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1. Introduction

Fractional differential equations frequently appear in the mathematical modelling of many physical
and engineering problems. One can find the potential application of fractional-order operators in
malaria and HIV/AIDS model [1], bioengineering [2], ecology [3], viscoelasticity [4], fractional
dynamical systems [5, 6] and so forth. Influenced by the practical applications of fractional calculus
tools, many researchers turned to the further development of this branch of mathematical analysis.
For the theoretical background of fractional derivatives and integrals, we refer the reader to the texts
[7], while a detailed account of fractional differential equations can be found in [8, 9, 10]. In a recent
monograph [11], the authors presented several results on initial and boundary value problems of
Hadamard-type fractional differential equations and inclusions.

Fractional-order differential equations equipped with a variety of boundary conditions have been
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studied in the last few decades. The literature on the topic includes the existence and uniqueness results
related to classical, periodic/anti-periodic, nonlocal, multi-point, and integral boundary conditions; for
instance, see [12, 13, 14, 15, 16, 17, 18, 19, 20, 21] and the references therein.

Recently, in [22], Ahmad et al. considered a boundary value problem involving sequential fractional
derivatives given by

€D + DT Yx(E) = £t X1, Dx(1), u>0, 0<k<1,1<qg<2 te(01), (1.1)

supplemented with nonlocal integro-multipoint boundary conditions:

01x(0) + pox(1) = Z a;x(o;) + Z rjf x(s)ds,

pax (0)+p4X(1)—Z(5x(m)+Z% f X ()ds.

&j
0<0'1<0'2<---<0'm—2<---<§1<771<§2<772<---<§p—2<77p—2<1,

(1.2)

where ‘DY, D" denote the Caputo fractional derivative of order ¢ and « respectively (for the definition
of Caputo fractional derivative, see Definition 2.2), f is a given continuous function, p,(p = 1,2,3,4)
are real constants and «;,6; (i = 1,2,...,m—2),r;,y; (j = 1,2,..., p — 2), are positive real constants.
Existence and uniqueness results for the problem (1.2) were proved by using the fixed point theorems
due to Banach and Krasnoselskii.

In [23], Ahmad et al. studied the existence and uniqueness of solutions for a new class of boundary
value problems for multi-term fractional differential equations supplemented with four-point boundary
conditions

X&) =veD'x(m), x(T)=ul’x@), 0<&n0<T, (1.3)

where € DX is Caputo fractional derivatives of order y € {@, 8,7}, L, ,u e R, 1 <a<2,1<B<a,0 <
y<a-B<1,6 >0, is the Riemann-Liouville fractional integral of order 6, and f : [0,T] xR — R
is a continuous function.

In [24], the authors studied the existence of solutions for a nonlinear Liouville-Caputo-type
fractional differential equation on an arbitrary domain:

‘Dix(t) = f(t,x(t)), 3<g<4,te(a,b), (1.4)

{ AEDx(t) + CDPx(t) = f(t,x(¢)), teJ:=(0,T),

supplemented with non-conjugate Riemann-Stieltjes integro-multipoint boundary conditions of the
form:

n-2 b
x(a) = Z a;x(n;) + f x(s)dA(s), x'(a) = 0, x(b) = 0, x'(b) =0, (1.5)
i=1 a
where ‘DI denotes the Caputo fractional derivative of order g, a <y < 7y < +++ < 1,0 < b,

f :la,b] x R — R is a given continuous function, A is a function of bounded variation, and a; €
R,i=1,2,---,n-2.

In the present paper, we investigate the existence of solutions for an abstract nonlinear multi-term
Caputo fractional differential equation with nonlinearity depending on the unknown function together
with its lower-order Caputo fractional derivatives given by

W Dix(t) + & ‘D x(t) = f(¢t, x(t), D x(1), CDg“x(t)), 3<g<4,0<pr<i,te(ab), (1.6)
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supplemented with Riemann-Stieltjes integro-multipoint boundary conditions
n-2 b
x(a) = Z a;x(17;) + f x(s)dA(s), x'(a) =0, x(b) =0, x'(b) =0, (1.7)
i=1 a

where “D? denotes the Caputo fractional differential operator of order 8 with § = ¢,r,p, a < n; <
M < -+ <o < b, f:la,b] xR> — Ris a given continuous function, A is a function of bounded
variation, and u (u # 0),é,; €R, i=1,2,--- ,n—2.

The rest of the paper is arranged as follows. In section 2, we prove a basic result related to the linear
variant of the problem (1.6)-(1.7), which plays a key role in the forthcoming analysis. We also recall
some basic concepts of fractional calculus. The existence result is presented in Section 3, while the
uniqueness result in Section 4. Examples illustrating the obtained results are also presented. The paper
concludes with Section 5 with some interesting observations.

2. Basic result

Before presenting an auxiliary lemma, we recall some basic definitions of fractional calculus [8].

Definition 2.1. The Riemann-Liouville fractional integral of order o with lower limit a for function ¢
is defined as

1 t
I7p(n) = o) fa (1 = )7 p(s)ds, o > a,
provided the integral exists.

Definition 2.2. For (n-1)-times absolutely continuous function ¢ : (a, ) — R, the Caputo derivative
of fractional order o is defined as

‘DIo(t) = ﬁ f (t=95)" "¢ (s)ds, n—1 <o <n, n=[c]+1,

where [0] denotes the integer part of the real number o
In passing we remark that we write D¢ and I as “D” and I” respectively when a = 0.

Lemma 2.1. [8] For n—1 < q < n, the general solution of the fractional differential equation Dix(t) =
0, t€(a,b),is
xt)=co+ci(t—a)+c(t—a) + ...+ coi(t —a)!,

wherec; € R, i=0,1,...,n— 1. Furthermore,
n—1
IT“Dix(t) = x(t) + Z ci(t —a)'.
i=0

Lemma 2.2. Let € C([a, b]). Then the unique solution of the linear multi-term fractional differential
equation
wDIx(t)+&Dix(t) =y(t), 3<qg<4,0<r<l1,te(ab), 2.1
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subject to the boundary conditions (1.7) is given by

- 1 1
x(r) = flg—’x(r) + ﬁlgw(r) + ;[qﬁl(t)(flg_rx(b) — Iy(b)) + ga(t)(E157 7 x(b) — 17 y(b))

n=2 n-2 b b
3O D @i x) ~ Y @) + € f 197 x(s)dA(s) - f 12w<s>dA<s>)], (22)
i=1 i=1 a a

where
p() = (t—-aPoi+t—a)Ps+A,i=1,2,3, (2.3)
4 = 1-(b-ayc,—(b-a)ys, 1=-(b-a)c;-((b-a)s; j=2,3, (2.4)
-3(b—a)o, 1 -3 -a)Poc, —3(b — a)o
= _—_— = = 2
61 2 ) 2 2(b _ (Z) ) 3 2 5 ( 5)
—2A 2 2
O-l = 1’ 0-2 = ﬁa 0-3 = (2'6)
Y1 Y1 Y1
b—a)PA -A
No= (b—aPAr - 3(b - )As + 2, y, = DTV A A 2.7)
2(b—a)
n—2 b n-2 b
Al = ) ai+ f dA(s) = 1, Ay= ) ail - a)’ + f (s — a)’dA(s), (2.8)
i=1 a i=1 a
n-2 b
Ay = a;(n; — a)® + f (s — a)*dA(s), (2.9)

i=1
and it is assumed that y, # 0.

Proof. Applying the integral operator I7 on both sides of fractional differential equation (2.1) and using
Lemma 2.1, we get

x(t) = %flg-’x(z) + ilgw(t) +co+ it —a) + cr(t — a)* + 3t — a)’, (2.10)
X(t) = _flg-’-lx(r) + }llg—lw(s) + ¢+ 2¢5(t — a) + 3c3(t — a)?, (2.11)

where ¢; € R, i =0,1,2,3 are unknown arbitrary constants. Using the boundary conditions (1.7) in
(2.10) and (2.11), we obtain ¢; = 0 and

co+(b—a)c, +(b-a)iec; =Jy, (2.12)
2(b - a)cy + 3(b — a)’csy = T, (2.13)
A]CO + Arer + A3C3 = J3, (214)

where A; (i = 1,2, 3) are given by (2.8), (2.9) and

Ji (€1977x(b) = 18w (D)), Jy = (€157 x(b) - 17" w(D)),

1 1
Iz It
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n-2 n—-2 b b
hos ;lz(fza’]“q—rx("l‘)‘Z"i’ZV’(ﬂiﬂf f L5 x(s)dA(s) = f Iy (s)dA(s)).  (2.15)
i=1 i=1 a a

Eliminating ¢, from (2.12) and (2.14), we get
(A= (b—a)A)Dcr+ (A3 — (b—a)A)cs = J3 — Ay, (2.16)
Solving (2.13) and (2.16), we find that
¢y = 01J1 + 0207 + 033, (2.17)

c3 =01J1 + 02Jh + 0373, (218)

where 6; and o; (i = 1,2,3) are defined by (2.5) and (2.6) respectively. Using (2.17) and (2.18) in
(2.12), we get
Co = AJ1 + dr + /13]3, (219)

where A; (i = 1,2, 3) are given by (2.4). Inserting the values of ¢y, ¢;, ¢, and c¢3 in (2.10) together with
notations (2.3), we obtain the solution (2.2). The converse of the lemma follows by direct computation.
O

Now we recall some preliminary concepts from functional analysis related to our work.

Definition 2.3. Let Q be a bounded set in metric space (Y,d). The Kuratowski measure of
noncompactness, a(Q), is defined as

inf{e : Q covered by a finitely many sets such that the diameter of each set < &}.

Definition 2.4. [25] Let J : D(J) C Y — Y be a bounded and continuous operator on Banach space
Y. Then J is called a condensing map if a(J(A)) < a(A) for all bounded sets A C D(J), where «
denotes the Kuratowski measure of noncompactness.

Lemma 2.3. [26] The map F + G is a k-set contraction with 0 < k < 1, and thus also condensing, if
the following conditions hold:

(i) F,G : © C Y — Y are operators on the Banach space Y
(ii) F is k-contractive, that is, for all x,y € © and a fixed k € [0, 1), ||[Fx — Fy|| < kl|lx — y|l;
(iii) G is compact.

Lemma 2.4. (Sadovskii Theorem [27]) Let A be a convex, bounded and closed subset of a Banach
space Y and J : A — A be a condensing map. Then J has a fixed point.

3. Existence of solutions

For0 < p < 1,let A = {x : x,“D’x(r),“D2*'x(t) € C([a, b],R)} denote the Banach space of all
continuous functions from [a, /] — R endowed with the norm defined by

llxII" = sup {x(0)] + I°DEx(0)] + [° D+ x(n)]}. (3.1
tela,b]
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In view of Lemma 2.2, we transform the problem (1.6)-(1.7) into an equivalent fixed point problem as

X=Fx (3.2)
where F : A —> A is defined by
(F (1)
= jﬂ (1) + ﬂqu( X(1) + ""Tm[f ab % (s)ds - f G- )q 1f(x(s))ds]

$2(1) P (b—s)? (b—s)
+T[§ oW f T Flx(s))ds|

n-2 _ r—1 n=2 1
+ 50 [gza,. "= 9" x(s)ds—Za/l f 0= F (s

« Tlg-7) Ig)
_ r—1 1
ve f (S )q e Ty HdudACs) - f i X ))q fx@)du)dA(9],  (3.3)

where ¢;(r), i = 1,2, 3 are defined by (2.3) and f(x(t)) = f(t, x(t), Dl x(1), °D*' x(1)).
From (3.3), we have
(“DEF x)(1)
= ZE ey + L1 T +
T p

b b— g-1 __ b b q-r-2 b— ) 2
- f ( r(f])) f(x(s))ds]+wift)[§ % s — €= T s]

x(s)ds

(. [ (b - sy
¢ Faon

a

« Tlg=—r=1) « T(g-
OIS AU S (7= 9" =
= [fl;]ai TR s Zaf g Gonds
b s o \g-r-1 b g-1
+¢ f ( (Sr(q—)_r)x(u)du)dA(s)— f f G ) Flxw)du)dA(s)], (3.4)
where
(t—a)" (t—a)*"

oit) = “Digi(t) = DYt = @0 + (1 = a6 + ) = 601 = + Wiz

(t—a)" 5 (t—a)*"

WD) = Dhalt) = Dt = @2 4 (1 = 02 + 0) = 602 - + 2o (35)
— 3-p _ 2-p
wi(t) = “Digs(t) = “DP((t — aY’ o3 + (t — a)*03 + A3) = 6073 (16(461)19) +2 3(15(361)19) ’
and
(ch+17_~x)(t)

—¢

b _ —r—1
S x(f) + Iq p- lf( (1) + l(t)[ &
7 p

&  Ta-n x(s)ds
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b— g-1 b — q—r—2 _ o\42
f ( S) Fx(s))ds| + f)[f i x(s)ds - f (r( Y - fa(s)ds|

F(q 1)
V3(t) f (771(— z‘f ) ‘x(s) ds_ a, f (mr—( ;‘1 : Foxs))ds
" f (S _ )q _ 1x(u)du)dA(s) - f f (s r(q))q_lﬁx(u))du)dA(s)], (3.6)
where
vi(t) = DPlgi(t) = ‘DN ((t — al’oy + (1 — a)’S) + 4)) = 601% + 51%,
() = DPlgy(t) = DN ((t—ay oy + (t— a)’6y + ) = 602% + 52%, (3.7)
vi(t) = “DPlgs(t) = DV ((t — a)Y’os + (1 — a)’3 + A3) = 60-3% + 53%.
For the sake of computational convenience, we introduce
N B e e S
+ f b F((j]:—i)i_rl)dA(s))],
b Bl e a0 S
ab ;‘Z q_f)lq) dA®))]. (3.8)
e R R e ey
3l b = dAw)|
Ao = w_l[rgz - ?H) to ?Zq_fiq) ran ;(Z))q_] ¥ ‘7’3(2 '“"'(rzlé_fl);
" ay dA(s)). (3.9)

« T@+1)

-t (b-ay  _ (b—a)! S i —a)””
m[ Tqg-p-n 'Tq-r+D > Tq-n Zla’lr(q—rn)
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b _
(s—a)™"
+fa —F(q_r+1)dA(s))],

. 1 (b-a)yr! b - a)! b —a)’! i i —a)?
A = _[( ) +\71( ) +172( ) +V3(Z|a"|(n )
lul* T'(g - p) I'lg+1) I'(q) — T(g+1)
b
(s —a)
A N
T )] (3.10)
where ¢; = sup |¢;(1)|, @; = sup |w;(?)|, Vi = sup |vi(®)|, i =1,2,3,
t€la,b] t€la,b] t€la,b]
A = max{A, Ay, Az}, (3.11)
A = max{/_\l, 1_\2, 1_\3} (312)

In the following result, we prove the existence of solutions for the problem (1.6)-(1.7) by applying
Lemma 2.4.

Theorem 3.1. Let f : [a, b] X R? — R be a continuous function. Assume that:

(Oy) there exists a function p € C([a, b],R,) such that
|f(t, x1, x2, x3)| < p(¢), fort € la,b], and each x; € R, i =1,2,3;

(Oy) k < 1, where k = 3A and A is defined by (3.11).
Then problem (1.6)-(1.7) has at least one solution on [a, b].

Proof. Consider a closed bounded and convex ball B, = {x € A : ||x||" < 7} C A, where 7 is a fixed
constant. Let us define 71, %, : B, — B; by

= Edi) (P (b— syt Edt) (T (b—s5)T"?
(F1x)@) = p I x(t) + p  Ta-n x(s)ds + p TG-r- 1)x(s)a’s
EOS (- )T P (s -y
+ /j [; a; ; WX(S)CZS + L (L WX(M)CZM)CZA(S)], te [Cl, b]
1 - b— s)i! b—
Fow = Lifaa - 2D [TV R s 2O [T L= - Fs)ds
H uoJo g uoJa Tlg—

o0 (" =) ' S(S—u)q—lA
_ ju [;ai ) T f(X(S))dS+f (L Tq)f(x(u))du)dA(S)], t € [a,b].

Observe that,
(Fx)(@) = (F10)(1) + (F20)(0), 1 € [a,b].

Now we show that 7 and ¥, satisfy all the conditions of Lemma 2.4. The proof will be given in
several steps.

Step 1. ¥ B, C B-.
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3llpllA _
Let us choose 7 > el , where « is defined in (O,) and A is given by (3.12). For x € B,, we have
- K
éf o-ay" - b-a  _ (b-—a)?"! <, i—a)
Fxol < Il 5[ 3 -3 W=
| I'(g—r+1) I'g-—r+1) I'(g—r) — T(g-r+1)

b-a¥ _ (b-ay _ (b-a)'
+ 91 + @
I'(g+1) I'(g+1) I'(q)

 (s—a)” lol

+f F(q—r+1)dA(s))]+|,u_|
(n: - ’ (s a)t

+63 Z| it +1> a F(qﬂ)dms))]

Ay + llpllAy < 7(k/3) + lIpllA,

IA

Similarly, it can be shown that

CDEFx()] < TAs + lIpllAs < 7(k/3) + l|pllA,
DI F Xl < TAs + llollAs < 7(k/3) + lIplIA.

Hence

17 xII” sup {17 x(0)] + [*DLF x(0)] + DY Fx(n))

x€la,b]
7% + 3|pllA < 7.

IA

Thus we get ¥ B, C B..

Step 2. ¥, is a k-contractive.
For x,y € B, and using the condition O,, we have

|(Fi00 - F)

< l"f'lzq a0 - (o) + 'f“‘fll( M ar1a) - yo) + 'f”szl( Nigr-tixe) — yio)
BSOS i) - o + f " a(s) - y(s)ldA<s>)
5
< Blre=rin Pt P M e
o ’ e LAO)| [EE

= Aqllx =yl < &/3)llx = yll.
Similarly, we can obtain
I“DEF1x(2) = DEF1y(0)] < Asllx =yl < («/3)llx =yl

$DE* F1x(1) = DI Fiy(n)] < Asllx =yl < (k/3)]1x = I
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Hence

IF1x = Fuyll” < «llx = yll,
which proves that ¥ is k-contractive.

Step 3. 7 is compact.
Continuity of f implies that the operator ¥ is continuous. Also, ¥ is uniformly bounded on B; as

[F2x(@0)] < llollAy, I°DEF2x(@)] < llpllAs,  and D55 x(0)] < llollAs,

which imply that ||Fx||* < 3lIpllA.
Lett;, t, € [a,b] with f; < t, and x € B,. We have

F2x(t2) — Fox(ty)]

1 1 tH
< WL, 9" - = s + f (2= 9" llo(s)lds|
I¢1(tz> - ¢1(t1)| Y (b~ s)r”! 62(12) = g1 [ (b = 5)0
' f e R A RV
|¢3(l2) ¢3(t1)| T (g — 5)17!
e Z il |+ ol
(s — u)”!
f f @ S |o(u)ldu)dA(s) |
S erl(b;;”_kl)[l(fz —a) —(ty —a)| + 2t - tl)q]
Molltb = ayga(a2) = 110 NIollb = a)*'ga(s2) = ol
ull'(g + 1) ull(q)
lolllds(12) — b3t b
T g+ [Z illn = a7+ f (s~ @'dA(s)] (3.13)
I“DEFax(t:) = DEFox(ty)|
loll ) _ )
mh(h —a) P — (1 —a)TP|+2(t, — 1) p]
ol = @)l () = w1t 1ol = @)*lwa(ts) = wa()
(g + 1) il (g)
lolllws(t2) — w3l 3 b
+ IO [; |lail(m; — a)? + L (s— a)qu(s)], (3.14)

and

*DI Fax(1z) = DI Fax(ny)|

%['(h - a)q—p—l - (t — a)q_l’—1| + 2ty — tl)q—p—l]
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ol = a)fva(t2) = vl [lell(b — @) va(tz) = va(1)|

il + 1) 1(q)
lolllva(ta) — va(t)l 53 b
" (g + 1) [; il (7 = )" + f (s—a)qu(s)]. (3.15)

The right hand sides of the inequalities (3.13)-(3.15) tend to zero as t, — t{ — 0 independent of x.
Thus, ¥ is equicontinuous on B;. Therefore, by Arzeld-Ascoli theorem, 7 is a relatively compact on
B..

Step 4. ¥ is condensing. Since ¥ is continuous, k-contractive and ¥, is compact, therefore, by
Lemma 2.3, the operator ¥ : B, — B;, with ¥ = #; + ¥, is a condensing map on B;.

Hence, by Lemma 2.4, the operator ¥ has a fixed point. Therefore, the problem (1.6)-(1.7) has at
least one solution on [a, b]. O

Example 3.1. Consider the fractional boundary value problem.
45D x(1) + 9 D3 x(t) = £(t, x(), Dix(£), Dix(1)), t € (0, 1),

4 ! (3.16)
x(0) = Z a;x(n;) + f x($)dA(s), x'(0) =0, x(1) =0, x'(1) =0, '
=1 0

wl/hereqzz%, rzé,pzilazo, b=1,u=45,£6=9, 6¥1=%0, azzg—;, a’3:ﬁ, au,z%, m =
=17 M =17 M4 = ﬁ,and
o1 .5 1 |x()] . 2 ,el 5
[, x(0), D3x(t),” D*x(t)) = + sin“(“D*x(t)) + cos(“D* x(1))).
Ve + 80(1 + |x(0)] )

Let us take A(s) = ’—22 Using the given data, we have that A; ~ —-0.493339, A, ~ 0.252328, A; ~
0.200616, y; ~ —0.849088, y, ~ —0.372834, oy ~ —1.16204, o, ~ 0.878198, 03 ~ —2.35546, 6,
1.74306, 6, ~ —0.817295, &3 ~ 3.53319, A, ~ 0.41898, 1, ~ —0.060903, A3 ~ —1.17773, ¢ =~
1.00000, ¢, =~ 0.113338, ¢3 ~ 1.17773, @; =~ 0.591136, @, =~ 0.175009, @; =~ 1.19823, v,
0.541872, v, =~ 1.49758, 73 ~ 1.09837, A; =~ 0.031094, A, ~ 0.034096, A; =~ 0.134535, A, =~
0.000700, A, ~ 0.002538, A; =~ 0.012289.

Also, the conditions O; and O, are satisfied as we have,

1R

12

|f(t, x(1),C D¥ x(2),C Dix(t))] < \/ﬁ = p(1),

and « ~ 0.403605 < 1, where « is defined in (O,). Hence, the conditions of Theorem (3.1) hold.
Therefore, from conclusion of Theorem 3.1 the problem (3.16) has at least one solution on [0, 1].

4. Uniqueness of solutions

Next, we prove the uniqueness of solutions for the problem (1.6)-(1.7) via Banach fixed point
theorem.
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Theorem 4.1. Assume that f : [a, b] X R® — R is a continuous function such that,

£t x0, %2, %3) = (831,32, 39| < {161 = 1l + 12 = ol + x5 = ysl),
L>0,Vtelab], x,y;eR, i=1,2,3.

Then the problem (1.6)-(1.7) has a unique solution on |a, b] if
k+3LA < 1,

where k is defined in (O,) and A is given by (3.12).

Proof. Setting sup |f(,0,0,0)] = N < oo, and selecting
t€la,b]

3NA
T 1-x-3LA’

£

(4.1)

(4.2)

we define B, = {x € A : ||x]|* < r*}, and show that ¥ B, C B,., where the operator ¥ is defined by

(3.3). For x € B,+, we use (4.1) to find that

|2, x(2),° DEx(2),C D x(0))]

IA

IA

L(x(O] + [“Dhx(0)] + 1D x(0) + N
< LAl + N < Lr + N,

where we used the norm given by (3.1).
Then, we have

|f (2, x(2),C DEx(0),C D' x(1) — f(£,0,0,0) + £(2,0,0,0)]

|f (2, x(2),° DEx(1),C D' (1) = f(£,0,0,0)] + 1£(2,0,0,0)]

JE b—a)™ _ (b—a)?™" (b— )q -1 < —a)™"
7ol < rw_|[r(q—r+1)+ Tq-r+1) P Z' "r( 10
b —r * 1

(s —a) (Lrr+ N) (b—a)‘f -b-a¥ - (b-a)

+fa r(q—r+1)dA(s))]+ W |tq+D T+ T T

n-2 b
- (i —a)? (s —a)
; dA
+¢3(; el M vry (s))]
< AL+ (L + NN, < (k/3)r* + (L + N)A.
Similarly, we have

Ay + (L + N)A, < (k/3)r" + (Lr* + N)A.
FA; + (L + N)As < (k/3)r" + (Lr* + N)A.

“DgF x(0)]
DI F (o)

IAN A

Hence we have
IF x| < «r* +3(Lr* + N)A < .
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Thus, ¥ x € B, for any x € B,-. Therefore, ¥ B,- C B,-. Now, we show that ¥ is a contraction. For
x,y € Aandt € [a, b], we obtain

|00 - F

_ g1
< S0 =501+ L HIF0) = Fool + ool 101 f o) = (o
b5yt = ' (b - )W2
+ f TIf(X(S))—f(Y(S))IdS)+|¢z(t)I(I§I ﬁu(s) Y(s)lds
i _ r—1
3l (F( O R - f(y<s>)|ds)+|¢3(r>|(|§|2| y f ' %u(s) Y(s)lds
n- 7i _ g1l g-r—1
+Z|a,~| T o) = Foto)ids + i f ) = Yl)dAG)
-1 __
f f s - f(y(u))ldu)dA(s)))
) oo a6 oar m S g ap
= Ltt_l[F(q—r+1)+ Ta—r+D T PT Z' "r( F )

b —-r 1
(s —a)? 1(b-a) -b-a¥ - (b-a)7
+f Tg=rs AWl =l + w_l[nq 0T T T

-ay (" (s—a
+63 Z| ey ) T ndA®) -

= (Ar+ LADIx =yl < (k/3 + LA)|Ix = yll,

In a similar mannar, we have

|“DEF x(t) = DEF (1))
°DP F x(t) = DPT Fy(@)|

(Az + LA)IIx = yll < (/3 + LA)lx = I,

<
< (As + LA3)llx =yl < (/3 + LA)I|x = yll.

Consequently, we obtain ||[(Fx) — (Fy)II* < (k + 3LA)||lx — y||, which in view of (4.2) implies that
the operator ¥ is a contraction. Therefore, ¥ has a unique fixed point, which corresponds to a unique
solution of the problem (1.6)-(1.7) on [a, b]. This completes the proof. O

Example 4.1. Consider the following fractional differential equation

"D x ()| ) 4.3)

1
45°D% x(r) + 9 ‘Dix(t) = (tan™" x(¢) + cos(Dix(1) + ———=——),
1 +|°Dix()|

6(> +2)

t € [0, 1], supplemented with the boundary conditions of Example (3.1).
Obviously

D3 x(7)| )

Ut x5, DHx(0), Dix(p) = — (tan™" x(1) + cos(“Dix(1)) + —————).
1+ [*Dix(r)|

6(12 +2)
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Using the given data, we find that A ~ 0.134535 and A =~ 0.012289, where A and A are respectively
given by (3.11) and (3.12). By the following inequality

|f (5, x(2), “DF x(t), “Di x(1)) — f(£, y(1), “Dy(t), “Diy(1))|
1 i el PR 3 1
< (k=1 + ¥ =Dyl + ['Dix = “Diyl) < llx =i,

we have L = iz Clearly (x + 3LA) =~ 0.406677 < 1. Therefore, the hypothesis of Theorem (4.1) is

satisfied and consequently the problem (4.3) has a unique solution on [0, 1].

Remark 4.1. Letting & = 0 and u = 1 in the results of this paper, we obtain the ones for the fractional
differential equation of the form:

‘Dix(f) = f(t, x(t), “DPx(t),"DP*'x(1)), 3< g <4, 0<p <1, telab),

supplemented with Riemann-Stieltjes integro-multipoint boundary conditions (1.7). In this case fixed
point operator takes the form:

~ (b—s)y" (b - )‘f 2
(FO@) = IFx0) - i) f Ty Kds = (0 f T/ s
n-2 7 _ o)1 q-1
—@(r)[Z}]ai a (”’r(i FOx(s))ds + f f b F()) Fx()du)dA(s)).

5. Conclusions

We have proved the existence and uniqueness results for a multi-term Caputo fractional differential
equation with nonlinearity depending upon the known function x together with its lower-order
derivatives “DPx, “DI*'x,0 < p < 1, complemented with Riemann-Stieltjes integro multipoint
boundary conditions.

In Theorem 3.1, the existence of solutions for the given problem is established by means of
Sadovskii fixed point theorem. The proof of this result is based on the idea of splitting the operator
into the sum of two operators 77 and ¥, such that 7 is k-contractive and ¥, is compact. One can
notice that the entire operator ¥ is not required to be contractive. On the other hand, Theorem 4.1
deals with the existence of a unique solution of the given problem via Banach contraction mapping
principle, in which the entire operator ¥ is shown to be contractive. Thus, the linkage between
contractive conditions imposed in Theorems 3.1 and 4.1 provides a precise estimate to pass onto a
unique solution from the existence of a solution for the problem at hand.

As a special case, by letting ¢ = 0 and u = 1 in the results of this paper, we obtain the ones for the
fractional differential equation of the form:

“‘Dix(t) = f(t, x(t),CDgx(t),cD£+1x(t)), 3<g<4,0<p<1,te(a,b),

supplemented with Riemann-Stieltjes integro-multipoint boundary conditions (1.7). In this case, the
fixed point operator (3.3) takes the following form:

= b " (b~ 2l §
F0) = L) =) | = FxtsNds = g0 | = Flxtsds
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~45(0) i o [ OO R s + f b ( f S Mf(x(u))du)dA(s)]
~ '), T o “Ja TQ '
In case we take @; = O forall i = 1,...,n — 2, then our results correspond to the integral boundary
conditions: ,
x(a) = f x(8)dA(s), x'(a) =0, x(b) =0, x'(b) =0.
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