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1. Introduction

In past decades, research of derivations and nonlinear derivable mappings on algebras has attracted
the attention of many mathematicians.

Definition 1.1 Let R be a commutative ring with identity and A a unital algebra over R, and N the
set of non-negative integers, i, j, k, n ∈ N.

(1) If ∆ is an additive mapping such that

∆(XY) = ∆(X)Y + X∆(Y) (1.1)

for all X,Y ∈ A, then ∆ is said to be a derivation. If ∆ is not necessarily additive and Eq (1.1) hold
for all X,Y ∈ A, then ∆ is said to be a nonlinear derivable mapping.

(2) For any X,Y ∈ A, call X ◦ Y := XY + YX the Jordan product of X,Y . If ∆ is an additive mapping
such that

∆(X ◦ Y) = ∆(X) ◦ Y + X ◦ ∆(Y)

for all X,Y ∈ A, then ∆ is said to be a Jordan derivation. Nonlinear Jordan derivation is defined
similarly to the nonlinear derivable mapping.
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(3) Let D = {dn}n∈N be a sequence of additive mappings (resp., without assumption of additivity) onA
with d0 = idA the identity mapping onA such that

dn(XY) =
∑
i+ j=n

di(X)d j(Y)

for all n ∈ N, and X,Y ∈ A, then D is said to be a higher derivation (resp., nonlinear higher
derivable mapping).

Obviously, every additive derivation is an additive Jordan derivation, and every additive higher
derivation is an additive Jordan higher derivation. However, the inverse statement is not true in general.
It is natural to ask the following two questions:

Problem 1 Under what conditions is a Jordan (higher) derivation is a (higher) derivation?
Problem 2 Under what conditions is a nonlinear (Jordan, higher) derivation is a (Jordan, higher)

derivation?
There are many works that consider Problem 1. For example, see [1–5]. In this paper, we focus

on Problem 2. Rickart [6] proved that, under certain conditions, any one-to-one and multiplicative
mapping from a ring into another ring is necessarily additive. Martindale [7] obtained the result that
each multiplicative bijective mapping on an arbitrary algebra which contains a nontrivial idempotent
is automatically additive. For other similar results about additivity of multiplicative mappings on rings
or algebras, we refer the readers to [8–11] and references therein for more details. Daif [12] showed
that, under certain conditions, any multiplicative derivation is additive. Later, Daif [13] extended this
result to the case of multiplicative generalized derivation. Lu [14] proved that, under some conditions,
every multiplicative Jordan derivation on a prime ring is an additive derivation. For more similar
results about additivity of nonlinear Jordan derivable on rings or algebras, see [15, 16] and references
therein. Fu and Xiao [17] and Ashraf and Jabeen [18] showed that all nonlinear Jordan higher derivable
mappings and nonlinear Jordan higher triple derivable mappings on triangular algebras is an additive
higher derivation, respectively.

In [1], Benkovič defined anti-derivations on algebras as the following.
Definition 1.2 Let C be a commutative ring with unity, A an algebra over C and M an A-bimodule.

Let δ : A→ M be a linear map. If
δ(ab) = δ(b)a + bδ(a)

for all a, b ∈ A, then δ is said an anti-derivation. For more results about anti-derivation on rings or
algebras, see [19, 20] and references therein.

Motivated by the above definition, we introduce the following higher anti-derivation.
Definition 1.3 Let C be a commutative ring with unity, and A be an algebra over C. Let D = {δn}n∈N

be a sequence of additive maps from A into itself with δ0 = idA. If

δn(ab) =
∑
i+ j=n

δi(b)δ j(a)

for all a, b ∈ A and all n ∈ N, then D is called a higher anti-derivation. If δn is not necessarily additive,
then D is called a non-linear higher anti-derivable mapping.

Our main purpose in this paper is to show that every nonlinear higher anti-derivable mapping on
a generalized matrix algebra is additive. In the following section, we introduce some basic concepts

Electronic Research Archive Volume 31, Issue 11, 6898–6912.



6900

and the properties of generalized matrix algebras we require. Generalized matrix algebra is a partic-
ular structure of generalized n-matrix rings (see for example [21]), if we do not consider the scalar
multiplication.

2. Generalized matrix algebras

Let R be a commutative ring with identity,A and B be two unital R-algebras, and 1A and 1B be the
unit elements ofA andB respectively. LetM be a faithful (A,B)-bimodule (i.e., for any A ∈ A, B ∈ B,
if AM = 0, then A = 0; ifMB = 0, then B = 0), andN be a (not necessarily faithful) (B,A)-bimodule.
Suppose that there are two bimodule homomorphismsΦMN :M⊗BN 7→ A andΨNM : N⊗AM 7→ B
satisfying the following associativity conditions: (MN)M′ = M(NM′) and (NM)N′ = N(MN′) for all
M,M′ ∈ M,N,N′ ∈ N , where MN = ΦMN (M ⊗B N) and NM = ΨNM(N ⊗A M). Then

G(A,M,N ,B) =
(
A M

N B

)
=

{(
A M
N B

)
: A ∈ A,M ∈ M,N ∈ N , B ∈ B

}
is an R-algebra under the usual matrix-like addition, and the following multiplication:(

A M
N B

) (
A
′

M′

N′ B′

)
=

(
AA

′

+ ΦMN (M ⊗ N
′

) AM
′

+ MB
′

NA
′

+ BN
′

BB
′

+ ΨNM(N ⊗ M
′

)

)
for all A, A

′

∈ A,M,M
′

∈ M,N,N
′

∈ N and B, B
′

∈ B, where at least one of the two bimodulesM
and N is distinct from zero. Such an R-algebra is called a generalized matrix algebra. This type of
algebra was first introduced by Morita [22]. In the following, we simply write G(A,M,N ,B) as G.
For any associative algebra A, if A is unital with the identity 1A, and has a non-trivial idempotent
P (P2 = P, P , 0 and P , 1A), then the Peirce decomposition of A corresponding to P is A =
PAP + PAQ + QAP + QGQ, where Q = 1A − P. With respect to this decomposition, A is a
generalized matrix algebra, and we then know that any an associative algebra containing a non-trivial
idempotent is a generalized algebra.

Consider a generalized matrix algebra G, let 1 be the unit of G. Set

P1 =

(
1A 0
0 0

)
, P2 = 1 − P1 =

(
0 0
0 1B

)
and Gi j = PiGP j(1 ≤ i, j ≤ 2). Then, G can be represented as

G = G11 + G12 + G21 + G22,

where G11 is a subalgebra of G isomorphic to A, G22 is a subalgebra of G isomorphic to B, G12 is
a (G11,G22)-bimodule isomorphic to M, and G21 is a (G22,G11)-bimodule isomorphic to N . Thus,
G12 is a faithful (G11,G22)-bimodule. Furthermore, for any A ∈ G, A can be represented as A =
A11 + A12 + A21 + A22, where Ai j ∈ Gi j (1 ≤ i ≤ j ≤ 2).

In this section, our main result is the following Theorem 2.1. In [12], Daif proved every multiplica-
tive derivation on a ring having an idempotent element which satisfies some conditions is additive. It is
not hard to see an anti-derivation on a generalized matrix algebra G is a derivation from G into its anti-
algebra. However, Theorem 2.1 is not a direct corollary of the theorem in [12]. This is because there
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are no idempotent elements in a generalized matrix algebra satisfying the conditions in [12]. Further,
in [23], Ferreira and Sandhu showed that multiplicative anti-derivations are additive on generalized
n-matrix rings. When n = 2, a generalized n-matrix ring is just the generalized matrix ring. However,
these results are not the same as the following results.

Theorem 2.1 Let G be a generalized matrix algebra, and φ be a mapping of G (without assumption
of additivity). If φ satisfies

φ(XY) = φ(Y)X + Yφ(X) (2.1)

for all X,Y ∈ G, then φ is additive.
In order to prove Theorem 2.1, we introduce Lemmas 2.1–2.4, and then prove that Lemmas 2.1–2.4

hold.
Lemma 2.1 If φ is an nonlinear anti-derivable mapping on G, then
(i) φ(0) = 0;
(ii) φ(P1) = P1φ(P1)P2 + P2φ(P1)P1;
(iii) φ(P2) = P1φ(P2)P2 + P2φ(P2)P1;
(iv) φ(P1) = −φ(P2).
Proof (i) Taking X = Y = 0 in Eq (2.1), we have φ(0) = φ(0)0 + 0φ(0) = 0 , and so φ(0) = 0.
(ii) Taking X = P1,Y = P1 in Eq (2.1), we get φ(P1) = φ(P1)P1 + P1φ(P1), which implies that

P1φ(P1)P1 = P2φ(P1)P2 = 0. Hence, we obtain that φ(P1) = P1φ(P1)P2 + P2φ(P1)P1. Similarly, we
can show (iii) holds.

(iv) Taking X = P1,Y = P2 in Eq (2.1), we get

0 = φ(P1P2) = φ(P2)P1 + P2φ(P1) = P2φ(P2)P1 + P2φ(P1)P1.

Similarly, we get

0 = φ(P2P1) = φ(P1)P2 + P1φ(P2) = P1φ(P1)P2 + P1φ(P2)P2.

Adding the above two equations, it follows from Lemma 2.1 (ii) and (iii) that

0 = P1φ(P1)P2 + P2φ(P1)P1 + P1φ(P2)P2 + P2φ(P2)P1

= φ(P1) + φ(P2).

Therefore, φ(P1) = −φ(P2). The proof is completed.
Lemma 2.2 If φ is an nonlinear anti-derivable mapping onG, then for all A11 ∈ G11, A12 ∈ G12, A21 ∈

G21, A22 ∈ G22,
(i) φ(A12) = P2φ(A12)P1;
(ii) φ(A21) = P1φ(A21)P2;
(iii) φ(A11) = P1φ(A11)P2 + P2φ(A11)P1;
(iv) φ(A22) = P1φ(A22)P2 + P2φ(A22)P1;
(v) φ(P1)A12 = φ(P2)A12 = A12φ(P1) = A12φ(P2) = 0;
(vi) φ(P1)A21 = φ(P2)A21 = A21φ(P1) = A21φ(P2) = 0.
Proof (i) For any A12 ∈ G12, taking X = P1,Y = A12 in Eq (2.1), we have

φ(A12) = φ(P1A12) = φ(A12)P1 + A12φ(P1). (2.2)
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This yields from P2φ(P1)P2 = 0 that

P1φ(A12)P2 = P2φ(A12)P2 = 0.

Similarly, we have

φ(A12) = φ(A12P2) = φ(P2)A12 + P2φ(A12). (2.3)

This implies that
P1φ(A12)P1 = 0.

Therefore, we get φ(A12) = P2d1(A12)P1. Similarly, we can show that (ii) holds.
(iii) For any A11 ∈ G11, A12 ∈ G12, taking X = A12,Y = A11 in Eq (2.1), then by Lemma 2.2 (i), we

have

0 = φ(A12A11) = φ(A11)A12 + A11φ(A12) = φ(A11)A12.

This yields from the faithfulness of G12 that

P1φ(A11)P1 = 0.

Similarly, taking X = P2,Y = A11 in Eq (2.1), we have

0 = φ(P2A11) = φ(A11)P2 + A11φ(P2).

This implies that

P2φ(A11)P2 = 0.

Therefore, we obtain that φ(A11) = P1φ(A11)P2 + P2φ(A11)P1. Similarly, we can show that (iv) holds.
(v) For any A12 ∈ G12, it follows from Eqs (2.2)–(2.3) and φ(A12) = P2φ(A12)P1 that

P1φ(A12) = 0 = A12φ(P1) and φ(A12)P2 = 0 = φ(P2)A12.

Therefore, we obtain from φ(P1) = −φ(P2) that φ(P1)A12 = φ(P2)A12 = A12φ(P1) = A12φ(P2) = 0.
Similarly, we can show that (vi) holds.

Lemma 2.3 If φ is a nonlinear anti-derivable mapping on G, then for all A11, B11 ∈ G11, A12, B12 ∈

G12, A21, B21 ∈ G21, A22, B22 ∈ G22,
(i) φ(A11 + B11) = φ(A11) + φ(B11);
(ii) φ(A22 + B22) = φ(A22) + φ(B22);
(iii) φ(A11 + A12) = φ(A11) + φ(A12);
(iv) φ(A12 + A22) = φ(A12) + φ(A22);
(v) φ(A21 + A22) = φ(A21) + φ(A22);
(vi) φ(A12 + B12) = φ(A12) + φ(B12);
(vii) φ(A21 + B21) = φ(A21) + φ(B21).
Proof (i) For any A11, B11 ∈ G11, taking X = A11,Y = P1 in Eq (2.1), we have

P2φ(A11)P1 = φ(P1)A11.
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Taking X = P2,Y = A11 in Eq (2.1), we have 0 = φ(P2A11) = φ(A11)P2 + A11φ(P2), this yields from
φ(P1) = −φ(P2) that

P1φ(A11)P2 = −A11φ(P2) = A11φ(P1).

Hence, we can get from above two equations and φ(A11) = P1φ(A11)P2 + P2φ(A11)P1 that

φ(A11) = A11φ(P1) + φ(P1)A11.

Similarly, we get

φ(B11) = B11φ(P1) + φ(P1)B11.

And,

φ(A11 + B11) = (A11 + B11)φ(P1) + φ(P1)(A11 + B11).

Therefore, it follows from above three equations that φ(A11+B11) = φ(A11)+φ(B11). Similarly, we can
show (ii) holds.

(iii) For any A11 ∈ G11, A12 ∈ G12, taking X = A11 + A12,Y = P1 in Eq (2.1), we get that

φ(A11) = φ((A11 + A12)P1) = φ(P1)(A11 + A12) + P1φ(A11 + A12) = φ(P1)A11 + P1φ(A11 + A12).

Similarly, taking X = A11 + A12,Y = P2 in Eq (2.1), by Lemma 2.2 (v), we have

φ(A12) = φ((A11 + A12)P2) = φ(P2)(A11 + A12) + P2φ(A11 + A12) = φ(P2)A11 + P2φ(A11 + A12).

Adding the above two equations, we then obtain from φ(P1) = −φ(P2) that φ(A11 + A12) = φ(A11) +
φ(A12). Similarly, we can show (iv) and (v) hold.

(vi) For any A12, B12 ∈ G12, taking X = A12,Y = B12 in Eq (2.1), it follows from A12B12 = 0 that

0 = φ(A12B12) = φ(B12)A12 + B12φ(A12). (2.4)

Since A12 + B12 = (P1 + A12)(P2 + B12), we take X = P1 + A12,Y = P2 + B12 in Eq (2.1), and then we
get from Lemma 2.2, Lemma 2.3(i),(v), Lemma 2.4(iii)-(iv) and Eq (2.4) that

φ(A12 + B12) = φ((P1 + A12)(P2 + B12))
= φ(P2 + B12)(P1 + A12) + (P2 + B12)φ(P1 + A12)
= (φ(P2) + φ(B12))(P1 + A12) + (P2 + B12)(φ(P1) + φ(A12))
= φ(P2)P1 + φ(P2)A12 + φ(B12)P1 + φ(B12)A12

+ P2φ(P1) + P2φ(A12) + B12φ(P1) + B12φ(A12)
= P2φ(A12) + φ(B12)P1

= P2φ(A12)P1 + P2φ(B12)P1

= φ(A12) + φ(B12).

Similarly, we can show (vii) holds. The proof is completed.
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Lemma 2.4 If φ is a nonlinear anti-derivable mapping on G, then φ(A11 + A12 + A21 + A22) =
φ(A11) + φ(A12) + φ(A21) + φ(A22) for all A11 ∈ G11, A12 ∈ G12, A21 ∈ G21 and A22 ∈ G22.

Proof For any A11 ∈ G11, A12 ∈ G12, A21 ∈ G21, A22 ∈ G22, taking X = P1,Y = A11 + A12 + A21 + A22

in Eq (2.1), we get from Lemma 2.3 (iii),(v) and Lemma 2.2(v)-(vi) that

φ(A11) + φ(A12) = φ(P1(A11 + A12 + A21 + A22))
= φ(A11 + A12 + A21 + A22)P1 + (A11 + A12 + A21 + A22)φ(P1)
= φ(A11 + A12 + A21 + A22)P1 + (A11 + A22)φ(P1).

Similarly, we obtain that

φ(A21) + φ(A22) = φ(P2(A11 + A12 + A21 + A22))
= φ(A11 + A12 + A21 + A22)P2 + (A11 + A12 + A21 + A22)φ(P2)
= φ(A11 + A12 + A21 + A22)P2 + (A11 + A22)φ(P2).

Adding the above two equations, using φ(P1) = −φ(P2), we get φ(A11 + A12 + A21 + A22) = φ(A11) +
φ(A12) + φ(A21) + φ(A22). The proof is completed.

Now, we complete the proof of Theorem 2.1.
Proof of Theorem 2.1 For any X,Y ∈ G, set X = A11+A12+A21+A22 and Y = B11+B12+B21+B22,

where Ai j, Bi j ∈ Gi j(1 ≤ i ≤ j ≤ 2), then by Lemmas 2.3 and 2.4, we obtain that

φ(X + Y) = φ((A11 + A12 + A21 + A22) + (B11 + B12 + B21 + B22))
= φ((A11 + B11) + (A12 + B12) + (A21 + B21) + (A22 + B22))
= φ(A11 + B11) + φ(A12 + B12) + φ(A21 + B21) + φ(A22 + B22)
= φ(A11) + φ(B11) + φ(A12) + φ(B12) + φ(A21) + φ(B21) + φ(A22) + φ(B22)
= φ(A11 + A12 + A21 + A22) + φ(B11 + B12 + B21 + B22)
= φ(X) + φ(Y).

Therefore, φ is an additive mapping on G. The proof is completed.
Next, we will give the second main result.

3. Additivity of nonlinear higher anti-derivable mappings on generalized matrix algebras

Theorem 3.1 Let G be a generalized matrix algebra and D = {dn}n∈N be a sequence mapping from
G into itself (without assumption of additivity) such that

dn(XY) =
∑
i+ j=n

di(Y)d j(X) (3.1)

for any n ∈ N, X,Y ∈ G, then D is an additive mapping on G.
In the following, to prove Theorem 3.1, we will introduce Lemmas 3.1–3.3, and then use math-

ematical induction to prove that Lemmas 3.1–3.3 hold. We assume that G is a generalized ma-
trix algebra, and D = {dn}n∈N is a higher anti-derivable mapping on G. Let N be the set of non-
negative integers, N+ be the set of positive integers, and i, j, k, p, q, n ∈ N. For any X,Y ∈ G,
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A11 ∈ G11, A12 ∈ G12, A21 ∈ G21, A22 ∈ G22. We say a map f : G → G satisfies the set of proper-
ties L, if

(i) f (X + Y) = f (X) + f (Y);
(ii) f (0) = 0, f (P1) = − f (P2) ∈ M +N ;
(iii) f (A12) = P2 f (A12)P1;
(iv) f (P1)A12 = f (P2)A12 = A12 f (P1) = A12 f (P2) = 0;
(v) f (A21) = P1 f (A21)P2;
(vi) f (P1)A21 = f (P2)A21 = A21 f (P1) = A21 f (P2) = 0;
(vii) f (A11) = P1 f (A11)P2 + P2 f (A11)P1;
(viii) f (A22) = P1 f (A22)P2 + P2 f (A22)P1.
It is known from Theorem 2.1 that d1 satisfies the set of properties L. Now, for any X,Y ∈ G,

A11 ∈ G11, A12 ∈ G12, A21 ∈ G21, A22 ∈ G22, we assume that dk(1 ⩽ k < n) satisfies the set of properties
L. In the following, we show dn satisfies the set of properties L.

Lemma 3.1 For any n ∈ N+, A11 ∈ G11, A12 ∈ G12, A21 ∈ G21, A22 ∈ G22, dn satisfies the set of
properties L.

Proof (i) For any n ∈ N+, taking X = Y = 0 in Eq (3.1), it follows from the set of properties L(ii)
that

dn(0) =
∑
i+ j=n

di(0)d j(0) =
∑

i+ j=n,1≤i, j

di(0)d j(0) + dn(0)0 + 0dn(0) = 0.

For any n, i, j ∈ N+(i, j < n), since di(P1), d j(P1), di(P2), d j(P2) ∈ M+N , and so by the set of properties
L (iv) and (vi), we get that

di(P1)d j(P1) = di(P2)d j(P2) = di(P1)d j(P2) = di(P2)d j(P1) = 0. (3.2)

Taking X = P1,Y = P1 in Eq (3.1), by Eq (3.2), we get

dn(P1) =
∑
i+ j=n

di(P1)d j(P1)

=
∑

i+ j=n,1≤i, j

di(P1)d j(P1) + dn(P1)P1 + P1dn(P1)

= dn(P1)P1 + P1dn(P1).

This implies that

P1dn(P1)P1 = P2dn(P1)P2 = 0. (3.3)

Similarly, we have

P1dn(P2)P1 = P2dn(P2)P2 = 0. (3.4)

Taking X = P1,Y = P2 in Eq (3.1), by Eq (3.2), we get

0 =
∑
i+ j=n

di(P2)d j(P1)
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=
∑

i+ j=n,1≤i, j

di(P1)d j(P2) + dn(P2)P1 + P2dn(P1)

= dn(P2)P1 + P2dn(P1).

Therefore, we get

P2dn(P2)P1 = −P2dn(P1)P1. (3.5)

Similarly, we obtain that

P1dn(P2)P2 = −P1dn(P1)P2. (3.6)

Therefore, by Eqs (3.3)–(3.6), we get that dn(P1) = −dn(P2) ∈ M +N .
(ii)-(iii) For any n ∈ N+, A12 ∈ G12, taking X = P1,Y = A12 in Eq (3.1), it follows from (iii) and (vi)

of the set of properties L that

dn(A12) = dn(P1A12)
=

∑
i+ j=n

di(A12)d j(P1)

=
∑

i+ j=n,1≤i, j

P2di(A12)P1d j(P1) + dn(A12)P1 + A12dn(P1)

= dn(A12)P1 + A12dn(P1).

This yields from P2dn(P1)P2 = 0 that

P2dn(A12)P2 = P1dn(A12)P2 = A12dn(P1) = 0. (3.7)

Similarly, we get

dn(A12) = dn(A12P2)
=

∑
i+ j=n

di(P2)d j(A12)

=
∑

i+ j=n,1≤i, j

di(P2)P2d j(A12)P1 + dn(P2)A12 + P2dn(A12)

= dn(P2)A12 + P2dn(A12).

This yields that

P1dn(A12)P1 = dn(P2)A12 = 0. (3.8)

Therefore, by dn(P1) = −dn(P2) and Eqs (3.7) and (3.8), we get (ii) and (iii). Similarly, we can show
that (iv) and (v) hold.

(vi) For any n ∈ N+, A11 ∈ G11, A12 ∈ G12, taking X = A11,Y = A12 in Eq (3.1), it follows from the
set of properties L (ii) and Lemma 3.1 (ii) that

0 = dn(A12A11)
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=
∑
i+ j=n

di(A11)d j(A12)

=
∑

i+ j=n,1≤i, j

di(A11)(P2d j(A12)P1) + dn(A11)A12 + A11dn(A12)

=
∑

i+ j=n,1≤i, j

P1di(A11)P2d j(A12)P1 + dn(A11)A12.

This implies that P1dn(A11)P1A12 = 0, and so by the faithfulness of G12, we get

P1dn(A11)P1 = 0 (3.9)

Taking X = A11,Y = P1 in Eq (3.1), we get from (iv), (vi) and (vii) of the set of properties L and
Lemma 3.1 (vii) that

dn(A11) = dn(A11P1)
=

∑
i+ j=n

di(P1)d j(A11)

=
∑

i+ j=n,1≤i, j

di(P1)(P1d j(A11)P2 + P2d j(A11)P1)

+ dn(P1)A11 + P1dn(A11)
= dn(P1)A11 + P1dn(A11).

This yields that

P2dn(A11)P2 = 0 and P2dn(A11)P1 = dn(P1)A11. (3.10)

Similarly, taking X = P2,Y = A11 in Eq (3.1), we get from (iv), (vi) and (vii) of the set of properties L
and Lemma 3.1 (vii) that

0 = dn(P2A11)
=

∑
i+ j=n

di(A11)d j(P2)

=
∑

i+ j=n,1≤i, j

(P1di(A11)P2 + P2di(A11)P1)d j(P2)

+dn(A11)P2 + A11dn(P2)
= dn(A11)P2 + A11dn(P2).

This yields that

P1dn(A11)P2 = −A11dn(P2) = A11dn(P1). (3.11)

Therefore, we get from Eqs (3.9)–(3.11) that

dn(A11) = P1dn(A11)P2 + P2dn(A11)P1 = A11dn(P1) + dn(P1)A11. (3.12)

Similarly, we can show that (viii) holds. The proof is completed.
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Lemma 3.2 For any n ∈ N+, A11, B11 ∈ G11, A12, B12 ∈ G12, A21, B21 ∈ G21, A22, B22 ∈ G22, then
(i) dn(A11 + B11) = dn(A11) + dn(B11);
(ii) dn(A22 + B22) = dn(A22) + dn(B22);
(iii) dn(A11 + A12) = dn(A11) + dn(A12);
(iv) dn(A12 + A22) = dn(A12) + dn(A22);
(v) dn(A21 + A22) = dn(A21) + dn(A22);
(vi) dn(A12 + B12) = dn(A12) + dn(B12);
(vii) dn(A21 + B21) = dn(A21) + dn(B21).
Proof (i) For any n ∈ N+, A11, B11 ∈ G11, we get from Eq (3.12) that

dn(A11 + B11) = (A11 + B11)dn(P1) + dn(P1)(A11 + B11)
= (A11dn(P1) + dn(P1)A11) + (B11dn(P1) + dn(P1)B11)
= dn(A11) + dn(B11)

Similarly, we show that (ii) holds.
(iii) For any n ∈ N+, A11 ∈ G11, A12 ∈ G12, taking X = A11 + A12,Y = P1 in Eq (3.11), we get from

the set of properties L (i) and Lemma 3.1 that

dn(A11) = dn((A11 + A12)P1)
=

∑
i+ j=n

di(P1)d j(A11 + A12)

=
∑

i+ j=n,1≤i, j

di(P1)(d j(A11) + d j(A12)) + dn(P1)(A11 + A12) + P1dn(A11 + A12)

=
∑

i+ j=n,1≤i, j

di(P1)d j(A11) + dn(P1)A11 + P1dn(A11 + A12)

=
∑

i+ j=n,1≤i, j

di(P1)(P1d j(A11)P2 + P2d j(A11)P1) + dn(P1)A11 + P1dn(A11 + A12)

= dn(P1)A11 + P1dn(A11 + A12).

Thus, we get

dn(A11) = dn(P1)A11 + P1dn(A11 + A12).

Similarly, taking X = A11 + A12,Y = P2 in Eq (3.1), we obtain that

dn(A12) = dn(P2)A11 + P2dn(A11 + A12).

Adding the above two equations, we obtain from dn(P1) = −dn(P2) that dn(A11 + A12) = dn(A11) +
dn(A12). Similarly, we can show (iv) and (v) hold.

(vi) For any A12, B12 ∈ G12, taking X = A12,Y = B12 in Eq (3.1), then it follows from A12B12 = 0
that

0 = dn(A12B12) =
∑
i+ j=n

di(B12)d j(A12). (3.13)

Electronic Research Archive Volume 31, Issue 11, 6898–6912.



6909

Since A12 + B12 = (P1 + A12)(P2 + B12), we take X = P1 + A12,Y = P2 + B12 in Eq (3.1), and then we
get from Lemma 3.1, Lemma 3.2(iii)-(iv), and Eq (3.13) that

dn(A12 + B12) = dn((P1 + A12)(P2 + B12))
=

∑
i+ j=n

di(P2 + B12)d j(P1 + A12)

=
∑

i+ j=n,1≤i, j

di(P2 + B12)d j(P1 + A12)

+ dn(P2 + B12)(P1 + A12) + (P2 + B12)dn(P1 + A12)
=

∑
i+ j=n,1≤i, j

di(P2)(d j(P1) + d j(A12)) +
∑

i+ j=n,1≤i, j

di(B12)(d j(P1) + d j(A12))

+ (dn(P2) + dn(B12))(P1 + A12) + (P2 + B12)(dn(P1) + dn(A12))
=

∑
i+ j=n,1≤i, j

di(B12)d j(A12)

+ dn(P2)P1 + dn(B12)P1 + dn(B12)A12 + P2dn(P1) + P2dn(A12) + B12dn(A12)
=

∑
i+ j=n

di(B12)d j(A12) − P2dn(P1)P1 + P2dn(P1)P1

+ P2dn(A12)P1 + P2dn(B12)P1

= dn(A12) + dn(B12).

Similarly, we can show (vii) holds. The proof is completed.
Lemma 3.3 For any n ∈ N+, A11 ∈ G11, A12 ∈ G12, A21 ∈ G21 and A22 ∈ G22, then dn(A11 + A12 +

A21 + A22) = dn(A11) + dn(A12) + dn(A21) + dn(A22).
Proof For any n ∈ N+, A11 ∈ G11, A12 ∈ G12, A21 ∈ G21, A22 ∈ G22, taking X = P1,Y = A11 + A12 +

A21 + A22 in Eq (3.1), we obtain from the set of properties L (i), Lemma 3.2 (iii) and (v) that

dn(A11) + dn(A12) = dn(A11 + A12)
= dn(P1(A11 + A12 + A21 + A22))
=

∑
i+ j=n

di(A11 + A12 + A21 + A22)d j(P1)

=
∑

i+ j=n,1≤i, j

di(A11 + A12 + A21 + A22)d j(P1)

+ dn(A11 + A12 + A21 + A22)P1

+ (A11 + A12 + A21 + A22)dn(P1).

Similarly, we take X = P2,Y = A11 + A12 + A21 + A22 in Eq (3.1), then we obtain that

dn(A21) + dn(A22) = dn(A21 + A22)
= dn(P2(A11 + A12 + A21 + A22))
=

∑
i+ j=n

di(A11 + A12 + A21 + A22)d j(P2)

=
∑

i+ j=n,1≤i, j

di(A11 + A12 + A21 + A22)d j(P2)
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+ dn(A11 + A12 + A21 + A22)P2

+ (A11 + A12 + A21 + A22)dn(P2).

Adding the above two equations, by dn(P1) + dn(P2) = 0, we get that dn(A11 + A12 + A21 + A22) =
dn(A11) + dn(A12) + dn(A21) + dn(A22). The proof is completed.

Now, we complete the proof of Theorem 3.1.
Proof of Theorem 3.1 For any n ∈ N+, X,Y ∈ G, set X = A11 + A12 + A21 + A22 and Y =

B11 + B12 + B21 + B22, where Ai j, Bi j ∈ Gi j(1 ≤ i ≤ j ≤ 2), then, by Lemmas 3.2 and 3.3, we can obtain
that

dn(X + Y) = dn((A11 + A12 + A21 + A22) + (B11 + B12 + B21 + B22))
= dn((A11 + B11) + (A12 + B12) + (A21 + B21) + (A22 + B22))
= dn(A11 + B11) + dn(A12 + B12) + dn(A21 + B21) + dn(A22 + B22)
= dn(A11) + dn(B11) + dn(A12) + dn(B12) + dn(A21) + dn(B21) + dn(A22) + dn(B22)
= dn(A11 + A12 + A21 + A22) + dn(B11 + B12 + B21 + B22)
= dn(X) + dn(Y).

Therefore, D = {dn}n∈N is an additive mapping on G. The proof is completed.
In the following, we give some applications of Theorem 3.1.
Because triangular algebras and full matrix algebras are two special classes of generalized matrix

algebras, we can get Corollaries 3.1–3.5 immediately. For the definition of triangular algebra, we refer
readers to [24]. It is worth pointing out that, in [25], Ferreira showed that under certain conditions,
every m-multiplicative derivation on a triangular n-matrix ring is additive.

Corollary 3.1 Let A and B be unital algebras, M be a unital (A,B)-bimodule, which
is faithful as both a left A-module and a right B-module, and U = Tri(A,M,B) ={(

a m
0 b

)
: a ∈ A,m ∈ M, b ∈ B

}
be a triangular algebra. If D = {dn}n∈N is a nonlinear higher anti-

derivable mapping onU, then D = {dn}n∈N is additive.
Corollary 3.2 Let A be an unital algebra, and Mn(A)(2 ≤ n) be the full matrix algebras of all

n × n matrices over A. If D = {dn}n∈N is a nonlinear higher anti-derivable mapping onMn(A), then
D = {dn}n∈N is additive.

Corollary 3.3 Let R be a unital prime ring with a nontrivial idempotent P, and I be the unit of R. If
D = {dn}n∈N is a nonlinear higher anti-derivable mapping onU, then D = {dn}n∈N is additive.

Proof of Corollary 3.3 Suppose Q = I − P. Since R a prime ring, it follows that PRQ is a faithful
(PRP,QRQ)-bimodule. Then, R is isomorphic to the generalized matrix algebra(

PRP PRQ
QRP QRQ

)
Therefore, by Theorem 3.1, we know that D = {dn}n∈N is additive.

Since standard operator algebras and factor von Neumann algebras are prime algebras with nontriv-
ial idempotents, by Corollary 3.3, we obtain Corollary 3.4 and Corollary 3.5 as follows.

Corollary 3.4 Let X be a Banach space over number field F , and A(X) be an unital standard
operator algebra over X. If D = {dn}n∈N is a nonlinear higher anti-derivable mapping on A(X), then
D = {dn}n∈N is additive.
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Corollary 3.5 Let H be a Hilbert space over number field F , and V be a factor von Neumann
algebra overH . If D = {dn}n∈N is a nonlinear higher anti-derivable mapping onV, then D = {dn}n∈N is
additive.
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