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1. Introduction

This paper will investigate a two-dimensional compound risk model. In this risk model, an insurance
company has two dependent classes of business sharing a common claim-number process, which is a
compound renewal counting process. Let the inter-arrival times of events {θk, k ≥ 1} be a sequence of
independent and identically distributed (i.i.d.) nonnegative random variables (r.v.s) with finite mean
β−1 > 0. Let Zk be the number of claims caused by the kth (k ≥ 1) event. Suppose that {Zk, k ≥ 1}
are i.i.d. positive integer r.v.s with finite mean µZ and independent of {θk, k ≥ 1}. Then the number of
events up to time t ≥ 0 is denoted by

N(t) = sup

n ≥ 1,
n∑

k=1

θk ≤ t


and the number of claims up to time t ≥ 0 is denoted by

Λ(t) =
N(t)∑
k=1

Zk,
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which is a compound renewal counting process. Set θ(t) = E(N(t)) and λ(t) = E(Λ(t)), t ≥ 0, then
θ(t)/t → β as t → ∞ and λ(t) = µZθ(t), t ≥ 0. The claim-amount vectors X⃗k = (X1k, X2k)T , k ≥ 1
are i.i.d. copies of X⃗ = (X1, X2)T with finite mean vector µ⃗ = (µ1, µ2)T . Assume that X1 and X2

are nonnegative r.v.s with distributions F1 and F2, respectively. Their joint distribution is denoted by
F12(x1, x2) = P(X1 ≤ x1, X2 ≤ x2) and their joint survival function is F12(x1, x2) = P(X1 > x1, X2 > x2).
Then the aggregate amount of claims up to time t ≥ 0 is expressed as

S⃗ (t) =
Λ(t)∑
k=1

X⃗k. (1.1)

This paper will investigate the precise large deviations of S⃗ (t), t ≥ 0.
In this paper, we assume that {Zk, k ≥ 1} are independent of {X⃗k, k ≥ 1} and {(X⃗k, θk), k ≥ 1} are

i.i.d. random vectors with generic pair (X⃗, θ). This paper mainly considers for each k ≥ 1, X1k, X2k

and θk may be dependent and the claims have heavy-tailed distributions. In the following section some
heavy-tailed distribution classes will be given.

Without special statement, in this paper a limit is taken as t → ∞. For a real-valued number a,
let a+ = max{0, a} and a− = −min{0, a}. Denote [a] by the large integer that does not exceed a. For
two vectors y⃗ = (y1, y2)T and z⃗ = (z1, z2)T , y⃗ > z⃗ (or ≥) means yi > zi (or ≥), i = 1, 2. For two
nonnegative functions a(·) and b(·), we write a(t) ≲ b(t) if lim sup a(t)/b(t) ≤ 1, write a(t) ≳ b(t) if
lim inf a(t)/b(t) ≥ 1, write a(t) ∼ b(t) if lim a(t)/b(t) = 1, and write a(t) = o(b(t)) if lim a(t)/b(t)
= 0. For two positive bivariate functions g(·, ·) and h(·, ·), we write g(x, t) ≲ h(x, t), as t → ∞, holds
uniformly for x ∈ ∆ , ϕ, if

lim sup
t→∞

sup
x∈∆

g(x, t)
h(x, t)

≤ 1.

We write g(x, t) ≳ h(x, t), as t → ∞, holds uniformly for x ∈ ∆ , ϕ, if

lim inf
t→∞

inf
x∈∆

g(x, t)
h(x, t)

≥ 1.

In the following, we give some heavy-tailed distribution classes. For a proper distribution V on
(−∞,∞), let V = 1− V be the tail of V . Say that a distribution V on (−∞,∞) is heavy-tailed, if for any
s > 0, ∫ ∞

−∞

esuV(du) = ∞.

Otherwise, say that V is light-tailed. The dominated variation distribution class D is an important class
of heavy-tailed distributions. Say that a distribution V on (−∞,∞) belongs to the class D , if for any
y ∈ (0, 1),

lim sup
x→∞

V(xy)

V(x)
< ∞.

The slightly smaller class is the class C , which consists of all distributions with consistently varying
tails. Say that a distribution V on (−∞,∞) belongs to the class C if

lim
y↘1

lim inf
x→∞

V(xy)

V(x)
= lim

y↗1
lim sup

x→∞

V(xy)

V(x)
= 1.
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Another class is the long-tailed distribution class L . Say that a distribution V on (−∞,∞) belongs to
the class L if for any y > 0,

lim
x→∞

V(x − y)

V(x)
= 1.

It is well known that these distribution classes have the following relationships:

C ⊂ L ∩D ⊂ L

(see, e.g., Cline and Samorodnitsky [5], Embrechts et al. [7]).
For a distribution V on (−∞,∞), let

J+V = inf
− log V∗(y)

log y
, y ≥ 1

 with V∗(y) = lim inf
x→∞

V(xy)

V(x)
, y ≥ 1.

We call J+V the upper Matuszewska index of V . For the details of the Matuszewska index one can see
Bingham et al. [2].

In recent years, more and more researchers pay attention to multi-dimensional risk models and
study the precise large deviations of aggregate amount of claims, see e.g. Wang and Wang [19], Wang
and Wang [20], Lu [12], Tian and Shen [14] and so on. Recently, Fu et al. [8] studied the precise large
deviations of S N(t) =

∑N(t)
k=1 Xk, t ≥ 0 under the following assumptions.

Assumption 1.1. The random vector (X1, X2) has a survival copula Ĉ(·, ·) satisfying

Ĉ
(
F1 (x1) , F2 (x2)

)
≤ gu(2)F1 (x1) F2 (x2)

where gu(·) is a finite positive function.

Definition 2.2.2 of Nelsen [13] gave the definition of copula. A copula is a function C from [0, 1] ×
[0, 1]→ [0, 1] with the following properties:
(1) For every u, v ∈ [0, 1], C(u, 0) = C(0, v) = 0, C(u, 1) = u and C(1, v) = v.
(2) For every u1, u2, v1, v2 ∈ [0, 1] such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2) −C(u2, v1) −C(u1, v2) +C(u1, v1) ≥ 0.

The Sklar’s theorem (i.e. Theorem 2.3.3 of Nelsen [13] ) states that for the r.v.s X1 and X2 in
Assumption 1.1, there exists a copula C such that for all xi ∈ (−∞,∞), i = 1, 2,

F12(x1, x2) = C(F1(x1), F2(x2)).

Let Ĉ(u, v) = u + v − 1 +C(1 − u, 1 − v), u, v ∈ [0, 1], then for all xi ∈ (−∞,∞), i = 1, 2,

F12(x1, x2) = Ĉ(F1(x1), F2(x2)).

We call Ĉ as the survival copula of X1 and X2 (see (2.6.1) and (2.6.2) of Nelsen [13]).

Assumption 1.2. There exists a nonnegative random variable θ∗ with finite mean such that θ
conditional on (Xi > xi) , i = 1, 2, is stochastically bounded by θ∗ for all large x1 and x2; i.e., there
exists some x⃗0 = (x10, x20)T such that it holds for all x⃗ = (x1, x2)T > x⃗0 and t ∈ [0,∞) that

P (θ > t | Xi > xi) ≤ P (θ∗ > t) , i = 1, 2.
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This paper still uses the above two assumptions. We will investigate the precise large deviations of
the aggregate amount of claims in a two-dimensional compound risk model. For the one-dimensional
compound risk model, there are many papers studying the aggregate amount of claims, such as Tang
et al. [15], Ales̆kevic̆ienė et al. [1], Konstantinides and Loukissas [11], Yang et al. [22], Guo et al. [9],
Wang and Chen [18], Yang et al. [23], Wang et al. [17], Xun et al. [21] and so on. For a two-dimensional
compound risk model researchers mainly studied the ruin probabilities, such as Cai and Li [4], Delsing
et al. [6] and so on. This paper will consider the precise large deviations of compound sum (1.1) in a
two-dimensional compound risk model. The following is the main result of this paper.

Theorem 1.1. Consider the model (1.1). Suppose that Assumptions 1.1 and 1.2 are satisfied, Fi ∈ C ,
i = 1, 2 and there exists a constant αZ > 2 max{J+F1

, J+F2
} + 4 such that EZαZ

1 < ∞. Then for any
γ⃗ = (γ1, γ2)T > 0⃗,

P(S⃗ (t) − µ⃗λ(t) > x⃗) ∼ (λ(t))2F1 (x1) F2 (x2) ,

holds uniformly for all x⃗ ≥ γ⃗λ(t).

Remark 1.1. In the two-dimensional compound renewal risk model (1.1), if Zk ≡ 1, k ≥ 1, then
model (1.1) degenerates into the classic two-dimensional renewal risk model. In the classic
two-dimensional renewal risk model, suppose that Fi ∈ C , i=1,2 and Assumptions 1.1 and 1.2 are
satisfied. Then from Theorem 1.1 the main result of Fu et al. [8] can be obtained.

The proof of Theorem 1.1 will be given in the following section.

2. Proof of the main result

By Assumption 1.2, we introduce two independent nonnegative r.v.s θ∗∗1 and θ∗∗2 , which have the
same distributions as θ conditional on {X1 > x1} and {X2 > x2}, respectively. Assume that θ∗∗1 and θ∗∗2
are independent of all other r.v.s. Let τ∗∗1 = θ

∗∗
1 , τ

∗∗
2 = θ

∗∗
1 +θ

∗∗
2 , τ

∗∗
n = θ

∗∗
1 +θ

∗∗
2 +

∑n
i=3 θi, n ≥ 3, and define

N∗∗(t) = sup
{
n ≥ 1 : τ∗∗n ≤ t

}
, t ≥ 0.

SetΛ∗∗(t) =
∑N∗∗(t)

k=1 Zk, t ≥ 0. The following relation implies that for each t ≥ 0,Λ∗∗(t) is also identically
distributed as Λ(t) conditional on {X1 > x1, X2 > x2}. In fact, noticing the independence assumption
between {Zk, k ≥ 1} and (X⃗, θ), it holds for t ≥ 0, n ≥ 1 and x1, x2 ≥ 0 that

P(Λ(t) = n | X1 > x1, X2 > x2)

=

∞∑
k=1

P

 k∑
i=1

Zi = n | X1 > x1, X2 > x2,N(t) = k

 P(N(t) = k | X1 > x1, X2 > x2)

=

∞∑
k=1

P

 k∑
i=1

Zi = n

 P(N(t) = k | X1 > x1, X2 > x2)

=

∞∑
k=1

P

 k∑
i=1

Zi = n

 P (N∗∗(t) = k)

= P (Λ∗∗(t) = n) . (2.1)
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Before giving the proof of Theorem 1.1, we first give some lemmas. The first lemma gives a
property about Λ∗∗(t), t ≥ 0.

Lemma 2.1. In addition to Assumption 1.2, assume that Var θ < ∞. Then it holds for every 0 < δ < β
and every functions a(t) and b(t) that

lim
t→∞

sup
x1≥a(t)
x2≥b(t)

P
(∣∣∣∣∣Λ∗∗(t) − λ(t)t

∣∣∣∣∣ > δ) = 0, (2.2)

where a(·) : [0,∞)→ (0,∞) with a(t) ↑ ∞ and b(·) : [0,∞)→ (0,∞) with b(t) ↑ ∞.

Proof. Using the same method of the proof of Lemma 3.4 of Bi and Zhang [3], we can get that

lim
t→∞

sup
x1≥a(t)
x2≥b(t)

P
(∣∣∣∣∣N∗∗(t)t

− β

∣∣∣∣∣ > δ) = 0. (2.3)

In the following we will prove for any ϵ > 0

lim
t→∞

sup
x1≥a(t)
x2≥b(t)

P


∣∣∣∣∣∣∣
∑N∗∗(t)

k=1 Zk

N∗∗(t)
− µZ

∣∣∣∣∣∣∣ > ϵ
 = 0. (2.4)

For the above ϵ > 0, by (2.3) and the law of large number for i.i.d r.v.s, it holds uniformly for x1 ≥ a(t)
and x2 ≥ b(t) that

P

∑N∗∗(t)
k=1 Zk

N∗∗(t)
− µZ > ϵ

 = P

∑N∗∗(t)
k=1 Zk

N∗∗(t)
> ϵ + µZ,N∗∗(t) < (β − δ)t


+P

∑N∗∗(t)
k=1 Zk

N∗∗(t)
> ϵ + µZ,N∗∗(t) > (β + δ)t


+P

∑N∗∗(t)
k=1 Zk

N∗∗(t)
> ϵ + µZ, (β − δ)t ≤ N∗∗(t) ≤ (β + δ)t


≤ P

(∣∣∣∣∣N∗∗(t)t
− β

∣∣∣∣∣ > δ) + P

∑(β+δ)t
k=1 Zk

(β − δ)t
> µZ + ϵ


→ 0 (2.5)

and

P

∑N∗∗(t)
k=1 Zk

N∗∗(t)
− µZ < −ϵ

 ≤ P
(∣∣∣∣∣N∗∗(t)t

− β

∣∣∣∣∣ > δ) + P

∑(β−δ)t
k=1 Zk

(β + δ)t
< µZ − ϵ


→ 0.

In the following, we prove (2.2). Since λ(t) ∼ µZβt, it holds for any 0 < ϵ < δ(µZβ)−1 that
(1− ϵ)µZβt ≤ λ(t) ≤ (1+ ϵ)µZβt. Thus by (2.3) and (2.4), it holds uniformly for x1 ≥ a(t) and x2 ≥ b(t)
that

P (Λ∗∗(t) > δt + λ(t)) = P

∑N∗∗(t)
k=1 Zk

N∗∗(t)µZ
·

N∗∗(t)
βt
>
δ

µZβ
+
λ(t)
µZβt


AIMS Mathematics Volume 8, Issue 4, 9106–9117.
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≤ P

∑N∗∗(t)
k=1 Zk

N∗∗(t)µZ
·

N∗∗(t)
βt
> 1 +

δ

µZβ
− ϵ


→ 0. (2.6)

Similarly, it holds uniformly for x1 ≥ a(t) and x2 ≥ b(t) that

P(Λ∗∗(t) < λ(t) − δt)→ 0,

which combining with (2.6) yields that (2.2) holds. □

The following lemma is Lemma 3.2 of Fu et al. [8].

Lemma 2.2. Let
{
X⃗k, k ≥ 1

}
be a sequence of i.i.d. random vectors with finite mean vector µ⃗. In

addition to Assumptions 1.1 and 1.2, suppose that Fi ∈ C , i = 1, 2. Then for any γ⃗ = (γ1, γ2)T >
−→
0 , it

holds uniformly for all x⃗ = (x1, x2)T ≥ γ⃗n that

P
(
S⃗ n − nµ⃗ > x⃗

)
∼ n2F1 (x1) F2 (x2) , (2.7)

as n→ ∞, where S⃗ n = (S 1n, S 2n)T =
∑n

k=1 X⃗k.

From Proposition 2.2.1 of Bingham et al. [2], we obtain

Lemma 2.3. If V ∈ D then for every p > J+V , there are positive constants C and x0 such that

V(x)

V(xy)
≤ Cyp

holds for all xy ≥ x ≥ x0.

The next lemma comes from Lemma 1(i) of Koc̆etova et al. [10].

Lemma 2.4. Let the inter-arrival times {θk, k ≥ 1} form a sequence of i.i.d. nonnegative r.v.s with
common mean β−1 ∈ (0,∞). Then it holds for every a > β and some b > 1 that

lim
t→∞

∑
n>at

bnP

 n∑
j=1

θ j ≤ t

 = 0.

The last lemma is a restatement of Lemma 2.3 of Tang [16].

Lemma 2.5. Let {ξk, k ≥ 1} be i.i.d. real-valued r.v.s with common distribution V and mean 0 satisfying
E

(
ξ+1

)r
< ∞ for some r > 1. Then for each fixed γ > 0 and p > 0, there exist positive numbers v and

C = C(v, γ) irrespective to x and n such that for all x ≥ γn and n ≥ 1

P

 n∑
k=1

ξk ≥ x

 ≤ nV(vx) +Cx−p.
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Proof of Theorem 1.1: Without special statement, in this proof a limit relation is understood as valid
uniformly for all x⃗ ≥ γ⃗λ(t) as t → ∞. We will show the following two relations

P(S⃗ (t) − µ⃗λ(t) > x⃗) ≲ (λ(t))2F1 (x1) F2 (x2) (2.8)

and

P(S⃗ (t) − µ⃗λ(t) > x⃗) ≳ (λ(t))2F1 (x1) F2 (x2) . (2.9)

We first prove (2.8). For any 0 < δ < 1, it holds that for xi > 0, i = 1, 2 and t > 0

P(S⃗ (t) − µ⃗λ(t) > x⃗) = P(S⃗ (t) − µ⃗λ(t) > x⃗,Λ(t) ≤ (1 + δ)λ(t))
+P(S⃗ (t) − µ⃗λ(t) > x⃗,Λ(t) > (1 + δ)λ(t))

=: I1 + I2. (2.10)

For I1, by Lemma 2.2 it holds that

I1 ≤ P
(
S⃗ [(1+δ)λt] − µ⃗λ(t) > x⃗

)
= P

(
S⃗ [(1+δ)λt] − µ⃗[(1 + δ)λ(t)] > x⃗ + µ⃗λ(t) − µ⃗[(1 + δ)λ(t)]

)
≲ [(1 + δ)λ(t)]2F1 (x1 + µ1λ(t) − µ1[(1 + δ)λ(t)]) F2 (x2 + µ2λ(t) − µ2[(1 + δ)λ(t)])

≤ [(1 + δ)λ(t)]2F1

((
1 − δµ1γ

−1
1

)
x1

)
F2

((
1 − δµ2γ

−1
2

)
x2

)
(2.11)

where in the third step Lemma 2.2 is used, which is due to the fact that for small δ such that γi−µiδ > 0,
and for any 0 < γ

′

i <
γi−µiδ

1+δ , it holds that xi+µiλ(t)−µi[(1+δ)λ(t)] ≥ γ
′

i[(1+δ)λ(t)] for xi ≥ γiλ(t), i = 1, 2.
By Fi ∈ C , i = 1, 2, we have

lim
δ↓0

lim sup
t→∞

sup
x⃗≥γ⃗λ(t)

I1

(λ(t))2F1 (x1) F2 (x2)
≤ 1. (2.12)

For I2, take any 0 < ε < δµZβ

δ+β+1 we have

I2 ≤
∑

n>(1+δ)λ(t)

P (S 1n > x1, S 2n > x2,Λ(t) = n)

≤
∑

n>(1+δ)λ(t)

P
S 1n > x1, S 2n > x2,

Θ(t)∑
j=1

Z j = n,Θ(t) >
n

ε + µZ


+P

S 1n > x1, S 2n > x2,

Θ(t)∑
j=1

Z j = n,Θ(t) ≤
n

ε + µZ




=:
∑

n>(1+δ)λ(t)

(K1 + K2) . (2.13)

We first estimate K1. Letting p > max{J+F1
, J+F2
}, it follows from Assumption 1.1 and Lemma 2.3 that

there exists some positive constant C such that for any 0 < ε < µZβ

K1 = P

S 1n > x1, S 2n > x2,

Θ(t)∑
j=1

Z j = n,Θ(t) >
n

ε + µZ


AIMS Mathematics Volume 8, Issue 4, 9106–9117.
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≤
∑

m> n
ε+µZ

 n⋃
i=1

{X1i > x1/n},
n⋃

j=1

{X2 j > x2/n},Θ(t) = m


≤

∑
m> n

ε+µZ

∑
1≤i, j≤n

P

X1i > x1/n, X2 j > x2/n,
m∑

k=1

θk ≤ t


=

∑
m> n

ε+µZ

 ∑
1≤i, j≤n

+
∑

1≤i= j≤n

 P

X1i > x1/n, X2 j > x2/n,
m∑

k=1

θk ≤ t


≤

∑
m> n

ε+µZ

∑
1≤i, j≤n

P

X1i > x1/n, X2 j > x2/n,
m∑

k=1,k,i, j

θk ≤ t


+

∑
m> n

ε+µZ

∑
1≤i= j≤n

P

X1i > x1/n, X2 j > x2/n,
m∑

k=1,k,i

θk ≤ t


=

∑
m> n

ε+µZ

n(n − 1)P(X11 > x1/n)(X21 > x2/n)P

 m∑
k=3

θk ≤ t


+

∑
m> n

ε+µZ

nP(X11 > x1/n, X21 > x2/n)P

 m∑
k=2

θk ≤ t


≤ C

∑
m> n

ε+µZ

n2p+1(n − 1)F1(x1)F2(x2)P

 m∑
k=3

θk ≤ t


+C

∑
m> n

ε+µZ

n2p+1F1(x1)F2(x2)P

 m∑
k=2

θk ≤ t


≤ CF1(x1)F2(x2)

∑
m> n

ε+µZ

n2p+2P

 m∑
k=3

θk ≤ t

 . (2.14)

In the following, interchanging the order of sums yields that

∑
n>(1+δ)λ(t)

K1 ≤
∑

m> (1+δ)λ(t)
ε+µZ

∑
(1+δ)λ(t)<n<(ε+µZ )m

Cn2p+2F1(x1)F2(x2)P

 m∑
k=3

θk ≤ t


≤ C(ε + µZ)2p+2F1(x1)F2(x2)

∑
m> (1+δ)λ(t)

ε+µZ

m2p+2P

 m∑
k=3

θk ≤ t

 . (2.15)

Since λ(t) ∼ µZβt, for sufficiently large t,

∑
m> (1+δ)λ(t)

ε+µZ

m2p+2P

 m∑
k=3

θk ≤ t

 ≤ ∑
m> (1+δ)(µZβ−ε)t

ε+µZ

m2p+2P

 m∑
k=3

θk ≤ t

 . (2.16)
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Since (1+δ)(µZβ−ε)
ε+µZ

> β, by (2.16) and Lemma 2.4 it holds that∑
n>(1+δ)λ)(t)

K1 = o(F1(x1)F2(x2)). (2.17)

We continue to deal with K2. As K1, by Assumption 1.1 there exists positive constant C such that

K2 ≤ P

S 1n > x1, S 2n > x2,
∑

j≤
n

ε + µZ

Z j ≥ n


≤ Cn2p+2F1(x1)F2(x2)P

 ∑
j≤ n
ε+µZ

(Z j − µZ) ≥
εn
ε + µZ

 . (2.18)

By Lemma 2.5, for fixed γ̃ > 0 and p̃ > 0 there exist some positive v and C1 such that

K2 ≤ Cn2p+2F1(x1)F2(x2)
 nε
ε + µZ

FZ

(
εvn
ε + µZ

)
+C1

(
εn
ε + µZ

)− p̃ , (2.19)

where by taking γ̃ = ε and p̃ > 2p + 3, Markov’s inequality and (2.19) it holds that∑
n>(1+δ)λ(t)

K2

≤ CF1(x1)F2(x2)
∑

n>(1+δ)λ(t)

 (ε + µZ)αZ−1 EZαZ
1

(εv)αZ
n−(αZ−2p−3) +

C1 (ε + µZ)p̃

εp̃ n−(p̃−2p−2)


= o

(
F1(x1)F2(x2)

)
, (2.20)

where the last step is due to αZ − 2p − 3 > 1 and p̃ − 2p − 2 > 1.
By (2.13), (2.17) and (2.20) it holds that

I2 = o
(
F1(x1)F2(x2)

)
. (2.21)

By (2.12) and (2.21), we get (2.8) holds.
In the following we prove (2.9). For small enough 0 < δ < 1 and ν > 1,

P(S⃗ (t) − µ⃗λ(t) > x⃗)

≥

(1+δ)λ(t)∑
n=(1−δ)λ(t)

P
(
S⃗ n − µ⃗λ(t) > x⃗,Λ(t) = n

)
≥

(1+δ)λ(t)∑
n=(1−δ)λ(t)

P
(
S 1n − µ1λ(t) > x1, S 2n − µ2λ(t) > x2,Λ(t) = n,max

1≤i≤n
X1i > νx1,

max
1≤ j≤n

X2 j > νx2

)
AIMS Mathematics Volume 8, Issue 4, 9106–9117.
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≥

(1+δ)λ(t)∑
n=(1−δ)λ(t)

∑
1≤i, j≤n

P (S 1n − µ1λ(t) > x1, S 2n − µ2λ(t) > x2,Λ(t) = n, X1i > νx1,

X2 j > νx2

)
−

(1+δ)λ(t)∑
n=(1−δ)λ(t)

n∑
i=1

∑
j1, j2

P
(
Λ(t) = n, X1i > νx1, X2 j1 > νx2, X2 j2 > νx2

)
−

(1+δ)λ(t)∑
n=(1−δ)λ(t)

∑
i1,i2

n∑
j=1

P
(
Λ(t) = n, X1i1 > νx1, X1i2 > νx1, X2 j > νx2

)
=: P1 − P2 − P3. (2.22)

To estimate P1. Similarly to (2.1), we can check that N∗∗(t) is also identically distributed as N(t)
conditional on {X1i > x1, X2 j > x2}. Following the similar method of (3.7) in Fu et al. [8] only by
replacing event {N(t) = n} with event {Λ(t) = n}, together with Lemma 2.1, we can get

P1 ≥ (1 − δ)λ(t)((1 − δ)λ(t) − 1)F1(νx1)F2(νx2).

Hence, for Fi ∈ C , i = 1, 2, we have

lim
δ↓0

lim
ν↓1

lim inf
t→∞

inf
x⃗≥γ⃗λ(t)

P1

(λ(t))2F1 (x1) F2 (x2)
≥ 1. (2.23)

As for P2 and P3, following the similar argument as Fu et al. (2021) we can get

lim sup
t→∞

sup
x⃗≥γ⃗λ(t)

P2

(λ(t))2F1 (x1) F2 (x2)
= 0 (2.24)

and

lim sup
t→∞

sup
x⃗≥γ⃗λ(t)

P3

(λ(t))2F1 (x1) F2 (x2)
= 0. (2.25)

By (2.22)–(2.25) we get (2.9) holds. □

3. Conclusions

This paper studies a dependent two-dimensional compound risk model with heavy-tailed claims.
We mainly investigate the case that there exists a size-dependent structure between the claim sizes
and inter-arrival times. Using the probability limiting theory we give the precise large deviations for
aggregate amount of claims in the compound risk model.
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