Mathematics

Research article

Precise large deviations for aggregate claims in a two-dimensional compound dependent risk model

Weiwei Ni and Kaiyong Wang *

School of Mathematical Sciences, Suzhou University of Science and Technology, Suzhou 215009, China

* Correspondence: Email: beewky@ vip.163.com.

Abstract

This paper considers a two-dimensional compound risk model. We mainly investigate the claim sizes and inter-arrival times are size-dependent. When the claim sizes have consistently varying tails, we obtain the precise large deviations for aggregate amount of claims in the above dependent compound risk model.

Keywords: precise large deviations; two-dimensional compound risk model; size-dependence; consistently varying distribution
Mathematics Subject Classification: 60F10, 91B05, 91G05

1. Introduction

This paper will investigate a two-dimensional compound risk model. In this risk model, an insurance company has two dependent classes of business sharing a common claim-number process, which is a compound renewal counting process. Let the inter-arrival times of events $\left\{\theta_{k}, k \geq 1\right\}$ be a sequence of independent and identically distributed (i.i.d.) nonnegative random variables (r.v.s) with finite mean $\beta^{-1}>0$. Let Z_{k} be the number of claims caused by the k th $(k \geq 1)$ event. Suppose that $\left\{Z_{k}, k \geq 1\right\}$ are i.i.d. positive integer r.v.s with finite mean μ_{Z} and independent of $\left\{\theta_{k}, k \geq 1\right\}$. Then the number of events up to time $t \geq 0$ is denoted by

$$
N(t)=\sup \left\{n \geq 1, \sum_{k=1}^{n} \theta_{k} \leq t\right\}
$$

and the number of claims up to time $t \geq 0$ is denoted by

$$
\Lambda(t)=\sum_{k=1}^{N(t)} Z_{k},
$$

which is a compound renewal counting process. Set $\theta(t)=E(N(t))$ and $\lambda(t)=E(\Lambda(t)), t \geq 0$, then $\theta(t) / t \rightarrow \beta$ as $t \rightarrow \infty$ and $\lambda(t)=\mu_{Z} \theta(t), t \geq 0$. The claim-amount vectors $\vec{X}_{k}=\left(X_{1 k}, X_{2 k}\right)^{T}, k \geq 1$ are i.i.d. copies of $\vec{X}=\left(X_{1}, X_{2}\right)^{T}$ with finite mean vector $\vec{\mu}=\left(\mu_{1}, \mu_{2}\right)^{T}$. Assume that X_{1} and X_{2} are nonnegative r.v.s with distributions F_{1} and F_{2}, respectively. Their joint distribution is denoted by $F_{12}\left(x_{1}, x_{2}\right)=P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}\right)$ and their joint survival function is $\overline{F_{12}}\left(x_{1}, x_{2}\right)=P\left(X_{1}>x_{1}, X_{2}>x_{2}\right)$. Then the aggregate amount of claims up to time $t \geq 0$ is expressed as

$$
\begin{equation*}
\vec{S}(t)=\sum_{k=1}^{\Lambda(t)} \vec{X}_{k} \tag{1.1}
\end{equation*}
$$

This paper will investigate the precise large deviations of $\vec{S}(t), t \geq 0$.
In this paper, we assume that $\left\{Z_{k}, k \geq 1\right\}$ are independent of $\left\{\vec{X}_{k}, k \geq 1\right\}$ and $\left\{\left(\vec{X}_{k}, \theta_{k}\right), k \geq 1\right\}$ are i.i.d. random vectors with generic pair (\vec{X}, θ). This paper mainly considers for each $k \geq 1, X_{1 k}, X_{2 k}$ and θ_{k} may be dependent and the claims have heavy-tailed distributions. In the following section some heavy-tailed distribution classes will be given.

Without special statement, in this paper a limit is taken as $t \rightarrow \infty$. For a real-valued number a, let $a^{+}=\max \{0, a\}$ and $a^{-}=-\min \{0, a\}$. Denote $[a]$ by the large integer that does not exceed a. For two vectors $\vec{y}=\left(y_{1}, y_{2}\right)^{T}$ and $\vec{z}=\left(z_{1}, z_{2}\right)^{T}, \vec{y}>\vec{z}$ (or \geq) means $y_{i}>z_{i}($ or $\geq), i=1,2$. For two nonnegative functions $a(\cdot)$ and $b(\cdot)$, we write $a(t) \lesssim b(t)$ if $\lim \sup a(t) / b(t) \leq 1$, write $a(t) \gtrsim b(t)$ if $\liminf a(t) / b(t) \geq 1$, write $a(t) \sim b(t)$ if $\lim a(t) / b(t)=1$, and write $a(t)=o(b(t))$ if $\lim a(t) / b(t)$ $=0$. For two positive bivariate functions $g(\cdot, \cdot)$ and $h(\cdot, \cdot)$, we write $g(x, t) \leqslant h(x, t)$, as $t \rightarrow \infty$, holds uniformly for $x \in \Delta \neq \phi$, if

$$
\limsup _{t \rightarrow \infty} \sup _{x \in \Delta} \frac{g(x, t)}{h(x, t)} \leq 1
$$

We write $g(x, t) \gtrsim h(x, t)$, as $t \rightarrow \infty$, holds uniformly for $x \in \Delta \neq \phi$, if

$$
\liminf _{t \rightarrow \infty} \inf _{x \in \Delta} \frac{g(x, t)}{h(x, t)} \geq 1
$$

In the following, we give some heavy-tailed distribution classes. For a proper distribution V on $(-\infty, \infty)$, let $\bar{V}=1-V$ be the tail of V. Say that a distribution V on $(-\infty, \infty)$ is heavy-tailed, if for any $s>0$,

$$
\int_{-\infty}^{\infty} e^{s u} V(\mathrm{~d} u)=\infty .
$$

Otherwise, say that V is light-tailed. The dominated variation distribution class \mathscr{D} is an important class of heavy-tailed distributions. Say that a distribution V on $(-\infty, \infty)$ belongs to the class \mathscr{D}, if for any $y \in(0,1)$,

$$
\limsup _{x \rightarrow \infty} \frac{\bar{V}(x y)}{\bar{V}(x)}<\infty .
$$

The slightly smaller class is the class \mathscr{C}, which consists of all distributions with consistently varying tails. Say that a distribution V on $(-\infty, \infty)$ belongs to the class \mathscr{C} if

$$
\lim _{y \searrow 1} \liminf _{x \rightarrow \infty} \frac{\bar{V}(x y)}{\bar{V}(x)}=\lim _{y \nearrow 1} \limsup _{x \rightarrow \infty} \frac{\bar{V}(x y)}{\bar{V}(x)}=1 .
$$

Another class is the long-tailed distribution class \mathscr{L}. Say that a distribution V on $(-\infty, \infty)$ belongs to the class \mathscr{L} if for any $y>0$,

$$
\lim _{x \rightarrow \infty} \frac{\bar{V}(x-y)}{\bar{V}(x)}=1
$$

It is well known that these distribution classes have the following relationships:

$$
\mathscr{C} \subset \mathscr{L} \cap \mathscr{D} \subset \mathscr{L}
$$

(see, e.g., Cline and Samorodnitsky [5], Embrechts et al. [7]).
For a distribution V on $(-\infty, \infty)$, let

$$
J_{V}^{+}=\inf \left\{-\frac{\log \bar{V}_{*}(y)}{\log y}, y \geq 1\right\} \quad \text { with } \quad \bar{V}_{*}(y)=\liminf _{x \rightarrow \infty} \frac{\bar{V}(x y)}{\bar{V}(x)}, y \geq 1
$$

We call J_{V}^{+}the upper Matuszewska index of V. For the details of the Matuszewska index one can see Bingham et al. [2].

In recent years, more and more researchers pay attention to multi-dimensional risk models and study the precise large deviations of aggregate amount of claims, see e.g. Wang and Wang [19], Wang and Wang [20], Lu [12], Tian and Shen [14] and so on. Recently, Fu et al. [8] studied the precise large deviations of $S_{N(t)}=\sum_{k=1}^{N(t)} X_{k}, t \geq 0$ under the following assumptions.
Assumption 1.1. The random vector $\left(X_{1}, X_{2}\right)$ has a survival copula $\hat{C}(\cdot, \cdot)$ satisfying

$$
\hat{C}\left(\bar{F}_{1}\left(x_{1}\right), \bar{F}_{2}\left(x_{2}\right)\right) \leq g_{u}(2) \bar{F}_{1}\left(x_{1}\right) \bar{F}_{2}\left(x_{2}\right)
$$

where $g_{u}(\cdot)$ is a finite positive function.
Definition 2.2.2 of Nelsen [13] gave the definition of copula. A copula is a function C from [0, 1] \times $[0,1] \rightarrow[0,1]$ with the following properties:
(1) For every $u, v \in[0,1], C(u, 0)=C(0, v)=0, C(u, 1)=u$ and $C(1, v)=v$.
(2) For every $u_{1}, u_{2}, v_{1}, v_{2} \in[0,1]$ such that $u_{1} \leq u_{2}$ and $v_{1} \leq v_{2}$,

$$
C\left(u_{2}, v_{2}\right)-C\left(u_{2}, v_{1}\right)-C\left(u_{1}, v_{2}\right)+C\left(u_{1}, v_{1}\right) \geq 0 .
$$

The Sklar's theorem (i.e. Theorem 2.3.3 of Nelsen [13]) states that for the r.v.s X_{1} and X_{2} in Assumption 1.1, there exists a copula C such that for all $x_{i} \in(-\infty, \infty), i=1,2$,

$$
F_{12}\left(x_{1}, x_{2}\right)=C\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right)\right) .
$$

Let $\hat{C}(u, v)=u+v-1+C(1-u, 1-v), u, v \in[0,1]$, then for all $x_{i} \in(-\infty, \infty), i=1,2$,

$$
\overline{F_{12}}\left(x_{1}, x_{2}\right)=\hat{C}\left(\overline{F_{1}}\left(x_{1}\right), \overline{F_{2}}\left(x_{2}\right)\right) .
$$

We call \hat{C} as the survival copula of X_{1} and X_{2} (see (2.6.1) and (2.6.2) of Nelsen [13]).
Assumption 1.2. There exists a nonnegative random variable θ^{*} with finite mean such that θ conditional on $\left(X_{i}>x_{i}\right), i=1,2$, is stochastically bounded by θ^{*} for all large x_{1} and x_{2}; i.e., there exists some $\vec{x}_{0}=\left(x_{10}, x_{20}\right)^{T}$ such that it holds for all $\vec{x}=\left(x_{1}, x_{2}\right)^{T}>\vec{x}_{0}$ and $t \in[0, \infty)$ that

$$
\mathrm{P}\left(\theta>t \mid X_{i}>x_{i}\right) \leq \mathrm{P}\left(\theta^{*}>t\right), \quad i=1,2 .
$$

This paper still uses the above two assumptions. We will investigate the precise large deviations of the aggregate amount of claims in a two-dimensional compound risk model. For the one-dimensional compound risk model, there are many papers studying the aggregate amount of claims, such as Tang et al. [15], Ales̆kevičienė et al. [1], Konstantinides and Loukissas [11], Yang et al. [22], Guo et al. [9], Wang and Chen [18], Yang et al. [23], Wang et al. [17], Xun et al. [21] and so on. For a two-dimensional compound risk model researchers mainly studied the ruin probabilities, such as Cai and Li [4], Delsing et al. [6] and so on. This paper will consider the precise large deviations of compound sum (1.1) in a two-dimensional compound risk model. The following is the main result of this paper.

Theorem 1.1. Consider the model (1.1). Suppose that Assumptions 1.1 and 1.2 are satisfied, $F_{i} \in \mathscr{C}$, $i=1,2$ and there exists a constant $\alpha_{Z}>2 \max \left\{J_{F_{1}}^{+}, J_{F_{2}}^{+}\right\}+4$ such that $E Z_{1}^{\alpha_{Z}}<\infty$. Then for any $\vec{\gamma}=\left(\gamma_{1}, \gamma_{2}\right)^{T}>\overrightarrow{0}$,

$$
P(\vec{S}(t)-\vec{\mu} \lambda(t)>\vec{x}) \sim(\lambda(t))^{2} \bar{F}_{1}\left(x_{1}\right) \bar{F}_{2}\left(x_{2}\right),
$$

holds uniformly for all $\vec{x} \geq \vec{\gamma} \lambda(t)$.
Remark 1.1. In the two-dimensional compound renewal risk model (1.1), if $Z_{k} \equiv 1, k \geq 1$, then model (1.1) degenerates into the classic two-dimensional renewal risk model. In the classic two-dimensional renewal risk model, suppose that $F_{i} \in \mathscr{C}, i=1,2$ and Assumptions 1.1 and 1.2 are satisfied. Then from Theorem 1.1 the main result of Fu et al. [8] can be obtained.

The proof of Theorem 1.1 will be given in the following section.

2. Proof of the main result

By Assumption 1.2, we introduce two independent nonnegative r.v.s $\theta_{1}^{* *}$ and $\theta_{2}^{* *}$, which have the same distributions as θ conditional on $\left\{X_{1}>x_{1}\right\}$ and $\left\{X_{2}>x_{2}\right\}$, respectively. Assume that $\theta_{1}^{* *}$ and $\theta_{2}^{* *}$ are independent of all other r.v.s. Let $\tau_{1}^{* *}=\theta_{1}^{* *} \tau_{2}^{* *}=\theta_{1}^{* *}+\theta_{2}^{* *}, \tau_{n}^{* *}=\theta_{1}^{* *}+\theta_{2}^{* *}+\sum_{i=3}^{n} \theta_{i}, n \geq 3$, and define

$$
N^{* *}(t)=\sup \left\{n \geq 1: \tau_{n}^{* *} \leq t\right\}, \quad t \geq 0 .
$$

Set $\Lambda^{* *}(t)=\sum_{k=1}^{N^{* *}(t)} Z_{k}, t \geq 0$. The following relation implies that for each $t \geq 0, \Lambda^{* *}(t)$ is also identically distributed as $\Lambda(t)$ conditional on $\left\{X_{1}>x_{1}, X_{2}>x_{2}\right\}$. In fact, noticing the independence assumption between $\left\{Z_{k}, k \geq 1\right\}$ and (\vec{X}, θ), it holds for $t \geq 0, n \geq 1$ and $x_{1}, x_{2} \geq 0$ that

$$
\begin{align*}
& P\left(\Lambda(t)=n \mid X_{1}>x_{1}, X_{2}>x_{2}\right) \\
= & \sum_{k=1}^{\infty} P\left(\sum_{i=1}^{k} Z_{i}=n \mid X_{1}>x_{1}, X_{2}>x_{2}, N(t)=k\right) P\left(N(t)=k \mid X_{1}>x_{1}, X_{2}>x_{2}\right) \\
= & \sum_{k=1}^{\infty} P\left(\sum_{i=1}^{k} Z_{i}=n\right) P\left(N(t)=k \mid X_{1}>x_{1}, X_{2}>x_{2}\right) \\
= & \sum_{k=1}^{\infty} P\left(\sum_{i=1}^{k} Z_{i}=n\right) P\left(N^{* *}(t)=k\right) \\
= & P\left(\Lambda^{* *}(t)=n\right) . \tag{2.1}
\end{align*}
$$

Before giving the proof of Theorem 1.1, we first give some lemmas. The first lemma gives a property about $\Lambda^{* *}(t), t \geq 0$.
Lemma 2.1. In addition to Assumption 1.2, assume that $\operatorname{Var} \theta<\infty$. Then it holds for every $0<\delta<\beta$ and every functions $a(t)$ and $b(t)$ that
where $a(\cdot):[0, \infty) \rightarrow(0, \infty)$ with $a(t) \uparrow \infty$ and $b(\cdot):[0, \infty) \rightarrow(0, \infty)$ with $b(t) \uparrow \infty$.
Proof. Using the same method of the proof of Lemma 3.4 of Bi and Zhang [3], we can get that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup _{\substack{x_{1} \geq a(t) \\ x_{2} b(t)}} P\left(\left|\frac{N^{* *}(t)}{t}-\beta\right|>\delta\right)=0 . \tag{2.3}
\end{equation*}
$$

In the following we will prove for any $\epsilon>0$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup _{\substack{x_{1} \geq a(t) \\ x_{2} \geq b(t)}} P\left(\left|\frac{\sum_{k=1}^{N^{* *}(t)} Z_{k}}{N^{* *}(t)}-\mu_{Z}\right|>\epsilon\right)=0 \tag{2.4}
\end{equation*}
$$

For the above $\epsilon>0$, by (2.3) and the law of large number for i.i.d r.v.s, it holds uniformly for $x_{1} \geq a(t)$ and $x_{2} \geq b(t)$ that

$$
\begin{align*}
P\left(\frac{\sum_{k=1}^{N^{* * *}(t)} Z_{k}}{N^{* *}(t)}-\mu_{Z}>\epsilon\right)= & P\left(\frac{\sum_{k=1}^{N^{* *}(t)} Z_{k}}{N^{* *}(t)}>\epsilon+\mu_{Z}, N^{* *}(t)<(\beta-\delta) t\right) \\
& +P\left(\frac{\sum_{k=1}^{N^{* *}(t)} Z_{k}}{N^{* * *}(t)}>\epsilon+\mu_{Z}, N^{* *}(t)>(\beta+\delta) t\right) \\
& +P\left(\frac{\sum_{k=1}^{N^{* *}(t)} Z_{k}}{N^{* *}(t)}>\epsilon+\mu_{Z},(\beta-\delta) t \leq N^{* *}(t) \leq(\beta+\delta) t\right) \\
\leq & P\left(\left|\frac{N^{* *}(t)}{t}-\beta\right|>\delta\right)+P\left(\frac{\sum_{k=1}^{(\beta+\delta) t} Z_{k}}{(\beta-\delta) t}>\mu_{Z}+\epsilon\right) \\
\rightarrow & 0 \tag{2.5}
\end{align*}
$$

and

$$
\begin{aligned}
P\left(\frac{\sum_{k=1}^{N^{* *}(t)} Z_{k}}{N^{* *}(t)}-\mu_{Z}<-\epsilon\right) & \leq P\left(\left|\frac{N^{* *}(t)}{t}-\beta\right|>\delta\right)+P\left(\frac{\sum_{k=1}^{(\beta-\delta) t} Z_{k}}{(\beta+\delta) t}<\mu_{Z}-\epsilon\right) \\
& \rightarrow 0 .
\end{aligned}
$$

In the following, we prove (2.2). Since $\lambda(t) \sim \mu_{Z} \beta$, it holds for any $0<\epsilon<\delta\left(\mu_{Z} \beta\right)^{-1}$ that $(1-\epsilon) \mu_{z} \beta t \leq \lambda(t) \leq(1+\epsilon) \mu_{z} \beta t$. Thus by (2.3) and (2.4), it holds uniformly for $x_{1} \geq a(t)$ and $x_{2} \geq b(t)$ that

$$
P\left(\Lambda^{* *}(t)>\delta t+\lambda(t)\right)=P\left(\frac{\sum_{k=1}^{N^{* *}(t)} Z_{k}}{N^{* *}(t) \mu_{Z}} \cdot \frac{N^{* *}(t)}{\beta t}>\frac{\delta}{\mu_{Z} \beta}+\frac{\lambda(t)}{\mu_{Z} \beta t}\right)
$$

$$
\begin{align*}
& \leq P\left(\frac{\sum_{k=1}^{N^{* *}(t)} Z_{k}}{N^{* *}(t) \mu_{Z}} \cdot \frac{N^{* *}(t)}{\beta t}>1+\frac{\delta}{\mu_{Z} \beta}-\epsilon\right) \\
& \rightarrow 0 . \tag{2.6}
\end{align*}
$$

Similarly, it holds uniformly for $x_{1} \geq a(t)$ and $x_{2} \geq b(t)$ that

$$
P\left(\Lambda^{* *}(t)<\lambda(t)-\delta t\right) \rightarrow 0,
$$

which combining with (2.6) yields that (2.2) holds.
The following lemma is Lemma 3.2 of Fu et al. [8].
Lemma 2.2. Let $\left\{\vec{X}_{k}, k \geq 1\right\}$ be a sequence of i.i.d. random vectors with finite mean vector $\vec{\mu}$. In addition to Assumptions 1.1 and 1.2, suppose that $F_{i} \in \mathscr{C}, i=1,2$. Then for any $\vec{\gamma}=\left(\gamma_{1}, \gamma_{2}\right)^{T}>\overrightarrow{0}$, it holds uniformly for all $\vec{x}=\left(x_{1}, x_{2}\right)^{T} \geq \vec{\gamma} n$ that

$$
\begin{equation*}
P\left(\vec{S}_{n}-n \vec{\mu}>\vec{x}\right) \sim n^{2} \bar{F}_{1}\left(x_{1}\right) \bar{F}_{2}\left(x_{2}\right), \tag{2.7}
\end{equation*}
$$

as $n \rightarrow \infty$, where $\vec{S}_{n}=\left(S_{1 n}, S_{2 n}\right)^{T}=\sum_{k=1}^{n} \vec{X}_{k}$.
From Proposition 2.2.1 of Bingham et al. [2], we obtain
Lemma 2.3. If $V \in \mathscr{D}$ then for every $p>J_{V}^{+}$, there are positive constants C and x_{0} such that

$$
\frac{\bar{V}(x)}{\bar{V}(x y)} \leq C y^{p}
$$

holds for all $x y \geq x \geq x_{0}$.
The next lemma comes from Lemma 1(i) of Koc̆etova et al. [10].
Lemma 2.4. Let the inter-arrival times $\left\{\theta_{k}, k \geq 1\right\}$ form a sequence of i.i.d. nonnegative r.v.s with common mean $\beta^{-1} \in(0, \infty)$. Then it holds for every $a>\beta$ and some $b>1$ that

$$
\lim _{t \rightarrow \infty} \sum_{n>a t} b^{n} P\left(\sum_{j=1}^{n} \theta_{j} \leq t\right)=0 .
$$

The last lemma is a restatement of Lemma 2.3 of Tang [16].
Lemma 2.5. Let $\left\{\xi_{k}, k \geq 1\right\}$ be i.i.d. real-valued r.v.s with common distribution V and mean 0 satisfying $E\left(\xi_{1}^{+}\right)^{r}<\infty$ for some $r>1$. Then for each fixed $\gamma>0$ and $p>0$, there exist positive numbers v and $C=C(v, \gamma)$ irrespective to x and n such that for all $x \geq \gamma n$ and $n \geq 1$

$$
P\left(\sum_{k=1}^{n} \xi_{k} \geq x\right) \leq n \bar{V}(v x)+C x^{-p} .
$$

Proof of Theorem 1.1: Without special statement, in this proof a limit relation is understood as valid uniformly for all $\vec{x} \geq \vec{\gamma} \lambda(t)$ as $t \rightarrow \infty$. We will show the following two relations

$$
\begin{equation*}
\mathrm{P}(\vec{S}(t)-\vec{\mu} \lambda(t)>\vec{x}) \lesssim(\lambda(t))^{2} \bar{F}_{1}\left(x_{1}\right) \bar{F}_{2}\left(x_{2}\right) \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{P}(\vec{S}(t)-\vec{\mu} \lambda(t)>\vec{x}) \gtrsim(\lambda(t))^{2} \bar{F}_{1}\left(x_{1}\right) \bar{F}_{2}\left(x_{2}\right) . \tag{2.9}
\end{equation*}
$$

We first prove (2.8). For any $0<\delta<1$, it holds that for $x_{i}>0, i=1,2$ and $t>0$

$$
\begin{align*}
\mathrm{P}(\vec{S}(t)-\vec{\mu} \lambda(t)>\vec{x})= & \mathrm{P}(\vec{S}(t)-\vec{\mu} \lambda(t)>\vec{x}, \Lambda(t) \leq(1+\delta) \lambda(t)) \\
& +\mathrm{P}(\vec{S}(t)-\vec{\mu} \lambda(t)>\vec{x}, \Lambda(t)>(1+\delta) \lambda(t)) \\
= & I_{1}+I_{2} . \tag{2.10}
\end{align*}
$$

For I_{1}, by Lemma 2.2 it holds that

$$
\begin{align*}
I_{1} & \leq \mathrm{P}\left(\vec{S}_{[(1+\delta) \lambda t]}-\vec{\mu} \lambda(t)>\vec{x}\right) \\
& =\mathrm{P}\left(\vec{S}_{[(1+\delta) \lambda t]}-\vec{\mu}[(1+\delta) \lambda(t)]>\vec{x}+\vec{\mu} \lambda(t)-\vec{\mu}[(1+\delta) \lambda(t)]\right) \\
& \lesssim[(1+\delta) \lambda(t)]^{2} \bar{F}_{1}\left(x_{1}+\mu_{1} \lambda(t)-\mu_{1}[(1+\delta) \lambda(t)]\right) \bar{F}_{2}\left(x_{2}+\mu_{2} \lambda(t)-\mu_{2}[(1+\delta) \lambda(t)]\right) \\
& \leq[(1+\delta) \lambda(t)]^{2} \bar{F}_{1}\left(\left(1-\delta \mu_{1} \gamma_{1}^{-1}\right) x_{1}\right) \bar{F}_{2}\left(\left(1-\delta \mu_{2} \gamma_{2}^{-1}\right) x_{2}\right) \tag{2.11}
\end{align*}
$$

where in the third step Lemma 2.2 is used, which is due to the fact that for small δ such that $\gamma_{i}-\mu_{i} \delta>0$, and for any $0<\gamma_{i}^{\prime}<\frac{\gamma_{i}-\mu_{i} \delta}{1+\delta}$, it holds that $x_{i}+\mu_{i} \lambda(t)-\mu_{i}[(1+\delta) \lambda(t)] \geq \gamma_{i}^{\prime}[(1+\delta) \lambda(t)]$ for $x_{i} \geq \gamma_{i} \lambda(t), i=1,2$. By $F_{i} \in \mathscr{C}, i=1$, 2 , we have

$$
\begin{equation*}
\lim _{\delta \downarrow 0} \lim _{t \rightarrow \infty} \sup _{\vec{x} \geq \vec{\gamma}(t)} \sup \frac{I_{1}}{(\lambda(t))^{2} \bar{F}_{1}\left(x_{1}\right) \bar{F}_{2}\left(x_{2}\right)} \leq 1 . \tag{2.12}
\end{equation*}
$$

For I_{2}, take any $0<\varepsilon<\frac{\delta \mu_{2} \beta}{\delta+\beta+1}$ we have

$$
\begin{align*}
I_{2} \leq & \sum_{n>(1+\delta) \lambda(t)} P\left(S_{1 n}>x_{1}, S_{2 n}>x_{2}, \Lambda(t)=n\right) \\
\leq & \sum_{n>(1+\delta) \lambda(t)}\left[P\left(S_{1 n}>x_{1}, S_{2 n}>x_{2}, \sum_{j=1}^{\Theta(t)} Z_{j}=n, \Theta(t)>\frac{n}{\varepsilon+\mu_{Z}}\right)\right. \\
& \left.+P\left(S_{1 n}>x_{1}, S_{2 n}>x_{2}, \sum_{j=1}^{\Theta(t)} Z_{j}=n, \Theta(t) \leq \frac{n}{\varepsilon+\mu_{Z}}\right)\right] \\
= & \sum_{n>(1+\delta) \lambda(t)}\left(K_{1}+K_{2}\right) . \tag{2.13}
\end{align*}
$$

We first estimate K_{1}. Letting $p>\max \left\{J_{F_{1}}^{+}, J_{F_{2}}^{+}\right\}$, it follows from Assumption 1.1 and Lemma 2.3 that there exists some positive constant C such that for any $0<\varepsilon<\mu_{\mathrm{Z}} \beta$

$$
K_{1}=P\left(S_{1 n}>x_{1}, S_{2 n}>x_{2}, \sum_{j=1}^{\Theta(t)} Z_{j}=n, \Theta(t)>\frac{n}{\varepsilon+\mu_{Z}}\right)
$$

$$
\begin{align*}
& \leq \sum_{m>\frac{n}{\varepsilon+\mu_{Z}}}\left(\bigcup_{i=1}^{n}\left\{X_{1 i}>x_{1} / n\right\}, \bigcup_{j=1}^{n}\left\{X_{2 j}>x_{2} / n\right\}, \Theta(t)=m\right) \\
& \leq \sum_{m>\frac{n}{\varepsilon+\mu_{Z}}} \sum_{1 \leq i, j \leq n} P\left(X_{1 i}>x_{1} / n, X_{2 j}>x_{2} / n, \sum_{k=1}^{m} \theta_{k} \leq t\right) \\
& =\sum_{m>\frac{n}{\varepsilon+\mu_{Z}}}\left(\sum_{1 \leq i \neq j \leq n}+\sum_{1 \leq i=j \leq n}\right) P\left(X_{1 i}>x_{1} / n, X_{2 j}>x_{2} / n, \sum_{k=1}^{m} \theta_{k} \leq t\right) \\
& \leq \sum_{m>\frac{n}{\delta+\mu_{2}}} \sum_{1 \leq i \neq j \leq n} P\left(X_{1 i}>x_{1} / n, X_{2 j}>x_{2} / n, \sum_{k=1, k \neq i, j}^{m} \theta_{k} \leq t\right) \\
& +\sum_{m>\frac{n}{\varepsilon+\mu_{z}}} \sum_{1 \leq i=j \leq n} P\left(X_{1 i}>x_{1} / n, X_{2 j}>x_{2} / n, \sum_{k=1, k \neq i}^{m} \theta_{k} \leq t\right) \\
& =\sum_{m>\frac{n}{\varepsilon+\mu_{Z}}} n(n-1) P\left(X_{11}>x_{1} / n\right)\left(X_{21}>x_{2} / n\right) P\left(\sum_{k=3}^{m} \theta_{k} \leq t\right) \\
& +\sum_{m>\frac{n}{\varepsilon+\mu_{Z}}} n P\left(X_{11}>x_{1} / n, X_{21}>x_{2} / n\right) P\left(\sum_{k=2}^{m} \theta_{k} \leq t\right) \\
& \leq C \sum_{m>\frac{n}{k+\mu_{Z}}} n^{2 p+1}(n-1) \overline{F_{1}}\left(x_{1}\right) \overline{F_{2}}\left(x_{2}\right) P\left(\sum_{k=3}^{m} \theta_{k} \leq t\right) \\
& +C \sum_{m>\frac{n}{\varepsilon+\mu_{Z}}} n^{2 p+1} \overline{F_{1}}\left(x_{1}\right) \overline{F_{2}}\left(x_{2}\right) P\left(\sum_{k=2}^{m} \theta_{k} \leq t\right) \\
& \leq C \overline{F_{1}}\left(x_{1}\right) \overline{F_{2}}\left(x_{2}\right) \sum_{m>\frac{n}{\varepsilon+\mu Z}} n^{2 p+2} P\left(\sum_{k=3}^{m} \theta_{k} \leq t\right) \text {. } \tag{2.14}
\end{align*}
$$

In the following, interchanging the order of sums yields that

$$
\begin{align*}
\sum_{n>(1+\delta) \lambda(t)} K_{1} & \leq \sum_{m>\frac{(1+\delta)(t)}{\varepsilon+\mu_{Z}}} \sum_{(1+\delta) \lambda(t)<n<\left(\varepsilon+\mu_{Z}\right) m} C n^{2 p+2} \overline{F_{1}}\left(x_{1}\right) \overline{F_{2}}\left(x_{2}\right) P\left(\sum_{k=3}^{m} \theta_{k} \leq t\right) \\
& \leq C\left(\varepsilon+\mu_{Z}\right)^{2 p+2} \overline{F_{1}}\left(x_{1}\right) \overline{F_{2}}\left(x_{2}\right) \sum_{m>\frac{(1+\delta \phi)(t)}{\varepsilon+\mu_{Z}}} m^{2 p+2} P\left(\sum_{k=3}^{m} \theta_{k} \leq t\right) . \tag{2.15}
\end{align*}
$$

Since $\lambda(t) \sim \mu_{Z} \beta t$, for sufficiently large t,

Since $\frac{(1+\delta)\left(\mu_{z} \beta-\varepsilon\right)}{\varepsilon+\mu_{Z}}>\beta$, by (2.16) and Lemma 2.4 it holds that

$$
\begin{equation*}
\sum_{n>(1+\delta) \lambda(t)} K_{1}=o\left(\overline{F_{1}}\left(x_{1}\right) \overline{F_{2}}\left(x_{2}\right)\right) . \tag{2.17}
\end{equation*}
$$

We continue to deal with K_{2}. As K_{1}, by Assumption 1.1 there exists positive constant C such that

$$
\begin{align*}
K_{2} & \leq P\left(S_{1 n}>x_{1}, S_{2 n}>x_{2}, \sum_{j \leq \frac{n}{\varepsilon+\mu_{Z}}} Z_{j} \geq n\right) \\
& \leq C n^{2 p+2} \overline{F_{1}}\left(x_{1}\right) \overline{F_{2}}\left(x_{2}\right) P\left(\sum_{j \leq \frac{n}{\varepsilon+\mu_{Z}}}\left(Z_{j}-\mu_{Z}\right) \geq \frac{\varepsilon n}{\varepsilon+\mu_{Z}}\right) . \tag{2.18}
\end{align*}
$$

By Lemma 2.5, for fixed $\tilde{\gamma}>0$ and $\tilde{p}>0$ there exist some positive v and C_{1} such that

$$
\begin{equation*}
K_{2} \leq C n^{2 p+2} \overline{F_{1}}\left(x_{1}\right) \overline{F_{2}}\left(x_{2}\right)\left[\frac{n \varepsilon}{\varepsilon+\mu_{Z}} \overline{F_{Z}}\left(\frac{\varepsilon v n}{\varepsilon+\mu_{Z}}\right)+C_{1}\left(\frac{\varepsilon n}{\varepsilon+\mu_{Z}}\right)^{-\tilde{p}}\right], \tag{2.19}
\end{equation*}
$$

where by taking $\tilde{\gamma}=\varepsilon$ and $\tilde{p}>2 p+3$, Markov's inequality and (2.19) it holds that

$$
\begin{align*}
& \sum_{n>(1+\delta) \lambda(t)} K_{2} \\
\leq & C \overline{F_{1}}\left(x_{1}\right) \overline{F_{2}}\left(x_{2}\right) \sum_{n>(1+\delta) \lambda(t)}\left[\frac{\left(\varepsilon+\mu_{Z}\right)^{\alpha_{Z}-1} E Z_{1}^{\alpha_{Z}}}{(\varepsilon v)^{\alpha_{Z}}} n^{-\left(\alpha_{Z}-2 p-3\right)}+\frac{C_{1}\left(\varepsilon+\mu_{Z}\right)^{\tilde{p}}}{\varepsilon^{\tilde{p}}} n^{-(\tilde{p}-2 p-2)}\right] \\
= & o\left(\overline{F_{1}}\left(x_{1}\right) \overline{F_{2}}\left(x_{2}\right)\right), \tag{2.20}
\end{align*}
$$

where the last step is due to $\alpha_{Z}-2 p-3>1$ and $\tilde{p}-2 p-2>1$.
By (2.13), (2.17) and (2.20) it holds that

$$
\begin{equation*}
I_{2}=o\left(\overline{F_{1}}\left(x_{1}\right) \overline{F_{2}}\left(x_{2}\right)\right) . \tag{2.21}
\end{equation*}
$$

By (2.12) and (2.21), we get (2.8) holds.
In the following we prove (2.9). For small enough $0<\delta<1$ and $v>1$,

$$
\begin{aligned}
& P(\vec{S}(t)-\vec{\mu} \lambda(t)>\vec{x}) \\
\geq & \sum_{n=(1-\delta) \lambda(t)}^{(1+\delta) \lambda(t)} P\left(\vec{S}_{n}-\vec{\mu} \lambda(t)>\vec{x}, \Lambda(t)=n\right) \\
\geq & \sum_{n=(1-\delta) \lambda(t)}^{(1+\delta) \lambda(t)} P\left(S_{1 n}-\mu_{1} \lambda(t)>x_{1}, S_{2 n}-\mu_{2} \lambda(t)>x_{2}, \Lambda(t)=n, \max _{1 \leq i \leq n} X_{1 i}>v x_{1},\right. \\
& \left.\max _{1 \leq j \leq n} X_{2 j}>v x_{2}\right)
\end{aligned}
$$

$$
\begin{align*}
\geq & \sum_{n=(1-\delta) \lambda(t)}^{(1+\delta)(t)} \sum_{1 \leq i, j \leq n} P\left(S_{1 n}-\mu_{1} \lambda(t)>x_{1}, S_{2 n}-\mu_{2} \lambda(t)>x_{2}, \Lambda(t)=n, X_{1 i}>v x_{1},\right. \\
& \left.X_{2 j}>v x_{2}\right) \\
& -\sum_{n=(1-\delta) \lambda(t)}^{(1+\delta) \lambda(t)} \sum_{i=1}^{n} \sum_{j_{1} \neq j_{2}} P\left(\Lambda(t)=n, X_{1 i}>v x_{1}, X_{2 j_{1}}>v x_{2}, X_{2 j_{2}}>v x_{2}\right) \\
& -\sum_{n=(1-\delta) \lambda(t)}^{(1+\delta) \lambda(t)} \sum_{i_{1} \neq i} \sum_{j=1}^{n} P\left(\Lambda(t)=n, X_{1 i_{1}}>v x_{1}, X_{1 i_{2}}>v x_{1}, X_{2 j}>v x_{2}\right) \\
=: & P_{1}-P_{2}-P_{3} . \tag{2.22}
\end{align*}
$$

To estimate P_{1}. Similarly to (2.1), we can check that $N^{* *}(t)$ is also identically distributed as $N(t)$ conditional on $\left\{X_{1 i}>x_{1}, X_{2 j}>x_{2}\right\}$. Following the similar method of (3.7) in Fu et al. [8] only by replacing event $\{N(t)=n\}$ with event $\{\Lambda(t)=n\}$, together with Lemma 2.1, we can get

$$
P_{1} \geq(1-\delta) \lambda(t)((1-\delta) \lambda(t)-1) \bar{F}_{1}\left(v x_{1}\right) \bar{F}_{2}\left(v x_{2}\right) .
$$

Hence, for $F_{i} \in \mathscr{C}, i=1,2$, we have

$$
\begin{equation*}
\lim _{\delta \downarrow 0} \lim _{v \downarrow 1} \liminf _{t \rightarrow \infty} \inf _{\vec{x} \vec{\gamma} \lambda(t)} \frac{P_{1}}{(\lambda(t))^{2} \bar{F}_{1}\left(x_{1}\right) \bar{F}_{2}\left(x_{2}\right)} \geq 1 . \tag{2.23}
\end{equation*}
$$

As for P_{2} and P_{3}, following the similar argument as Fu et al. (2021) we can get

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \sup _{\vec{x} \geq \vec{\gamma} \lambda(t)} \frac{P_{2}}{(\lambda(t))^{2} \bar{F}_{1}\left(x_{1}\right) \bar{F}_{2}\left(x_{2}\right)}=0 \tag{2.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \sup _{\vec{x} \geq \vec{\gamma}(t)} \frac{P_{3}}{(\lambda(t))^{2} \bar{F}_{1}\left(x_{1}\right) \bar{F}_{2}\left(x_{2}\right)}=0 . \tag{2.25}
\end{equation*}
$$

By (2.22)-(2.25) we get (2.9) holds.

3. Conclusions

This paper studies a dependent two-dimensional compound risk model with heavy-tailed claims. We mainly investigate the case that there exists a size-dependent structure between the claim sizes and inter-arrival times. Using the probability limiting theory we give the precise large deviations for aggregate amount of claims in the compound risk model.

Acknowledgments

This work is supported by the 333 High Level Talent Training Project of Jiangsu Province and the Jiangsu Province Key Discipline in the 14th Five-Year Plan.

Conflict of interest

The authors declare no conflicts of interest.

References

1. A. Ales̆kevičiené, R. Leipus, J. Shiaulys, A probabilistic look at tail behavior of random sums under consistent variation with applications to the compound renewal risk, Extremes, 11 (2008), 261-279. https://doi.org/10.1007/s 10687-008-0057-3
2. N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Cambridge: Cambridge University Press, 1987.
3. X. Bi, S. Zhang, Precise large deviation of aggregate claims in a risk model with regression-type size-dependence, Stat. Probabil. Lett., 83 (2013), 2248-2255. https://doi.org/10.1016/j.spl.2013.06.009
4. J. Cai, H. Li, Dependence properties and bounds for ruin probabilities in multivariate compound risk models, J. Multivariate Anal., 98 (2007), 757-773. https://doi.org/10.1016/j.jmva.2006.06.004
5. D. B. H. Cline, G. Samorodnitsky, Subexponentiality of the product of independent random variables, Stoch. Proc. Appl., 49 (1994), 75-98. https://doi.org/10.1016/0304-4149(94)90113-9
6. G. A. Delsing, M. R. H. Mandjes, P. J. C. Spreij, E. M. M. Winands, An optimization approach to adaptive multi-dimensional capital management, Insur. Math. Econ., 84 (2019), 87-97. https://doi.org/10.1016/j.insmatheco.2018.10.001
7. P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling extremal events for insurance and finance, Berlin: Springer, 1997.
8. K. Fu, X. Shen, H. Li, Precise large deviations for sums of claim-size vectors in a two-dimensional size-dependent renewal risk model, Acta Math. Appl. Sin. Engl. Ser., 37 (2021), 539-547. https://doi.org/10.1007/s 10255-021-1030-z
9. H. Guo, S. Wang, C. Zhang, Precise large deviations of aggregate claims in a compound size-dependent renewal risk model, Commun. Stat. Theor. Method., 46 (2017), 1107-1116. https://doi.org/10.1080/03610926.2015.1010011
10. J. Kočetova, R. Leipus, J. S̆iaulys, A property of the renewal counting process with application to the finite-time probability, Lith. Math. J., 49 (2009), 55-61. https://doi.org/10.1007/s10986-009-9032-1
11. D. G. Konstantinides, F. Loukissas, Precise large deviations for consistently varying-tailed distribution in the compound renewal risk model, Lith. Math. J., 50 (2010), 391-400. https://doi.org/10.1007/s 10986-010-9094-0
12. D. Lu, Lower bounds of large deviation for sums of long-tailed claims in a multi-risk model, Stat. Probabil. Lett., 82 (2012), 1242-1250. https://doi.org/10.1016/j.spl.2012.03.020
13. R. B. Nelsen, An introduction to copulas, New York: Springer, 2006.
14. X. Shen, H. Tian, Precise large deviations for sums of two-dimensional random vectors and dependent components with extended regularly varying tails, Commun. Stat. Theor. Method., 45 (2016), 6357-6368. https://doi.org/10.1080/03610926.2013.839794
15. Q. Tang, C. Su, T. Jiang, J. Zhang, Large deviations for heavy-tailed random sums in compound renewal model, Stat. Probabil. Lett., 52 (2001), 91-100. https://doi.org/10.1016/S0167-7152(00)00231-5
16. Q. Tang, Insensitivity to negative dependence of the asymptotic behavior of precise large deviations, Electron. J. Probab., 11 (2006), 107-120. https://doi.org/10.1214/EJP.v11-304
17. K. Wang, Y. Cui, Y. Mao, Estimates for the finite-time ruin probability of a timedependent risk model with a Brownian perturbation, Math. Probl. Eng., 2020 (2020), 7130243. https://doi.org/10.1155/2020/7130243
18. K. Wang, L. Chen, Precise large deviations for the aggregate claims in a dependent compound renewal risk model, J. Inequal. Appl., 257 (2019), 1-25. https://doi.org/10.1186/s13660-019-2209-1
19. S. Wang, W. Wang, Precise large deviations for sums of random variables with consistently varying tails in multi-risk mode, J. Appl. Probab., 44 (2007), 889-900. https://doi.org/10.1239/jap/1197908812
20. S. Wang, W. Wang, Precise large deviations for sums of random variables with consistent variation in dependent multi-risk models, Commun. Stat. Theor. Method., 42, (2013), 4444-4459. https://doi.org/10.1080/03610926.2011.648792
21. B. Xun, K. C. Yuen, K. Wang, The finite-time ruin probability of a risk model with a general counting process and stochastic return, J. Ind. Manag. Optim., 18 (2022), 1541-1556. https://doi.org/10.3934/jimo. 2021032
22. Y. Yang, R. Leipus, J. Šiaulys, Precise large deviations for compound random sums in the presence of dependence structures, Comput. Math. Appl., 64 (2012), 2074-2083. https://doi.org/10.1016/j.camwa.2012.04.003
23. Y. Yang, K. Wang, J. Liu, Z. Zhang, Asymptotics for a bidimensional risk model with two geometric Lévy price processes, J. Ind. Manag. Optim., 15 (2019), 481-505. http://dx.doi.org/10.3934/jimo. 2018053

AIMS Press

© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

