In this article, the bounds of unified integral operators are studied by using a new notion called refined $ (\alpha, h-m)-p $-convex function. The upper and lower bounds in the form of Hadamard inequality are established. From the results of this paper, refinements of well-known inequalities can be obtained by imposing additional conditions.
Citation: Moquddsa Zahra, Muhammad Ashraf, Ghulam Farid, Kamsing Nonlaopon. Inequalities for unified integral operators of generalized refined convex functions[J]. AIMS Mathematics, 2022, 7(4): 6218-6233. doi: 10.3934/math.2022346
In this article, the bounds of unified integral operators are studied by using a new notion called refined $ (\alpha, h-m)-p $-convex function. The upper and lower bounds in the form of Hadamard inequality are established. From the results of this paper, refinements of well-known inequalities can be obtained by imposing additional conditions.
[1] | G. A. Anastassiou, Generalized fractional Hermite-Hadamard inequalities involving $m$-convexity and $(s, m)$-convexity, Facta Univ. Ser. Math. Inform., 28 (2013), 107–126. |
[2] | E. Set, B. Celik, Fractional Hermite-Hadamard type inequalities for quasi-convex functions, Ordu Univ. J. Sci. Tech., 6 (2016), 137–149. |
[3] | S. M. Yuan, Z. M. Liu, Some properties of $\alpha$-convex and $\alpha$-quasiconvex functions with respect to $n$-symmetric points, Appl. Math. Comput., 188 (2007), 1142–1150. https://doi.org/10.1016/j.amc.2006.10.060 doi: 10.1016/j.amc.2006.10.060 |
[4] | Y. C. Kwun, M. Zahra, G. Farid, S. Zainab, S. M. Kang, On a unified integral operator for $\varphi$-convex functions, Adv. Differ. Equ., 2020 (2020), 297. https://doi.org/10.1186/s13662-020-02761-3 doi: 10.1186/s13662-020-02761-3 |
[5] | J. Tian, Z. Ren, S. Zhong, A new integral inequality and application to stability of time-delay systems, Appl. Math. Lett., 101 (2020), 106058. https://doi.org/10.1016/j.aml.2019.106058 doi: 10.1016/j.aml.2019.106058 |
[6] | Y. Tian, Z. Wang, A new multiple integral inequality and its application to stability analysis of time-delay systems, Appl. Math. Lett., 105 (2020), 106325. https://doi.org/10.1016/j.aml.2020.106325 doi: 10.1016/j.aml.2020.106325 |
[7] | G. Farid, J. Wu, M. Zahra, Y. Yang, On fractional integral inequalities for Reimann-Liouville integrals of refined $(\alpha, h-m)$-convex functions, unpublished work. |
[8] | G. Farid, M. Zahra, Y. C. Kwun, S. M. Kang, Fractional Hadamard-type inequalities for refined $(\alpha, h-m)-p$-convex function and their consequences, unpublished work. |
[9] | H. Budak, F. Hezenci, H. Kara, On generalized Ostrowski, Simpson and Trapezoidal type inequalities for co-ordinated convex functions via generalized fractional integrals, Adv. Differ. Equ., 2021 (2021), 312. https://doi.org/10.1186/s13662-021-03463-0 doi: 10.1186/s13662-021-03463-0 |
[10] | H. Budak, F. Hezenci, H. Kara, On parameterized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integrals, Math. Methods Appl. Sci., 44 (2021), 12522–12536. https://doi.org/10.1002/mma.7558 doi: 10.1002/mma.7558 |
[11] | M. Bombardelli, S. Varošanec, Properties of $(\alpha, m)$-convex functions related to the Hermite-Hadamard-Fejér inequalities, Comput. Math. Appl., 58 (2009), 1869–1877. https://doi.org/10.1016/j.camwa.2009.07.073 doi: 10.1016/j.camwa.2009.07.073 |
[12] | S. Hussain, M. I. Bhatti, M. Iqbal, Hadamard-type inequalities for $s$-convex functions, Punjab Univ. J. Math., 41 (2009), 51–60. |
[13] | M. E. Özdemir, M. Avcı, E. Set, On some inequalities of Hermite-Hadamard type via $m$-convexity, Appl. Math. Lett., 23 (2010), 1065–1070. https://doi.org/10.1016/j.aml.2010.04.037 doi: 10.1016/j.aml.2010.04.037 |
[14] | M. Z. Sarikaya, F. Ertuğral, On the generalized Hermite-Hadamard inequalities, Ann. Univ. Craiova Math. Comput. Sci. Ser., 47 (2020), 193–213. |
[15] | G. Farid, Existence of an integral operator and its consequences in fractional and conformable integrals, Open J. Math. Sci., 3 (2019), 210–216. |
[16] | M. Andrić, G. Farid, J. Pečarić, A further extension of Mittag-Leffler function, Fract. Calc. Appl. Anal., 21 (2018), 1377–1395. |
[17] | Y. C. Kwun, G. Farid, S. Ullah, W. Nazeer, K. Mahreen, S. M. Kang, Inequalities for a unified integral operator and associated results in fractional integrals, IEEE Access, 7 (2019), 126283–126292. https://doi.org/10.1109/ACCESS.2019.2939166 doi: 10.1109/ACCESS.2019.2939166 |
[18] | T. Yan, G. Farid, K. Mahreen, K. Nonlaopon, W. Zhao, Inequalities for $(\alpha, h-m)-p$-convex functions using unified integral operators, unpublished work. |
[19] | M. Zahra, M. Ashraf, G. Farid, K. Nonlaopon, Some new kinds of fractional integral inequalities via refined $(\alpha, h-m)$-convex function, Math. Probl. Eng., 2021 (2021), 8331092. https://doi.org/10.1155/2021/8331092 doi: 10.1155/2021/8331092 |
[20] | C. Y. Jung, G. Farid, H. Yasmeen, Y. P. Lv, J. Pečarić, Refinements of some fractional integral inequalities for refined $(\alpha, h-m)$-convex function, Adv. Differ. Equ., 2021 (2021), 391. https://doi.org/10.1186/s13662-021-03544-0 doi: 10.1186/s13662-021-03544-0 |
[21] | G. Farid, M. Zahra, Some integral inequalities involving Mittag-Leffler functions for $tgs$-convex functions, Comput. Math. Methods, 3 (2021), e1175. https://doi.org/10.1002/cmm4.1175 doi: 10.1002/cmm4.1175 |
[22] | M. Tunç, E. Göv, Ü. Șanal, On $tgs$-convex function and their inequalities, Ser. Math. Inform., 30 (2015), 679–691. |