldots, f(x+c_k) $ are Lehmer primitive roots modulo prime $ p $, and obtain asymptotic formulae for these utilizing the properties of Gauss sums and the generalized Kloosterman sums.
Citation: Jiafan Zhang. On the distribution of primitive roots and Lehmer numbers[J]. Electronic Research Archive, 2023, 31(11): 6913-6927. doi: 10.3934/era.2023350
In this paper, we study the number of the Lehmer primitive roots solutions of a multivariate linear equation and the number of $ 1\leq x\leq p-1 $ such that for $ f(x)\in {\mathbb{F}}_p[x] $, $ k $ polynomials $ f(x+c_1), f(x+c_2), \ldots, f(x+c_k) $ are Lehmer primitive roots modulo prime $ p $, and obtain asymptotic formulae for these utilizing the properties of Gauss sums and the generalized Kloosterman sums.
[1] | E. Vegh, A note on the distribution of the primitive roots of a prime, J. Number Theory, 3 (1971), 13–18. https://doi.org/10.1016/0022-314X(71)90046-1 doi: 10.1016/0022-314X(71)90046-1 |
[2] | R. Guy, Unsolved Problems in Number Theory, 3rd ed., Problem Books in Mathematics, Springer-Verlag, New York, 2004. https://doi.org/10.1007/978-0-387-26677-0_2 |
[3] | S. Cohen, Consecutive primitive roots in a finite field, Proc. Amer. Math. Soc., 93 (1985), 189–197. https://doi.org/10.1090/S0002-9939-1985-0770516-9 doi: 10.1090/S0002-9939-1985-0770516-9 |
[4] | S. Golomb, Algebraic constructions for Costas arrays, J. Combin. Theory Ser. A, 37 (1984), 13–21. https://doi.org/10.1016/0097-3165(84)90015-3 doi: 10.1016/0097-3165(84)90015-3 |
[5] | Q. Sun, On primitive roots in a finite field (Chinese, with English summary), Sichuan Daxue Xuebao, 25 (1988), 133–139. |
[6] | S. Cohen, T. Oliveira e Silva, N. Sutherland, T. Trudgian, Linear combinations of primitive elements of a finite field, Finite Fields Appl., 51 (2018), 388–406. https://doi.org/10.1016/j.ffa.2018.02.009 doi: 10.1016/j.ffa.2018.02.009 |
[7] | L. Carlitz, Sets of primitive roots, Compos. Math., 13 (1958), 65–70. |
[8] | E. Vegh, Pairs of consecutive primitive roots modulo a prime, Proc. Amer. Math. Soc., 19 (1968), 1169–1170. https://doi.org/10.1090/S0002-9939-1968-0230680-7 doi: 10.1090/S0002-9939-1968-0230680-7 |
[9] | W. Zhang, T. Wang, The primitive roots and a problem related to the Golomb conjecture, AIMS Math., 5 (2020), 3899–3905. https://doi.org/10.3934/math.2020252 doi: 10.3934/math.2020252 |
[10] | L. Carlitz, Distribution of primitive roots in a finite field, Quart. J. Math., 4 (1953), 4–10. https://doi.org/10.1093/qmath/4.1.4 doi: 10.1093/qmath/4.1.4 |
[11] | C. Cobeli, A. Zaharescu, On the distribution of primitive roots mod $p$, Acta Arith., 83 (1998), 143–153. https://doi.org/10.4064/aa-83-2-143-153 doi: 10.4064/aa-83-2-143-153 |
[12] | W. Zhang, A problem of D.H.Lehmer and its generalization, Compos. Math., 91 (1994), 47–51. https://doi.org/10.1007/s10114-004-0329-z doi: 10.1007/s10114-004-0329-z |
[13] | T. Wang, X. Wang, On Golomb's conjecture and Lehmer's numbers, Open Math., 15 (2017), 1003–1009. https://doi.org/10.1515/math-2017-0083 doi: 10.1515/math-2017-0083 |
[14] | S. Cohen, T. Trudgian, Lehmer numbers and primitive roots modulo a prime, J. Number Theory, 203 (2019), 68–79. https://doi.org/10.1016/j.jnt.2019.03.004 doi: 10.1016/j.jnt.2019.03.004 |
[15] | T. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976. https://doi.org/10.1007/978-1-4757-5579-4 |
[16] | W. Narkiewicz, Classical Problems in Number Theory, Polish Scientifc Publishers, 1986. |
[17] | W. Schmidt, Equations over finite fields, An elementary approach. Lecture Notes in Math. 536, Springer, New York, 1976. https://doi.org/10.1007/BFb0080437 |
[18] | L. Goubin, C. Mauduit, A. S$\acute{a}$rk$\ddot{o}$zy, Construction of large families of pseudorandom binary sequences, J. Number Theory, 106 (2004), 56–69. https://doi.org/10.1016/j.jnt.2003.12.002 doi: 10.1016/j.jnt.2003.12.002 |