AIMS Mathematics, 7(4): 6218-6233.
DOI: 10.3934/math.2022346
ATMS Mathematics Received: 05 September 2021
Revised: 20 December 2021
Accepted: 26 December 2021
http://www.aimspress.com/journal/Math Published: 18 January 2022

Research article

Inequalities for unified integral operators of generalized refined convex
functions

Moquddsa Zahra', Muhammad Ashraf', Ghulam Farid> and Kamsing Nonlaopon**

1 Department of Mathematics, University of Wah, Wah Cantt, Pakistan
2 Department of Mathematics, COMSATS University Islamabad, Attock Campus, Pakistan

3 Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002,
Thailand

* Correspondence: Email: nkamsi@kku.ac.th; Tel: +66866421582; Fax: +66043202376.

Abstract: In this article, the bounds of unified integral operators are studied by using a new notion
called refined (@, h — m) — p-convex function. The upper and lower bounds in the form of Hadamard
inequality are established. From the results of this paper, refinements of well-known inequalities can
be obtained by imposing additional conditions.

Keywords: refined (o, h — m)-convex function; integral operators; fractional integrals; unified integral
operators; bounds
Mathematics Subject Classification: 26D 10, 31A10, 26A33

1. Introduction and preliminaries

Convex functions and their applications to construct new definitions are studied extensively to
obtain generalized and new inequalities. The aim of this paper is to utilize a new notion of convexity
so called refined (a,h — m) — p-convex function for the establishment of new bounds of unified
integral operators. These bounds will provide the refinements of inequalities already exist in literature
which have been obtained for different kinds of fractional integral operators of several types of
convexities. Some recent results related to findings of this paper we refer the readers to [1-6]. Next,
we give definitions of functions and integral operators which will be useful in the formation of results
of this paper.

All the functions are considered to be real valued until specified.

Definition 1.1. [7] Let & : J — R be a function with 4 # 0 and (0, 1) C J. A positive function Q is
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called refined (a, h — m)-convex function, if 4 > 0 and for each u,v € [0, b] C R, we have
Q(tu + m(1 — t)v) < h(t")h(1 — %) (Q(u) + mQ(v)), (L.1)
where (a,m) € (0,1]* and ¢ € (0, 1).

Definition 1.2. [8] Let / C R be an interval containing (0, 1) and let 2 : / — R be a non-negative
function. Let I C (0, c0) be an interval and p € R\ {0}. A positive function Q is said to be refined
(a0, h — m) — p-convex, if

Q((tu” + m(1 - t)vp))%) < h(t)h(1 — 1) (Qu) + mQ((v)) (1.2)

holds provided (fu” + m(1 — t)vl’))z% e [fort e [0, 1] and (o, m) € [0, 1]°.

It gives refinements of several types of convexities when 0 < A(r) < 1, see [8]. Integral operators
play a vital role in the theory of inequalities. In the recent era, integral operators are being used
extensively to produce new literature results. For references see [9—14]. Unified integral operators are
the well-known operators in the literature introduced in [15]. Also, these integrals are continuous and
bounded.

In this paper, we are interested in giving the refined bounds of unified integral operators along with
Hadamard-type inequalities for refined (@, h — m) — p-convex functions.

Definition 1.3. [16] Let Q € Li[u,v] and x € [u, V], also let 0, k, @, &, v,1 € C, R(k), R(a), R(&) > 0,
R() > R(y) >0with p’ 20,6 >0and 0 < k < 6§ + R(x). Then the generalized fractional integral

operators €' ];" .Qand ey‘sé‘ _Q are defined by:

(€0%:.Q) (x,0 p) = f (x = D" ELL (o(x = 1) p)QUdr, (1.3)
(ot Q) 03 p) = f (1= 0" Bl (@t = s ), (1.4

where Ezék ‘(t; p) is the extended generalized Mittag-Leffler function defined as:

'yékt(t )_pr (’y+nk’l’_’)/) (L)nk tn (15)

Bt L pi=y)  Tn+a) @’

Definition 1.4. [17] Let Q, A be real valued functions over [u, v] with 0 < u < v, where Q is positive
and integrable and A is differentiable and strictly increasing. Also let % be an increasing function on
[,00) and @, &,y,t € C,p’,k,0 > 0and 0 < k < 6 + . Then for x € [u, v] the left and right integral
operators are defined by:

) (x, 0 ) = f RUEIS A TN (), (1.6)
WE5 0N (x, o p') = JX(EV‘”” A; YN (3)Q(y)d 1.7
Ak angvm » 05 P Kt O (y) ) Vs (1.7)

where
T(A()C) A(.Y)) Ey L0,k

A(x) — Ay) e

PUEP AT =

K€

(0 (A(x) = A p).- (1.8)

AIMS Mathematics Volume 7, Issue 4, 6218-6233.



6220

The kernel (1.8) involves an increasing function and the Mittag-Leffler functions from which one
can deduce several fractional integral operators by choosing the particular parameters,
see [17, Remarks 6 and 7].

The rest of the paper is organized as follows: In Section 2, the bounds of unified integral
operators (1.6) and (1.7) are obtained using refined (@, h — m) — p-convex functions. Their extensions
are also obtained by imposing the condition 0 < h(f) < 1. These extensions give refinements of
already known results. In Section 3, some results for new deduced definitions are also presented.

2. Main results

Throughout the paper we use the following notations:
! 1
f h(s)*h(1 - s*)AN(x— s(x—u))ds = H"(s*;h,A), and A (t) = 17.
0

Theorem 2.1. Let Q) be a positive, refined (o, h — m) — p-convex and integrable function over [u,v].
Also, let % be an increasing function on [u,v] and A be strictly increasing and differentiable function
on (u,v). Then, for B,&,y,t e R, p’',k,9,0 20,0 <k <6 +kand0 < k <6+ & following result holds:

Ty.6,k, . 1,y,0.k, .
(AFK,/;,E,MJQ ° /\) (x, 0 p,) + (AFM);,,E,V‘LQ © /\) (x, 0 p,)

1
< JUELGE AT (Q (a7) +me ((f) )) (x = wH,"(s";h, A)
r m
1
+ JEYGE A T) (Q ((v)%) + mQ ((f))) (v — )H*(z"; h, A), 2.1)
where p > 0.
Proof. For the functions % and A, the following inequality holds
JUELSE AL TIN (1) < JUEDSS A TN (8). (2.2)

Using refined (a, h — m) — p-convexity of (2, one can have

Q(n7) < h(;__;)a h(l - (;:;)0)(9 (@?) +mo ((%)‘1’)) 2.3)

From (2.2) and (2.3), the following integral inequality is obtained:

* L ’ = u 4 - X ]l’
fu JUESE AN (0Q (07 ) dr < THELSE A1) (Q (a0)7) + me ((E) ))

x fh(;:;)ah(l - (;:;)Q)A’(t)dt. 2.4)

Using (1.6) of Definition 1.4 on the left side of inequality (2.4) and making change of variable by
setting s = <= on the right hand side of above inequality, we get

xX—
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(Eg2t00 A) o) < ESE ) - ((w?) me(2) )
1
X f h(sh(1 = s9HA' (x — s(x — u))ds.
0

The above inequality leads to the following inequality

1yy.0.k, .
(AFK’;f’M+LQ o /\) (xa g, p,)

1
< TUELGE A T) (- ) (Q (@)?) +mo ((f))) (x = WH(s"s h, A).
o+ m
Also, for t € (x,v], x € (u,v), we can write

THES AN (1) < TUEYSE A TN (D).

By definition of refined (@, h — m) — p-convex function, one can write

() <n(=2) nf1-(:= i)")(g(@);)mg((%)ﬁ)).

From (2.7) and (2.8), the following integral inequality is obtained:

f JUERS A TN 0Q (07 dr

<o) [2) [ (2T H (22 o

Using (1.7) of Definition 1.4 on left hand side and making change of variable by setting z =

right hand side of above inequality, we get

P

(2 n) i) < 2(EE A (2 (0F) + ma (5] )
1
X (v —x) f h(z)h(1 = 29N (x + z(v — x)dz.
0

The above inequality leads to the following inequality

Yyy.0.k, .
(AFIQ’;’&V—LQ © /\) (.X', g, p,)

< JHESGE A T) (Q (0)7) +mQ ((%))) (v = OH}E" b, A).

Combining (2.6) and (2.10), the required inequality (2.1) is obtained.

Next, we give the extension of Theorem 2.1 and refinement of [18, Theorem 1].

(2.5)

(2.6)

2.7)

(2.8)

—x

— 0on

V=X

(2.9)

(2.10)
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Theorem 2.2. Under the assumptions of Theorem 2.1, if 0 < h(t) < 1, then the following result holds:

Try,0.k.t . 1yy.0.k .
(AFKﬁ»f,u*Q © A) (x, 07 p/) + (AF&B,S,V‘Q © /\) (x, 0 p,)

< JUELSE AT (Q ((u)%) + mQ ((%)‘l’)) (x — w)H “(s°: h, A)
+ JHELA, AT (Q (7)+me ((%))) (v = OHE 7 )
< JUEXSE AT - u) (Q ()7 ) HE(s"5 b, A)
+mQ ((%)1) HY(1 = 5% h, A)) FISEDSE AT - )
x (Q (07) B3 1 A) + mQ2 ((%);’)Hfa — i, A)). @.11)

Proof. From (2.3) and (2.8) one can see that for 0 < A(f) < 1

(o) 2A(EZ) n(1- (22 )o@+ ma((2))

<h(Z=1 ) em(1- (222 )o((2)) @12
and
() < (2 a1 (1)) (5 +ma((2)))
S o)) an
Hence, by following the proof of Theorem 2.1, one can get (2.11). O

Corollary 1. For k = 4, (2.1) gives the following result:
(APY:776’k’LQ o /\) (x’ o p/) + (AP‘Y:'}’,&]C,LQ o /\) (x’ o pl)

K& ut Ka,&v™
< TUELSE )~ ) (Q (?) +m ((f))) H " b, )
ki m
+ JUELSE ATV = X) (Q ((v)%) +mQ ((f))) HX(Z%; h, A). (2.14)
ki m

The following corollary presents the result of Theorem 2.1 for refined (h — m) — p-convex function.

Corollary 2. Under the assumptions of Theorem 2.1, if 0 < h(t) < 1 then the following result holds:

T,y,0,k, . T,v,0,k, L
(aF om0 A) (x, 0 p') + (aFyhen'Qo A) (x, 0 p)

< (J;(Ezgﬁ", A;T) (Q (a7) +me ((%))) (A(x) — A(w))
+IHE)g A T) (Q (0)7) +mQ ((%))) (A() - A(x))) 1711 (2.15)
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Proof. Usinga = 1and h € L.[0, 1] in (2.1), we get inequality (2.15). |

Corollary 3. For p’ = o = 0 inequality (2.1) gives the following inequality for the fractional integral
operator defined in [15].

(AFLAQo A)(x)  (aFFAQo A) (1)

+
I'(x) ')

T(A(x) — A(n)) i x\2 o
< T()(A(x) — Aw)) (Q ((u)p) + mQ ((Z) )) (x—wH,"(s"; h,A)

T(A(v) - A(x)) 1 x\r oo
S tous (Q (%) +mQ ((E) )) (v — OH b, A). 2.16)
Remark 1. (i) For p = 1, the inequality (2.1) coincides with [19, Theorem 1].
(i) For p = 1, the inequality (2.11) coincides with [19, Theorem 2].
(iii) For p = 1, the inequality (2.14) coincides with [19, Corollary 1].
(iv) For O < A(t) < 1, the inequality (2.1) coincides with [18, Theorem 1].
(v) For 0 < h(¢) < 1, the inequality (2.16) coincides with [18, Corollary 1].

(vi) For 7'(x) = =%, 0’ > k > 0 and p’ = o = 0 along with the condition of (i), the inequality (2.1)
coincides with [20, Theorem 10].
(vii) For k = 1 along with the conditions of (vi), the inequality (2.14) coincides with [20, Theorem 6].
(viii) For A as identity function along with the conditions of (vi), the inequality (2.14) coincides with [7,
Theorem 5].
(ix) For A as identity function and k = 1 along with the conditions of (vi), the inequality (2.14)
coincides with [7, Theorem 1].
(x) For h(t) = t and m = 1 = « along with the condition of (i), the inequality (2.1) coincides
with [21, Theorem 4].
(xi) For h(t) = t and m = 1 = « along with the condition of (i), the inequality (2.14) coincides
with [21, Corollary 1].
(xii) For h(f) = t and m = 1 = « along with the conditions of (vi), the inequality (2.14) coincides
with [22, Theorem 3.1].
(xii1) For A1) < % along with the conditions of (ix), the inequality (2.14) coincides with [7, Theorem
2].
(xiv) For h(f) = t and m = 1 = «a along with the conditions of (viii), the inequality (2.14) coincides
with [7, Corollary 8].
(xv) For @ = 1 and h(t) = t a along with the conditions of (viii), the inequality (2.14) coincides
with [7, Corollary 14].
(xvi) For h(t) = t* and @ = 1 along with the conditions of (viii), the inequality (2.14) coincides with [7,
Corollary 15].
(xvii) For h(t) = t and @ = 1 along with the conditions of (viii), the inequality (2.14) coincides with [7,
Corollary 16].
(xviii) For h(t) = t and m = 1 = « along with the conditions of (ix), the inequality (2.14) coincides
with [7, Corollary 1].
(xix) For @ = 1 and h(¢) = t a along with the conditions of (ix), the inequality (2.14) coincides with [7,
Corollary 2].
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(xx) For A(t) = t* and @ = 1 along with the conditions of (ix), the inequality (2.14) coincides with [7,
Corollary 4].

(xxi) For h(t) = t and @ = 1 along with the conditions of (ix), the inequality (2.14) coincides with [7,
Corollary 5].

By using O < A(f) < 1 and making different choices of functions # and A and other parameters
in (2.1) one can get the refinements for many known classes of convex functions and integral operators
which are given in [18, Remark 2].

Next we give a lemma which we will use in upcoming Theorem 2.4.

Lemma 2.3. Let Q : [0,00) — R be refined (a,h — m) — p-convex function. If Q(x) = Q (up+\;::—x1’)l7,
x € [u,v], then the following inequality holds:

u? +vP 1 29 — 1
Q < h|l—
(=) <z hZ

Proof. Since Q is refined (@, h — m) — p convex, then following inequality holds:

u? +vP
Q
[

)(m + DQ(x). 2.17)

20

1
<hl—
<3

<5

e

M=)

P — xP

xP —u?
VP
VP — ybP

P P _ P %
a0 +mg(u) J
m

+

VP — ypP

1
P
u?

+ mQ

1
Using Q(x) = Q (“”*:nﬂ)" in above inequality, we get (2.17).

xP—uP
( vP—uP

u?f +

m

1
Y= p\p
Vf’—uf’v ]

(2.18)

Remark 2. (i) For p = 1, the inequality (2.17) coincides with [19, Lemma 1].
(i1) For p = 1, h(t) = t and m = a = 1, the inequality (2.17) coincides with [21, Lemma 1].
(iii) For O < A(f) < 1, the inequality (2.17) gives refinement of [18, Lemma 1].
Theorem 2.4. Under the assumptions of Theorem 2.1,
1
Q(x) = Q(%)P:

the following result holds for

Tt (T e+ (R o)
n

2([

Toy.6k, ) Toy.5k, )
< (AFK,,;SC,V-LQ o /\) (u,o; p') + (APﬁfg,&qu o /\) v, o p)

1
1 u\r U _a u 50,K5L u 50,/5L
<w-uw (Q (()7) +me ((;1)”)) HA b ) [JUELS A1) + JUENSS A ). (219)
Proof. For the kernel defined in (1.8) and function A, the following inequality holds:
TUEY G AN (x) < TUEY S AL TN (), X € (,v). (2.20)
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Using refined (@, h — m)-convexity of €, we have

Q(wr) < h()vc - Z)ah(l _ ()VC - Z)a)(gz (()7) + mQ ((%))) 2.21)

From (2.20) and (2.21), the following integral inequality is obtained:

[ e oot sont < et s mfa(od) s (2))
x fh(x =) (1= (=) ) v
x WU vV—u

Using (1.7) of Definition 1.4 on right hand side, making change of variable by setting z = 3= on right
hand side of above inequality, we get

1
P

(AFyhobQ o A) (u, 0 p') < THELSE A T = u) (Q (7)) +mQ ((%)

BBEV 9B )) H)(z"; h,A). (2.22)

The following inequality also holds true for x € (u, v):
TUEYE A TN (x) < TUEVE A A (x). (2.23)

From (2.21) and (2.23), the following integral inequality is obtained:
v 1 1 u 7
fu TUELSE AN (0Q ()7 ) dx < TUELGE AL T) (Q ()7) +mQ ((%) ))

xf n(E=2) a1 - (3=2) ) A

« \v—u vV—u

Using (1.6) of Definition 1.4 on left hand side and making change of variable on right hand side of
above inequality, we get

L / u S0,K,L 1 uyr uc
(AFLy oo A) (v, o p) < TUELSE A TY(v — u) (Q (@)7) +mQ ((;) )) HU(ZhA).  (224)

Now, using Lemma 2.3, we can write

v P 4 P
f Q(” : 4 )J;(E%‘”‘*‘ A; T)N (x)dx

96.£
1 2 -1
< hl—|h
- (2{2) ( 2(2

which by using (1.7) of Definition 1.4 gives the following integral inequality:

)(m+ 1) f JUEYSS A TN ()Q(x)dx,

1 P4+ P L , - N
W (%) (m + n"(” - )<AP5%:?’E’ Yo p) < (FAQ) o p).  229)

2@ 2@
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Again, using Lemma 2.3, we can write

P 4 P
Q(” 2V )JX(Ezg’;‘,A; T)A'(x)dx (2.26)

<h( Q) (zw )(m+ l)f JX( EZE';‘,A; TN (x)Q(x)dx,

which by using (1.6) of Definition 1.4 gives the following fractional integral inequality:

1 P 4 P
() (R o < (FpR) v 22
(% )h(5) m + 1) 2
By Combining (2.22), (2.24), (2.25) and (2.27), the required inequality (2.19) is obtained. O

The following theorem is the extension of Theorem 2.4 and refinement of [18, Theorem 2].

Theorem 2.5. Under the assumptions of Theorem 2.4, the following result holds:

1 P4 yP L / - ,
221 (m + 1)Q(u 2 : )((AF%Z}%@1)(%0;1?)+(AFZ[;§:+1)(V,U;IJ))

1 P4 yp ) / -
< h(z%,)+nh(2;_;1)g(u : v )((AF%:;’;1)(u,a;p)+(AFZ;§f+1)(v,g;p))

Tyy,0,k,t L Tyy,0,k,t L
< (aFije Q) (w0 p) + (aFy i1 Q) (v p)

<(v-u) (Q (17) +me ((%))) HU 51, A) [TUE g AT + THEL g A 1)

< v —w) (JUEK, A 1Q((0)7) HEC b, A)
FmIUETSS A T ((%)p)HC‘(l —h, A)). (2.28)

Proof. From (2.21) one can see that for 0 < A(r) < 1
O e Y R e | Y R (EVi)
<322 o) emn(1- (=) a(4)) 02

Hence by following the proof of Theorem 2.4, one can get (2.28). O

Corollary 4. For « = ¢, (2.19) gives the following result:

h( 1 ) (za 11 ) P— I)Q (ul’ ; vl’) ((AFZ}Q’?I) (w,o5p') + (AFZgﬁf;Ll) v, o p’))

2a 2a

< (AFZﬁygka o /\) (u,o; p') + (AFTﬁy;kJQ o /\) v,o;p)

<2(v-u) (Q (0)7) +mQ ((%))) JUEYSS A T)HYE h ). (2.30)
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The following corollary presents the result of Theorem 2.4 for refined (h — m) — p-convex function.
Corollary 5. Under the assumptions of Theorem 2.4, the following result holds:
1 (Mp'i'Vp) Yoy.Sks Ty.6 ks
Q AE TS (o p') + (aF i 1) (v o p')
< (AF”MLQ o /\) (u, o3 p') + (AF”M‘Q o /\) (v, p)

K,a,E,V kB.Eut
< 2(Q (0)7) +me (( ) )) TUELSE A7) (AW) — Aw)) (1Al (2.31)
m
Proof. For h € L,[0,1] and @ = 1 in (2.19), one can get (2.31). |

Corollary 6. For p’ = o = 0, inequality (2.19) gives the following inequality:
uf +vP
Q
=)
h(% )h( 5 )m + 1)

(AFQoA) () (sF*Qo A)(x)
<
S v S )
T(AW) = Aw)(v —u)H; (z"; h, A) 1 5 1 1
< d Q Q ( ) . 2.32
AG) — Aw) ( (@) m ( o Ttw) P
Remark 3. (i) For p = 1, the inequality (2.19) coincides with [19, Theorem 3].
(i) For p = 1, the inequality (2.30) coincides with [19, Corollary 3].
(iii) For h(t) = tand m = p = 1 = «, the inequality (2.19) coincides with [21, Theorem 5].
(iv) For h(t) = tand m = p = 1 = «, the inequality (2.30) coincides with [21, Corollary 2].

WELT) @ (BF21) @)
Tw T

For 0 < A(r) < 1 1in (2.19), we can get refinements for different classes of convex functions and
integral operators given in [18, Remark 3].

Theorem 2.6. Let Q, A be differentiable functions such that |Q'| is refined (o, h — m) — p-convex and
A be strictly increasing over [u,v] and differentiable over [u,v]. Also, % be an increasing function on
[u,vland B,&,v,0€ C,p',k,9,0 20and 0 <k <d+kand 0 < k <6+ 9. Then for x € (u,v), we have

|( FIR Q) o A) (o0 ') + (sF 125 (@ A) 0 A) (x, 0 pf)‘

Q ((%))') H (s, A)

+m

< TUELE A T (x = w) (\Q (67)

1
FTSEDSE AT = ) ('Q ((97)[ +m 'Q’ (( ") ) )Hx(z hA), (2.33)
m

where .

(AF72MQ s A) (x, 0 p') = f TUELSE A TN (D (1)dt (2.34)
and

(AF;;"g e A) (x,0p') = f THEY S A TN (O (1, (2.35)
where p > 0.
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Proof. Using refined (o, h — m) — p-convexity of |Q’| over [u, v] implies

@ (7)) < h(;:;)ah(l - ()’::2)0)(9 (@] +m|e ((%))) (2.36)
Absolute value property implies to the following relation:
(= 0= @hlenfer (GY))
<Y ((t)%)
S o () e

From (2.2) and second inequality of (2.37) the following inequality is obtained:

* L ’ ’ 1 u 50,K,L
f JUELSS A TN (O ((1)7) dt < TUEL 55, A ‘r)(
X1

Q ((u)%)' +m|QY ((%);))
x fh(;c__;)ah(l - (j__;)a)A’(t)dt, (2.38)

which leads to the following fractional integral inequality:

( Zg;k‘(Q A)o/\)(x(rp)

< TUEVSE AT (x - w) ('Q (a7

+m ‘Q’ ((%);’)‘)Hx“(sa;h,m. (2.39)

Also, inequality (2.2) and first inequality of (2.37) gives the following fractional integral inequality:

()

Again, using refined (@, h — m) — p-convexity of [Q)’| over [u, v], we can write

( Zg;ff(Q*A)o/\)(x o p)

U Y0kt .
> _JJC(EK,,B,{E > A, T)(x - I/t)(

' ((uyr)| +

)Hx”(s"; h, A). (2.40)

B e (N G A R
(2 (= (2 ) e (2] )+ e ()
<Q’((t)) |
S-S (@] ren) e
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From (2.7) and second inequality of (2.42) following fractional integral inequality is obtained:

1
(N
m
The inequality (2.7) and the first inequality of (2.42) give the following fractional integral inequality:
(aFghe Q@ &) 0 A) (x,073 p)

(aF5 5ot @ Ay o A) (x. 0 p')

< JHE)g s A1 - x) (

o (v)7)

)Hf(z“; h,A). (2.43)

9B.E v
—Jf(Eg’g’?, A;T)(v = x) (‘Q' ((v)%) +m|Q ((ﬁ)l)‘) H;(Z% h, A). (2.44)
ke m
By combining (2.39), (2.40), (2.43) and (2.44), the inequality (2.33) is obtained. O

Next, we give extension of Theorem 2.6 and refinement of [18, Theorem 3].

Theorem 2.7. Under the assumptions of Theorem 2.6, the following inequality holds:

'( L7254 A) 0 A) (x,05 ') + (sF 125 (Q  A) 0 A) (x, 0 p')'

()
o ((2))

H"(s"; h, A)

< JUEVSS A T (x - u) (‘Q ((u)é) +m

K’ﬁ’é: ’

)Hx”(so‘; h, A)

+ JXEVE AT - x) ('Q/ ((V)%) +m

ﬂ’ﬁ’g ’

)Hx(z sh,A)

< JUELE 8T = ) (| (@07)

()

' (v)7)

+m H,“(1 - 5% h, A)) + JXEVE AT - x)

d ()

Proof. From (2.36), one can see that for 0 < h(r) < 1

(=) - G e @)

% h,A)+m

HY(1 -2 h, A)) . (2.45)

|

Q' (7)) <

()

—r\* 1 A %
Sh(x ) (@?) +mh(1—(x ))Q((f) ) (2.46)
X—U X—U m
Hence by following the proof of Theorem 2.6, one can get (2.45). O
Corollary 7. For k = 4, (2.33) gives the following result:
(FLEk @5 Ay o A) (0 ) + (SFLZE @5 A) 0 ) (03 )|
1
< JUEL s A T)(x = u) (\Q (G7)| +m | ((f)) )Hx"(s“; h,A)
A m
+ JNELSE AT (v = X) ('g ()7)|+m lQ’ (( > )) )Hx(z" h.A). (2.47)
ks m
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Following corollary presents the result of Theorem 2.6 for refined (h — m) — p-convex function.

Corollary 8.
(SFLZ2k @ M) 0 A) (x5 ) + (aFy 2t (@ + A) 0 A) (3,07
< | BT A YA = Aw) ( Q (@7 )|+m|e ((%)) )

FTHEDSE A TIAW) - AG) (19 (0)7)] + m e’ ((%))m IR (2.48)

Proof. For h € Ly[0,1] and @ = 1 in (2.33), we get (2.48). .

Corollary 9. For p’ = o = 0, inequality (2.33) gives the following result is obtained for the fractional
integral operator defined in [15]:

(AFZ;A(Q «A)o /\) (x) (AFZ:A(Q «A)o /\) (x)

0 ’ I)

TAw - Aw) u)( o ((%)) )Hx”(s“; h, A)
ey
Q ((;1) )

1
< Q' ((wr)|+m
F()(Ax) — A(w)) ( )
T(A(v) - A(x))
(v—2x)
F@)(AW) — A(x))
Remark 4. (i) For p = 1, the inequality (2.33) coincide with [19, Theorem 5].
(ii) For p = 1, the inequality (2.47) coincide with [19, Corollary 5].
(ii1) For A(f) = tand m = p = 1 = «, the inequality (2.33) coincide with [21, Theorem 6].
(iv) For h(t) = tand m = p = 1 = @, the inequality (2.47) coincide with [21, Corollary 3].

Q ((v)i) +m

) H@Z h, A). (2.49)

For 0 < h(r) < 1 in (2.33), one can get refinements for different classes of convex functions and
integral operators given in [18, Remark 4].

3. Deductions of main results

In this section, we present the bounds for refined (A — m) — p-convex function, refined (a, m) — p-
convex function, refined (a, h)— p-convex function, which will be deduced from the results of Section 2.

Theorem 3.1. Under the assumptions of Theorem 2.1, the following result for refined (h—m)— p-convex
function holds:

(APZ”’;?I];LQ o /\) (x,0; p') + (APIZ;?‘C}LQ o /\) (x, U;p')

1 1
< JUENS A T) (Q (@)7) + me ((—))) (x — 1) f h(s)h(1 = $)A (x = s(x — u))ds

+ Jf(E;:Z’?’ A;T) (Q ((v) 1) + mQ (( ) )) (v - x)f h(Dh(1 — A (x + z(v — x)dz. (3.1
Proof. For @ = 1 in the proof of Theorem 2.1, we get (3.1). O
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Theorem 3.2. Under the assumptions of Theorem 2.1, the following inequality refined (a, h)— p-convex
function holds:

(AFL726Q 0 A) (x, 0 p') + (aFyheniQo A) (x, 07 p)

kB.Eut $B.E v
. 1 1 Ur @
< JUEVSE A T) (Q((w)r ) + Q((0)7)) (x — w)H(s; h, A)
L 1 1 X[
+ TNENE A (Q(0)7) + Q((0)7)) (v = DHE(E: . A). (3.2)
Proof. Using m = 1 in the proof of Theorem 2.1, we get (3.2). O

Theorem 3.3. Under the assumptions of Theorem 2.1, the following inequality refined (a, m)— p-convex
function holds:

T,y,0,k, . T,v,0,k, L
(aFL ko A) (x, 0 p') + (aFypen'Qo A) (x, 00 p)

1
< JUEZS AT (Q(w)r ) + (7)) (x = w) fo s(1 = A (x = s(x — u))ds
1 1
+IE AT (Q (097) +mQ ((%)p)) v - X)f (1 =N (x+z(v-x)dz. (3.3
0

Proof. Using h(t) = t in the proof of Theorem 2.1, we get (3.3). O

The readers can obtain the similar results for Theorem 2.4 and Theorem 2.6, which are left as an
exercise.

4. Conclusions

This work determines inequalities for unified integral operators for refined convex functions of
different kinds. The results of this paper at once implies inequalities for unified integral operators of
refined (h —m) — p-convex, refined (a, m) — p-convex, refined (a, h) — p-convex, refined (h — p)-convex,
refined (@ — p)-convex, refined (m — p)-convex, refined (s, m) — p-convex, refined (s, p)-convex, refined
(s,m) — p—Godunova-Levin function and refined (a, h — m) — HA-convex functions. The reader can
deduce similar inequalities for fractional integral operators associated with unified integral operators.
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