In this article, the bounds of unified integral operators are studied by using a new notion called refined (α,h−m)−p-convex function. The upper and lower bounds in the form of Hadamard inequality are established. From the results of this paper, refinements of well-known inequalities can be obtained by imposing additional conditions.
Citation: Moquddsa Zahra, Muhammad Ashraf, Ghulam Farid, Kamsing Nonlaopon. Inequalities for unified integral operators of generalized refined convex functions[J]. AIMS Mathematics, 2022, 7(4): 6218-6233. doi: 10.3934/math.2022346
[1] | Ghulam Farid, Maja Andrić, Maryam Saddiqa, Josip Pečarić, Chahn Yong Jung . Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions. AIMS Mathematics, 2020, 5(6): 7332-7349. doi: 10.3934/math.2020469 |
[2] | Wenfeng He, Ghulam Farid, Kahkashan Mahreen, Moquddsa Zahra, Nana Chen . On an integral and consequent fractional integral operators via generalized convexity. AIMS Mathematics, 2020, 5(6): 7632-7648. doi: 10.3934/math.2020488 |
[3] | Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon . On Hadamard inequalities for refined convex functions via strictly monotone functions. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096 |
[4] | Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379 |
[5] | Yonghong Liu, Ghulam Farid, Dina Abuzaid, Hafsa Yasmeen . On boundedness of fractional integral operators via several kinds of convex functions. AIMS Mathematics, 2022, 7(10): 19167-19179. doi: 10.3934/math.20221052 |
[6] | Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297 |
[7] | Zitong He, Xiaolin Ma, Ghulam Farid, Absar Ul Haq, Kahkashan Mahreen . Bounds of a unified integral operator for (s,m)-convex functions and their consequences. AIMS Mathematics, 2020, 5(6): 5510-5520. doi: 10.3934/math.2020353 |
[8] | Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly (α,m)-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661 |
[9] | Xinghua You, Ghulam Farid, Lakshmi Narayan Mishra, Kahkashan Mahreen, Saleem Ullah . Derivation of bounds of integral operators via convex functions. AIMS Mathematics, 2020, 5(5): 4781-4792. doi: 10.3934/math.2020306 |
[10] | Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung . Generalization of some fractional versions of Hadamard inequalities via exponentially (α,h−m)-convex functions. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521 |
In this article, the bounds of unified integral operators are studied by using a new notion called refined (α,h−m)−p-convex function. The upper and lower bounds in the form of Hadamard inequality are established. From the results of this paper, refinements of well-known inequalities can be obtained by imposing additional conditions.
Convex functions and their applications to construct new definitions are studied extensively to obtain generalized and new inequalities. The aim of this paper is to utilize a new notion of convexity so called refined (α,h−m)−p-convex function for the establishment of new bounds of unified integral operators. These bounds will provide the refinements of inequalities already exist in literature which have been obtained for different kinds of fractional integral operators of several types of convexities. Some recent results related to findings of this paper we refer the readers to [1,2,3,4,5,6]. Next, we give definitions of functions and integral operators which will be useful in the formation of results of this paper.
All the functions are considered to be real valued until specified.
Definition 1.1. [7] Let h:J→R be a function with h≢0 and (0,1)⊆J. A positive function Ω is called refined (α,h−m)-convex function, if h≥0 and for each u,v∈[0,b]⊆R, we have
Ω(tu+m(1−t)v)≤h(tα)h(1−tα)(Ω(u)+mΩ(v)), | (1.1) |
where (α,m)∈(0,1]2 and t∈(0,1).
Definition 1.2. [8] Let J⊆R be an interval containing (0,1) and let h:J→R be a non-negative function. Let I⊂(0,∞) be an interval and p∈R∖{0}. A positive function Ω is said to be refined (α,h−m)−p-convex, if
Ω((tup+m(1−t)vp))1p)≤h(tα)h(1−tα)(Ω(u)+mΩ(v)) | (1.2) |
holds provided (tup+m(1−t)vp))1p∈I for t∈[0,1] and (α,m)∈[0,1]2.
It gives refinements of several types of convexities when 0<h(t)<1, see [8]. Integral operators play a vital role in the theory of inequalities. In the recent era, integral operators are being used extensively to produce new literature results. For references see [9,10,11,12,13,14]. Unified integral operators are the well-known operators in the literature introduced in [15]. Also, these integrals are continuous and bounded.
In this paper, we are interested in giving the refined bounds of unified integral operators along with Hadamard-type inequalities for refined (α,h−m)−p-convex functions.
Definition 1.3. [16] Let Ω∈L1[u,v] and x∈[u,v], also let σ,κ,α,ξ,γ,ι∈C, ℜ(κ),ℜ(α),ℜ(ξ)>0, ℜ(ι)>ℜ(γ)>0 with p′≥0, δ>0 and 0<k≤δ+ℜ(κ). Then the generalized fractional integral operators ϵγ,δ,k,ικ,α,ξ,σ,u+Ω and ϵγ,δ,k,ικ,α,ξ,σ,v−Ω are defined by:
(ϵγ,δ,k,ικ,α,ξ,u+Ω)(x,σ;p′)=∫xu(x−t)α−1Eγ,δ,k,ικ,α,ξ(σ(x−t)κ;p′)Ω(t)dt, | (1.3) |
(ϵγ,δ,k,ικ,α,ξ,σ,v−Ω)(x,σ;p′)=∫vx(t−x)α−1Eγ,δ,k,ικ,α,ξ(σ(t−x)κ;p′)Ω(t)dt, | (1.4) |
where Eγ,δ,k,ικ,α,ξ(t;p′) is the extended generalized Mittag-Leffler function defined as:
Eγ,δ,k,ικ,α,ξ(t;p′)=∞∑n=0ρp′(γ+nk,ι−γ)ρ(γ,ι−γ)(ι)nkΓ(κn+α)tn(ξ)nδ. | (1.5) |
Definition 1.4. [17] Let Ω,Δ be real valued functions over [u,v] with 0<u<v, where Ω is positive and integrable and Δ is differentiable and strictly increasing. Also let Υx be an increasing function on [u,∞) and α,ξ,γ,ι∈C,p′,κ,δ≥0 and 0<k≤δ+κ. Then for x∈[u,v] the left and right integral operators are defined by:
(ΔFΥ,γ,δ,k,ικ,α,ξ,u+Ω)(x,σ;p′)=∫xuJyx(Eγ,δ,k,ικ,α,ξ,Δ;Υ)Δ′(y)Ω(y)dy, | (1.6) |
(ΔFΥ,γ,δ,k,ικ,α,ξ,v−Ω)(x,σ;p′)=∫vxJxy(Eγ,δ,k,ικ,α,ξ,Δ;Υ)Δ′(y)Ω(y)dy, | (1.7) |
where
Jyx(Eγ,δ,k,ικ,α,ξ,Δ;Υ)=Υ(Δ(x)−Δ(y))Δ(x)−Δ(y)Eγ,δ,k,ικ,α,ξ(σ(Δ(x)−Δ(y))κ;p). | (1.8) |
The kernel (1.8) involves an increasing function and the Mittag-Leffler functions from which one can deduce several fractional integral operators by choosing the particular parameters, see [17,Remarks 6 and 7].
The rest of the paper is organized as follows: In Section 2, the bounds of unified integral operators (1.6) and (1.7) are obtained using refined (α,h−m)−p-convex functions. Their extensions are also obtained by imposing the condition 0<h(t)<1. These extensions give refinements of already known results. In Section 3, some results for new deduced definitions are also presented.
Throughout the paper we use the following notations:
∫10h(s)αh(1−sα)Δ′(x−s(x−u))ds=Hxu(sα;h,Δ),and∧(t)=t1p. |
Theorem 2.1. Let Ω be a positive, refined (α,h−m)−p-convex and integrable function over [u,v]. Also, let Υx be an increasing function on [u,v] and Δ be strictly increasing and differentiable function on (u,v). Then, for β,ξ,γ,ι∈R,p′,κ,ϑ,δ≥0,0<k≤δ+κ and 0<k≤δ+ϑ following result holds:
(ΔFΥ,γ,δ,k,ικ,β,ξ,u+Ω∘∧)(x,σ;p′)+(ΔFΥ,γ,δ,k,ιϑ,β,ξ,v−Ω∘∧)(x,σ;p′)≤Jux(Eγ,δ,k,ικ,β,ξ,Δ;Υ)(Ω((u)1p)+mΩ((xm)1p))(x−u)Hxu(sα;h,Δ)+Jxv(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)(Ω((v)1p)+mΩ((xm)1p))(v−x)Hxv(zα;h,Δ), | (2.1) |
where p>0.
Proof. For the functions Υx and Δ, the following inequality holds
Jtx(Eγ,δ,k,ικ,β,ξ,Δ;Υ)Δ′(t)≤Jux(Eγ,δ,k,ικ,α,ξ,Δ;Υ)Δ′(t). | (2.2) |
Using refined (α,h−m)−p-convexity of Ω, one can have
Ω((t)1p)≤h(x−tx−u)αh(1−(x−tx−u)α)(Ω((u)1p)+mΩ((xm)1p)). | (2.3) |
From (2.2) and (2.3), the following integral inequality is obtained:
∫xuJtx(Eγ,δ,k,ικ,β,ξ,Δ;Υ)Δ′(t)Ω((t)1p)dt≤Jux(Eγ,δ,k,ικ,β,ξ,Δ;Υ)(Ω((u)1p)+mΩ((xm)1p))×∫xuh(x−tx−u)αh(1−(x−tx−u)α)Δ′(t)dt. | (2.4) |
Using (1.6) of Definition 1.4 on the left side of inequality (2.4) and making change of variable by setting s=x−tx−u on the right hand side of above inequality, we get
(ΔFΥ,γ,δ,k,ικ,β,ξ,u+Ω∘∧)(x,σ;p′)≤Jux(Eγ,δ,k,ικ,β,ξ,Δ;Υ)(x−u)(Ω((u)1p)+mΩ((xm)1p))×∫10h(sα)h(1−sα)Δ′(x−s(x−u))ds. | (2.5) |
The above inequality leads to the following inequality
(ΔFΥ,γ,δ,k,ικ,β,ξ,u+Ω∘∧)(x,σ;p′)≤Jux(Eγ,δ,k,ικ,β,ξ,Δ;Υ)(x−u)(Ω((u)1p)+mΩ((xm)1p))(x−u)Hux(sα;h,Δ). | (2.6) |
Also, for t∈(x,v], x∈(u,v), we can write
Jxt(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)Δ′(t)≤Jxv(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)Δ′(t). | (2.7) |
By definition of refined (α,h−m)−p-convex function, one can write
Ω((t)1p)≤h(t−xv−x)αh(1−(t−xv−x)α)(Ω((v)1p)+mΩ((xm)1p)). | (2.8) |
From (2.7) and (2.8), the following integral inequality is obtained:
∫vxJxt(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)Δ′(t)Ω((t)1p)dt≤Jxv(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)×(Ω((v)1p)+mΩ((xm)1p))∫vxh(t−xv−x)αh(1−(t−xv−x)α)Δ′(t)dt. |
Using (1.7) of Definition 1.4 on left hand side and making change of variable by setting z=t−xv−x on right hand side of above inequality, we get
(ΔFΥ,γ,δ,k,ιϑ,β,ξ,v−Ω∘∧)(x,σ;p′)≤Jxv(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)(Ω((v)1p)+mΩ((xm)1p))×(v−x)∫10h(zα)h(1−zα)Δ′(x+z(v−x)dz. | (2.9) |
The above inequality leads to the following inequality
(ΔFΥ,γ,δ,k,ιϑ,β,ξ,v−Ω∘∧)(x,σ;p′)≤Jxv(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)(Ω((v)1p)+mΩ((xm)1p))(v−x)Hxv(zα;h,Δ). | (2.10) |
Combining (2.6) and (2.10), the required inequality (2.1) is obtained.
Next, we give the extension of Theorem 2.1 and refinement of [18,Theorem 1].
Theorem 2.2. Under the assumptions of Theorem 2.1, if 0<h(t)<1, then the following result holds:
(ΔFΥ,γ,δ,k,ικ,β,ξ,u+Ω∘∧)(x,σ;p′)+(ΔFΥ,γ,δ,k,ιϑ,β,ξ,v−Ω∘∧)(x,σ;p′)≤Jux(Eγ,δ,k,ικ,β,ξ,Δ;Υ)(Ω((u)1p)+mΩ((xm)1p))(x−u)Hxu(sα;h,Δ)+Jxv(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)(Ω((v)1p)+mΩ((xm)1p))(v−x)Hxv(zα;h,Δ)≤Jux(Eγ,δ,k,ικ,β,ξ,Δ;Υ)(x−u)(Ω((u)1p)Hux(sα;h,Δ)+mΩ((xm)1p)Hux(1−sα;h,Δ))+Jxv(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)(v−x)×(Ω((v)1p)Hxv(zα;h,Δ)+mΩ((xm)1p)Hxv(1−zα;h,Δ)). | (2.11) |
Proof. From (2.3) and (2.8) one can see that for 0<h(t)<1
Ω((t)1p)≤h(x−tx−u)αh(1−(x−tx−u)α)(Ω((u)1p)+mΩ((xm)1p))≤h(x−tx−u)αΩ((u)1p)+mh(1−(x−tx−u)α)Ω((xm)1p) | (2.12) |
and
Ω((t)1p)≤h(t−xv−x)αh(1−(t−xv−x)α)(Ω((v)1p)+mΩ((xm)1p))≤h(t−xv−x)αΩ((v)1p)+mh(1−(t−xv−x)α)Ω((xm)1p). | (2.13) |
Hence, by following the proof of Theorem 2.1, one can get (2.11).
Corollary 1. For κ=ϑ, (2.1) gives the following result:
(ΔFΥ,γ,δ,k,ικ,α,ξ,u+Ω∘∧)(x,σ;p′)+(ΔFΥ,γ,δ,k,ικ,α,ξ,v−Ω∘∧)(x,σ;p′)≤Jux(Eγ,δ,k,ικ,β,ξ,Δ;Υ)(x−u)(Ω((u)1p)+mΩ((xm)1p))Hxu(sα;h,Δ)+Jxv(Eγ,δ,k,ικ,β,ξ,Δ;Υ)(v−x)(Ω((v)1p)+mΩ((xm)1p))Hxv(zα;h,Δ). | (2.14) |
The following corollary presents the result of Theorem 2.1 for refined (h−m)−p-convex function.
Corollary 2. Under the assumptions of Theorem 2.1, if 0<h(t)<1 then the following result holds:
(ΔFΥ,γ,δ,k,ικ,β,ξ,u+Ω∘∧)(x,σ;p′)+(ΔFΥ,γ,δ,k,ιϑ,β,ξ,v−Ω∘∧)(x,σ;p′)≤(Jux(Eγ,δ,k,ικ,β,ξ,Δ;Υ)(Ω((u)1p)+mΩ((xm)1p))(Δ(x)−Δ(u))+Jxv(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)(Ω((v)1p)+mΩ((xm)1p))(Δ(v)−Δ(x)))||h||2∞. | (2.15) |
Proof. Using α=1 and h∈L∞[0,1] in (2.1), we get inequality (2.15).
Corollary 3. For p′=σ=0 inequality (2.1) gives the following inequality for the fractional integral operator defined in [15].
(ΔFΥ,Δu+Ω∘∧)(x)Γ(κ)+(ΔFΥ,Δv−Ω∘∧)(x)Γ(ϑ)≤Υ(Δ(x)−Δ(u))Γ(κ)(Δ(x)−Δ(u))(Ω((u)1p)+mΩ((xm)1p))(x−u)Hxu(sα;h,Δ)+Υ(Δ(v)−Δ(x))Γ(ϑ)(Δ(v)−Δ(x))(Ω((v)1p)+mΩ((xm)1p))(v−x)Hxv(zα;h,Δ). | (2.16) |
Remark 1. (i) For p=1, the inequality (2.1) coincides with [19,Theorem 1].
(ii) For p=1, the inequality (2.11) coincides with [19,Theorem 2].
(iii) For p=1, the inequality (2.14) coincides with [19,Corollary 1].
(iv) For 0<h(t)<1, the inequality (2.1) coincides with [18,Theorem 1].
(v) For 0<h(t)<1, the inequality (2.16) coincides with [18,Corollary 1].
(vi) For Υ(x)=xα′kΓ(α′)kΓk(α′),α′>k>0 and p′=σ=0 along with the condition of (i), the inequality (2.1) coincides with [20,Theorem 10].
(vii) For k=1 along with the conditions of (vi), the inequality (2.14) coincides with [20,Theorem 6].
(viii) For Δ as identity function along with the conditions of (vi), the inequality (2.14) coincides with [7,Theorem 5].
(ix) For Δ as identity function and k=1 along with the conditions of (vi), the inequality (2.14) coincides with [7,Theorem 1].
(x) For h(t)=t and m=1=α along with the condition of (i), the inequality (2.1) coincides with [21,Theorem 4].
(xi) For h(t)=t and m=1=α along with the condition of (i), the inequality (2.14) coincides with [21,Corollary 1].
(xii) For h(t)=t and m=1=α along with the conditions of (vi), the inequality (2.14) coincides with [22,Theorem 3.1].
(xiii) For h(t)≤1√2 along with the conditions of (ix), the inequality (2.14) coincides with [7,Theorem 2].
(xiv) For h(t)=t and m=1=α along with the conditions of (viii), the inequality (2.14) coincides with [7,Corollary 8].
(xv) For α=1 and h(t)=t a along with the conditions of (viii), the inequality (2.14) coincides with [7,Corollary 14].
(xvi) For h(t)=ts and α=1 along with the conditions of (viii), the inequality (2.14) coincides with [7,Corollary 15].
(xvii) For h(t)=t and α=1 along with the conditions of (viii), the inequality (2.14) coincides with [7,Corollary 16].
(xviii) For h(t)=t and m=1=α along with the conditions of (ix), the inequality (2.14) coincides with [7,Corollary 1].
(xix) For α=1 and h(t)=t a along with the conditions of (ix), the inequality (2.14) coincides with [7,Corollary 2].
(xx) For h(t)=ts and α=1 along with the conditions of (ix), the inequality (2.14) coincides with [7,Corollary 4].
(xxi) For h(t)=t and α=1 along with the conditions of (ix), the inequality (2.14) coincides with [7,Corollary 5].
By using 0<h(t)<1 and making different choices of functions h and Δ and other parameters in (2.1) one can get the refinements for many known classes of convex functions and integral operators which are given in [18,Remark 2].
Next we give a lemma which we will use in upcoming Theorem 2.4.
Lemma 2.3. Let Ω:[0,∞)→R be refined (α,h−m)−p-convex function. If Ω(x)=Ω(up+vp−xpm)1p, x∈[u,v], then the following inequality holds:
Ω(up+vp2)≤h(12α)h(2α−12α)(m+1)Ω(x). | (2.17) |
Proof. Since Ω is refined (α,h−m)−p convex, then following inequality holds:
Ω(up+vp2)≤h(12α)h(2α−12α)[Ω((xp−upvp−upvp+vp−xpvp−upup)1p)+mΩ((xp−upvp−upup+vp−xpvp−upvpm)1p)]≤h(12α)h(2α−12α)(Ω(x)+mΩ(up+vp−xpm)1p). | (2.18) |
Using Ω(x)=Ω(up+vp−xpm)1p in above inequality, we get (2.17).
Remark 2. (i) For p=1, the inequality (2.17) coincides with [19,Lemma 1].
(ii) For p=1,h(t)=t and m=α=1, the inequality (2.17) coincides with [21,Lemma 1].
(iii) For 0<h(t)<1, the inequality (2.17) gives refinement of [18,Lemma 1].
Theorem 2.4. Under the assumptions of Theorem 2.1, the following result holds for Ω(x)=Ω(up+vp−xpm)1p:
1h(12α)h(2α−12α)(m+1)Ω(up+vp2)((ΔFΥ,γ,δ,k,ιϑ,β,ξ,v−1)(u,σ;p′)+(ΔFΥ,γ,δ,k,ικ,β,ξ,u+1)(v,σ;p′))≤(ΔFΥ,γ,δ,k,ικ,β,ξ,v−Ω∘∧)(u,σ;p′)+(ΔFΥ,γ,δ,k,ιϑ,β,ξ,u+Ω∘∧)(v,σ;p′)≤(v−u)(Ω((v)1p)+mΩ((um)1p))Huv(zα;h,Δ)[Juv(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)+Juv(Eγ,δ,k,ικ,β,ξ,Δ;Υ)]. | (2.19) |
Proof. For the kernel defined in (1.8) and function Δ, the following inequality holds:
Jux(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)Δ′(x)≤Juv(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)Δ′(x),x∈(u,v). | (2.20) |
Using refined (α,h−m)-convexity of Ω, we have
Ω((x)1p)≤h(x−uv−u)αh(1−(x−uv−u)α)(Ω((v)1p)+mΩ((um)1p)). | (2.21) |
From (2.20) and (2.21), the following integral inequality is obtained:
∫vuJux(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)Ω((x)1p)Δ′(x)dx≤Juv(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)(Ω((v)1p)+mΩ((um)1p))×∫vx1h(x−uv−u)αh(1−(x−uv−u)α)Δ′(x)dx. |
Using (1.7) of Definition 1.4 on right hand side, making change of variable by setting z=x−uv−u on right hand side of above inequality, we get
(ΔFΥ,γ,δ,k,ιϑ,β,ξ,v−Ω∘∧)(u,σ;p′)≤Juv(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)(v−u)(Ω((v)1p)+mΩ((um)1p))Huv(zα;h,Δ). | (2.22) |
The following inequality also holds true for x∈(u,v):
Jxv(Eγ,δ,k,ικ,β,ξ,Δ;Υ)Δ′(x)≤Juv(Eγ,δ,k,ικ,β,ξ,Δ;Υ)Δ′(x). | (2.23) |
From (2.21) and (2.23), the following integral inequality is obtained:
∫vuJxv(Eγ,δ,k,ικ,β,ξ,Δ;Υ)Δ′(x)Ω((x)1p)dx≤Juv(Eγ,δ,k,ικ,β,ξ,Δ;Υ)(Ω((v)1p)+mΩ((um)1p))×∫vuh(x−uv−u)αh(1−(x−uv−u)α)Δ′(x)dx. |
Using (1.6) of Definition 1.4 on left hand side and making change of variable on right hand side of above inequality, we get
(ΔFΥ,γ,δ,k,ικ,β,ξ,u+Ω∘∧)(v,σ;p′)≤Juv(Eγ,δ,k,ικ,β,ξ,Δ;Υ)(v−u)(Ω((v)1p)+mΩ((um)1p))Huv(zα;h,Δ). | (2.24) |
Now, using Lemma 2.3, we can write
∫vuΩ(up+vp2)Jux(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)Δ′(x)dx≤h(12α)h(2α−12α)(m+1)∫vuJux(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)Δ′(x)Ω(x)dx, |
which by using (1.7) of Definition 1.4 gives the following integral inequality:
1h(12α)h(2α−12α)(m+1)Ω(up+vp2)(ΔFΥ,γ,δ,k,ιϑ,β,ξ,v−1)(u,σ;p′)≤(ΔFΥ,γ,δ,k,ιϑ,β,ξ,v−Ω)(u,σ;p′). | (2.25) |
Again, using Lemma 2.3, we can write
Ω(up+vp2)Jxv(Eγ,δ,k,ικ,β,ξ,Δ;Υ)Δ′(x)dx≤h(12α)h(2α−12α)(m+1)∫vuJxv(Eγ,δ,k,ικ,β,ξ,Δ;Υ)Δ′(x)Ω(x)dx, | (2.26) |
which by using (1.6) of Definition 1.4 gives the following fractional integral inequality:
1h(12α)h(2α−12α)(m+1)Ω(up+vp2)(ΔFΥ,γ,δ,k,ικ,β,ξ,u+1)(v,σ;p′)≤(ΔFΥ,γ,δ,k,ικ,β,ξ,u+Ω)(v,σ;p′). | (2.27) |
By Combining (2.22), (2.24), (2.25) and (2.27), the required inequality (2.19) is obtained.
The following theorem is the extension of Theorem 2.4 and refinement of [18,Theorem 2].
Theorem 2.5. Under the assumptions of Theorem 2.4, the following result holds:
1h(12α)h(2α−12α)(m+1)Ω(up+vp2)((ΔFΥ,γ,δ,k,ιϑ,β,ξ,v−1)(u,σ;p′)+(ΔFΥ,γ,δ,k,ικ,β,ξ,u+1)(v,σ;p′))≤1h(12α)+mh(2α−12α)Ω(up+vp2)((ΔFΥ,γ,δ,k,ιϑ,β,ξ,v−1)(u,σ;p′)+(ΔFΥ,γ,δ,k,ικ,β,ξ,u+1)(v,σ;p))≤(ΔFΥ,γ,δ,k,ικ,β,ξ,v−Ω)(u,σ;p′)+(ΔFΥ,γ,δ,k,ιϑ,β,ξ,u+Ω)(v,σ;p′)≤(v−u)(Ω((v)1p)+mΩ((um)1p))Huv(zα;h,Δ)[Juv(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)+Juv(Eγ,δ,k,ικ,β,ξ,Δ;Υ)]≤(v−u)(Juv(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)Ω((v)1p)Huv(zα;h,Δ)+mJuv(Eγ,δ,k,ικ,β,ξ,Δ;Υ)Ω((um)1p)Huv(1−zα;h,Δ)). | (2.28) |
Proof. From (2.21) one can see that for 0<h(t)<1
Ω((x)1p)≤h(x−uv−u)αh(1−(x−uv−u)α)(Ω((v)1p)+mΩ((um)1p))≤h(x−uv−u)αΩ((v)1p)+mh(1−(x−uv−u))αΩ((um)1p). | (2.29) |
Hence by following the proof of Theorem 2.4, one can get (2.28).
Corollary 4. For κ=ϑ, (2.19) gives the following result:
1h(12α)h(2α−12α)(m+1)Ω(up+vp2)((ΔFΥ,γ,δ,k,ικ,β,ξ,v−1)(u,σ;p′)+(ΔFΥ,γ,δ,k,ικ,β,ξ,u+1)(v,σ;p′))≤(ΔFΥ,γ,δ,k,ικ,β,ξ,v−Ω∘∧)(u,σ;p′)+(ΔFΥ,γ,δ,k,ικ,β,ξ,u+Ω∘∧)(v,σ;p′)≤2(v−u)(Ω((v)1p)+mΩ((um)1p))Juv(Eγ,δ,k,ικ,β,ξ,Δ;Υ)Huv(zα;h,Δ). | (2.30) |
The following corollary presents the result of Theorem 2.4 for refined (h−m)−p-convex function.
Corollary 5. Under the assumptions of Theorem 2.4, the following result holds:
1h2(12)(m+1)Ω(up+vp2)((ΔFΥ,γ,δ,k,ικ,α,ξ,v−1)(u,σ;p′)+(ΔFΥ,γ,δ,k,ικ,β,ξ,u+1)(v,σ;p′))≤(ΔFΥ,γ,δ,k,ικ,α,ξ,v−Ω∘∧)(u,σ;p′)+(ΔFΥ,γ,δ,k,ικ,β,ξ,u+Ω∘∧)(v,σ;p′)≤2(Ω((v)1p)+mΩ((um)1p))Juv(Eγ,δ,k,ικ,β,ξ,Δ;Υ)(Δ(v)−Δ(u))||h||2∞. | (2.31) |
Proof. For h∈L∞[0,1] and α=1 in (2.19), one can get (2.31).
Corollary 6. For p′=σ=0, inequality (2.19) gives the following inequality:
Ω(up+vp2)h(12α)h(2α−12α)(m+1)[(ΔFΥ,Δu+1)(x)Γ(κ)+(ΔFΥ,Δv−1)(x)Γ(ϑ)]≤(ΔFΥ,Δu+Ω∘∧)(x)Γ(κ)+(ΔFΥ,Δv−Ω∘∧)(x)Γ(ϑ)≤Υ(Δ(v)−Δ(u))(v−u)Huv(zα;h,Δ)Δ(v)−Δ(u)(Ω((v)1p)+mΩ((xm)1p))(1Γ(ϑ)+1Γ(κ)). | (2.32) |
Remark 3. (i) For p=1, the inequality (2.19) coincides with [19,Theorem 3].
(ii) For p=1, the inequality (2.30) coincides with [19,Corollary 3].
(iii) For h(t)=t and m=p=1=α, the inequality (2.19) coincides with [21,Theorem 5].
(iv) For h(t)=t and m=p=1=α, the inequality (2.30) coincides with [21,Corollary 2].
For 0<h(t)<1 in (2.19), we can get refinements for different classes of convex functions and integral operators given in [18,Remark 3].
Theorem 2.6. Let Ω,Δ be differentiable functions such that |Ω′| is refined (α,h−m)−p-convex and Δ be strictly increasing over [u,v] and differentiable over [u,v]. Also, Υx be an increasing function on [u,v] and β,ξ,γ,ι∈C,p′,κ,ϑ,δ≥ 0 and 0<k≤δ+κ and 0<k≤δ+ϑ. Then for x∈(u,v), we have
|(ΔFΥ,γ,δ,k,ικ,β,ξ,u+(Ω∗Δ)∘∧)(x,σ;p′)+(ΔFΥ,γ,δ,k,ιϑ,β,ξ,v−(Ω∗Δ)∘∧)(x,σ;p′)|≤Jux(Eγ,δ,k,ικ,β,ξ,Δ;Υ)(x−u)(|Ω′((u)1p)|+m|Ω′((xm)1p)|)Hxu(sα;h,Δ)+Jxv(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)(v−x)(|Ω′((v)1p)|+m|Ω′((xm)1p)|)Hxv(zα;h,Δ), | (2.33) |
where
(ΔFΥ,γ,δ,k,ικ,β,ξ,u+Ω∗Δ)(x,σ;p′)=∫xuJtx(Eγ,δ,k,ικ,β,ξ,Δ;Υ)Δ′(t)Ω′(t)dt | (2.34) |
and
(ΔFΥ,γ,δ,k,ιϑ,β,ξ,v−Ω∗Δ)(x,σ;p′)=∫vxJxt(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)Δ′(t)Ω′(t)dt, | (2.35) |
where p>0.
Proof. Using refined (α,h−m)−p-convexity of |Ω′| over [u,v] implies
|Ω′((t)1p)|≤h(x−tx−u)αh(1−(x−tx−u)α)(|Ω′((u)1p)|+m|Ω′((xm)1p)|). | (2.36) |
Absolute value property implies to the following relation:
−h(x−tx−u)αh(1−(x−tx−u)α)(|Ω′((u)1p)|+m|Ω′((xm)1p)|)≤Ω′((t)1p)≤h(x−tx−u)αh(1−(x−tx−u)α)(|Ω′((u)1p)|+m|Ω′((xm)1p)|). | (2.37) |
From (2.2) and second inequality of (2.37) the following inequality is obtained:
∫xx1Jtx(Eγ,δ,k,ικ,β,ξ,Δ;Υ)Δ′(t)Ω′((t)1p)dt≤Jux(Eγ,δ,k,ικ,β,ξ,Δ;Υ)(|Ω′((u)1p)|+m|Ω′((xm)1p)|)×∫xuh(x−tx−u)αh(1−(x−tx−u)α)Δ′(t)dt, | (2.38) |
which leads to the following fractional integral inequality:
(ΔFΥ,γ,δ,k,ικ,β,ξ,u+(Ω∗Δ)∘∧)(x,σ;p′)≤Jux(Eγ,δ,k,ικ,β,ξ,Δ;Υ)(x−u)(|Ω′((u)1p)|+m|Ω′((xm)1p)|)Hxu(sα;h,Δ). | (2.39) |
Also, inequality (2.2) and first inequality of (2.37) gives the following fractional integral inequality:
(ΔFΥ,γ,δ,k,ικ,β,ξ,u+(Ω∗Δ)∘∧)(x,σ;p′)≥−Jux(Eγ,δ,k,ικ,β,ξ,Δ;Υ)(x−u)(|Ω′((u)1p)|+m|Ω′((xm)1p)|)Hxu(sα;h,Δ). | (2.40) |
Again, using refined (α,h−m)−p-convexity of |Ω′| over [u,v], we can write
|Ω′(t)1p|≤h(t−xv−x)αh(1−(t−xv−x)α)(m|Ω′((xm)1p)|+|Ω′((v)1p)|) | (2.41) |
and
−h(t−xv−x)αh(1−(t−xv−x)α)(m|Ω′((xm)1p)|+|Ω′((v)1p)|)≤Ω′((t)1p)≤h(t−xv−x)αh(1−(t−xv−x)α)(m|Ω′((xm)1p)|+|Ω′((v)1p)|). | (2.42) |
From (2.7) and second inequality of (2.42) following fractional integral inequality is obtained:
(ΔFΥ,γ,δ,k,ιϑ,β,ξ,v−(Ω∗Δ)∘∧)(x,σ;p′)≤Jxv(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)(v−x)(|Ω′((v)1p)|+m|Ω′((xm)1p)|)Hxv(zα;h,Δ). | (2.43) |
The inequality (2.7) and the first inequality of (2.42) give the following fractional integral inequality:
(ΔFΥ,γ,δ,k,ιϑ,β,ξ,v−(Ω∗Δ)∘∧)(x,σ;p′)≥−Jxv(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)(v−x)(|Ω′((v)1p)|+m|Ω′((xm)1p)|)Hxv(zα;h,Δ). | (2.44) |
By combining (2.39), (2.40), (2.43) and (2.44), the inequality (2.33) is obtained.
Next, we give extension of Theorem 2.6 and refinement of [18,Theorem 3].
Theorem 2.7. Under the assumptions of Theorem 2.6, the following inequality holds:
|(ΔFΥ,γ,δ,k,ικ,β,ξ,u+(Ω∗Δ)∘∧)(x,σ;p′)+(ΔFΥ,γ,δ,k,ιϑ,β,ξ,v−(Ω∗Δ)∘∧)(x,σ;p′)|≤Jux(Eγ,δ,k,ικ,β,ξ,Δ;Υ)(x−u)(|Ω′((u)1p)|+m|Ω′((xm)1p)|)Hxu(sα;h,Δ)+Jxv(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)(v−x)(|Ω′((v)1p)|+m|Ω′((xm)1p)|)Hxv(zα;h,Δ)≤Jux(Eγ,δ,k,ικ,β,ξ,Δ;Υ)(x−u)(|Ω′((u)1p)|Hxu(sα;h,Δ)+m|Ω′((xm)1p)|Hxu(1−sα;h,Δ))+Jxv(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)(v−x)×(|Ω′((v)1p)|Hxv(zα;h,Δ)+m|Ω′((xm)1p)|Hxv(1−zα;h,Δ)). | (2.45) |
Proof. From (2.36), one can see that for 0<h(t)<1
|Ω′((t)1p)|≤h(x−tx−u)αh(1−(x−tx−u)α)(|Ω′((u)1p)|+m|Ω′((xm)1p)|)≤h(x−tx−u)α|Ω′((u)1p)|+mh(1−(x−tx−u)α)|Ω′((xm)1p)|. | (2.46) |
Hence by following the proof of Theorem 2.6, one can get (2.45).
Corollary 7. For κ=ϑ, (2.33) gives the following result:
|(ΔFΥ,γ,δ,k,ικ,β,ξ,u+(Ω∗Δ)∘∧)(x,σ;p′)+(ΔFΥ,γ,δ,k,ικ,β,ξ,v−(Ω∗Δ)∘∧)(x,σ;p′)|≤Jux(Eγ,δ,k,ικ,β,ξ,Δ;Υ)(x−u)(|Ω′((u)1p)|+m|Ω′((xm)1p)|)Hxu(sα;h,Δ)+Jxv(Eγ,δ,k,ικ,β,ξ,Δ;Υ)(v−x)(|Ω′((v)1p)|+m|Ω′((xm)1p)|)Hxv(zα;h,Δ). | (2.47) |
Following corollary presents the result of Theorem 2.6 for refined (h−m)−p-convex function.
Corollary 8.
|(ΔFΥ,γ,δ,k,ικ,β,ξ,u+(Ω∗Δ)∘∧)(x,σ;p′)+(ΔFΥ,γ,δ,k,ιϑ,β,ξ,v−(Ω∗Δ)∘∧)(x,σ;p′)|≤[Jux(Eγ,δ,k,ικ,β,ξ,Δ;Υ)(Δ(x)−Δ(u))(|Ω′((u)1p)|+m|Ω′((xm)1p)|)+Jxv(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)(Δ(v)−Δ(x))(|Ω′((v)1p)|+m|Ω′((xm)1p)|)]‖h‖2∞. | (2.48) |
Proof. For h∈L∞[0,1] and α=1 in (2.33), we get (2.48).
Corollary 9. For p′=σ=0, inequality (2.33) gives the following result is obtained for the fractional integral operator defined in [15]:
|(ΔFΥ,Δu+(Ω∗Δ)∘∧)(x)Γ(κ)+(ΔFΥ,Δv−(Ω∗Δ)∘∧)(x)Γ(ϑ)|≤Υ(Δ(x)−Δ(u))Γ(κ)(Δ(x)−Δ(u))(x−u)(|Ω′((u)1p)|+m|Ω′((xm)1p)|)Hxu(sα;h,Δ)+Υ(Δ(v)−Δ(x))Γ(ϑ)(Δ(v)−Δ(x))(v−x)(|Ω′((v)1p)|+m|Ω′((xm)1p)|)Hxv(zα;h,Δ). | (2.49) |
Remark 4. (i) For p=1, the inequality (2.33) coincide with [19,Theorem 5].
(ii) For p=1, the inequality (2.47) coincide with [19,Corollary 5].
(iii) For h(t)=t and m=p=1=α, the inequality (2.33) coincide with [21,Theorem 6].
(iv) For h(t)=t and m=p=1=α, the inequality (2.47) coincide with [21,Corollary 3].
For 0<h(t)<1 in (2.33), one can get refinements for different classes of convex functions and integral operators given in [18,Remark 4].
In this section, we present the bounds for refined (h−m)−p-convex function, refined (α,m)−p-convex function, refined (α,h)−p-convex function, which will be deduced from the results of Section 2.
Theorem 3.1. Under the assumptions of Theorem 2.1, the following result for refined (h−m)−p-convex function holds:
(ΔFΥ,γ,δ,k,ικ,β,ξ,u+Ω∘∧)(x,σ;p′)+(ΔFΥ,γ,δ,k,ιϑ,β,ξ,v−Ω∘∧)(x,σ;p′)≤Jux(Eγ,δ,k,ικ,β,ξ,Δ;Υ)(Ω((u)1p)+mΩ((xm)1p))(x−u)∫10h(s)h(1−s)Δ′(x−s(x−u))ds+Jxv(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)(Ω((v)1p)+mΩ((xm)1p))(v−x)∫10h(z)h(1−z)Δ′(x+z(v−x)dz. | (3.1) |
Proof. For α=1 in the proof of Theorem 2.1, we get (3.1).
Theorem 3.2. Under the assumptions of Theorem 2.1, the following inequality refined (α,h)−p-convex function holds:
(ΔFΥ,γ,δ,k,ικ,β,ξ,u+Ω∘∧)(x,σ;p′)+(ΔFΥ,γ,δ,k,ιϑ,β,ξ,v−Ω∘∧)(x,σ;p′)≤Jux(Eγ,δ,k,ικ,β,ξ,Δ;Υ)(Ω((u)1p)+Ω((x)1p))(x−u)Hxu(sα;h,Δ)+Jxv(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)(Ω((v)1p)+Ω((x)1p))(v−x)Hxv(zα;h,Δ). | (3.2) |
Proof. Using m=1 in the proof of Theorem 2.1, we get (3.2).
Theorem 3.3. Under the assumptions of Theorem 2.1, the following inequality refined (α,m)−p-convex function holds:
(ΔFΥ,γ,δ,k,ικ,β,ξ,u+Ω∘∧)(x,σ;p′)+(ΔFΥ,γ,δ,k,ιϑ,β,ξ,v−Ω∘∧)(x,σ;p′)≤Jux(Eγ,δ,k,ικ,β,ξ,Δ;Υ)(Ω((u)1p)+Ω((x)1p))(x−u)∫10s(1−s)Δ′(x−s(x−u))ds+Jxv(Eγ,δ,k,ιϑ,β,ξ,Δ;Υ)(Ω((v)1p)+mΩ((xm)1p))(v−x)∫10z(1−z)Δ′(x+z(v−x)dz. | (3.3) |
Proof. Using h(t)=t in the proof of Theorem 2.1, we get (3.3).
The readers can obtain the similar results for Theorem 2.4 and Theorem 2.6, which are left as an exercise.
This work determines inequalities for unified integral operators for refined convex functions of different kinds. The results of this paper at once implies inequalities for unified integral operators of refined (h−m)−p-convex, refined (α,m)−p-convex, refined (α,h)−p-convex, refined (h−p)-convex, refined (α−p)-convex, refined (m−p)-convex, refined (s,m)−p-convex, refined (s,p)-convex, refined (s,m)−p−Godunova-Levin function and refined (α,h−m)−HA-convex functions. The reader can deduce similar inequalities for fractional integral operators associated with unified integral operators.
We are grateful to the referees for their valuable comments. This research received funding support from the National Science, Research and Innovation Fund (NSRF), Thailand.
The authors declare that they have no competing interests.
[1] | G. A. Anastassiou, Generalized fractional Hermite-Hadamard inequalities involving m-convexity and (s,m)-convexity, Facta Univ. Ser. Math. Inform., 28 (2013), 107–126. |
[2] | E. Set, B. Celik, Fractional Hermite-Hadamard type inequalities for quasi-convex functions, Ordu Univ. J. Sci. Tech., 6 (2016), 137–149. |
[3] |
S. M. Yuan, Z. M. Liu, Some properties of α-convex and α-quasiconvex functions with respect to n-symmetric points, Appl. Math. Comput., 188 (2007), 1142–1150. https://doi.org/10.1016/j.amc.2006.10.060 doi: 10.1016/j.amc.2006.10.060
![]() |
[4] |
Y. C. Kwun, M. Zahra, G. Farid, S. Zainab, S. M. Kang, On a unified integral operator for φ-convex functions, Adv. Differ. Equ., 2020 (2020), 297. https://doi.org/10.1186/s13662-020-02761-3 doi: 10.1186/s13662-020-02761-3
![]() |
[5] |
J. Tian, Z. Ren, S. Zhong, A new integral inequality and application to stability of time-delay systems, Appl. Math. Lett., 101 (2020), 106058. https://doi.org/10.1016/j.aml.2019.106058 doi: 10.1016/j.aml.2019.106058
![]() |
[6] |
Y. Tian, Z. Wang, A new multiple integral inequality and its application to stability analysis of time-delay systems, Appl. Math. Lett., 105 (2020), 106325. https://doi.org/10.1016/j.aml.2020.106325 doi: 10.1016/j.aml.2020.106325
![]() |
[7] | G. Farid, J. Wu, M. Zahra, Y. Yang, On fractional integral inequalities for Reimann-Liouville integrals of refined (α,h−m)-convex functions, unpublished work. |
[8] | G. Farid, M. Zahra, Y. C. Kwun, S. M. Kang, Fractional Hadamard-type inequalities for refined (α,h−m)−p-convex function and their consequences, unpublished work. |
[9] |
H. Budak, F. Hezenci, H. Kara, On generalized Ostrowski, Simpson and Trapezoidal type inequalities for co-ordinated convex functions via generalized fractional integrals, Adv. Differ. Equ., 2021 (2021), 312. https://doi.org/10.1186/s13662-021-03463-0 doi: 10.1186/s13662-021-03463-0
![]() |
[10] |
H. Budak, F. Hezenci, H. Kara, On parameterized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integrals, Math. Methods Appl. Sci., 44 (2021), 12522–12536. https://doi.org/10.1002/mma.7558 doi: 10.1002/mma.7558
![]() |
[11] |
M. Bombardelli, S. Varošanec, Properties of (α,m)-convex functions related to the Hermite-Hadamard-Fejér inequalities, Comput. Math. Appl., 58 (2009), 1869–1877. https://doi.org/10.1016/j.camwa.2009.07.073 doi: 10.1016/j.camwa.2009.07.073
![]() |
[12] | S. Hussain, M. I. Bhatti, M. Iqbal, Hadamard-type inequalities for s-convex functions, Punjab Univ. J. Math., 41 (2009), 51–60. |
[13] |
M. E. Özdemir, M. Avcı, E. Set, On some inequalities of Hermite-Hadamard type via m-convexity, Appl. Math. Lett., 23 (2010), 1065–1070. https://doi.org/10.1016/j.aml.2010.04.037 doi: 10.1016/j.aml.2010.04.037
![]() |
[14] | M. Z. Sarikaya, F. Ertuğral, On the generalized Hermite-Hadamard inequalities, Ann. Univ. Craiova Math. Comput. Sci. Ser., 47 (2020), 193–213. |
[15] | G. Farid, Existence of an integral operator and its consequences in fractional and conformable integrals, Open J. Math. Sci., 3 (2019), 210–216. |
[16] | M. Andrić, G. Farid, J. Pečarić, A further extension of Mittag-Leffler function, Fract. Calc. Appl. Anal., 21 (2018), 1377–1395. |
[17] |
Y. C. Kwun, G. Farid, S. Ullah, W. Nazeer, K. Mahreen, S. M. Kang, Inequalities for a unified integral operator and associated results in fractional integrals, IEEE Access, 7 (2019), 126283–126292. https://doi.org/10.1109/ACCESS.2019.2939166 doi: 10.1109/ACCESS.2019.2939166
![]() |
[18] | T. Yan, G. Farid, K. Mahreen, K. Nonlaopon, W. Zhao, Inequalities for (α,h−m)−p-convex functions using unified integral operators, unpublished work. |
[19] |
M. Zahra, M. Ashraf, G. Farid, K. Nonlaopon, Some new kinds of fractional integral inequalities via refined (α,h−m)-convex function, Math. Probl. Eng., 2021 (2021), 8331092. https://doi.org/10.1155/2021/8331092 doi: 10.1155/2021/8331092
![]() |
[20] |
C. Y. Jung, G. Farid, H. Yasmeen, Y. P. Lv, J. Pečarić, Refinements of some fractional integral inequalities for refined (α,h−m)-convex function, Adv. Differ. Equ., 2021 (2021), 391. https://doi.org/10.1186/s13662-021-03544-0 doi: 10.1186/s13662-021-03544-0
![]() |
[21] |
G. Farid, M. Zahra, Some integral inequalities involving Mittag-Leffler functions for tgs-convex functions, Comput. Math. Methods, 3 (2021), e1175. https://doi.org/10.1002/cmm4.1175 doi: 10.1002/cmm4.1175
![]() |
[22] | M. Tunç, E. Göv, Ü. Șanal, On tgs-convex function and their inequalities, Ser. Math. Inform., 30 (2015), 679–691. |