Loading [MathJax]/jax/element/mml/optable/Arrows.js
Research article Special Issues

Stieltjes integral boundary value problem involving a nonlinear multi-term Caputo-type sequential fractional integro-differential equation

  • In this article, we analyze the existence and uniqueness of mild solution to the Stieltjes integral boundary value problem involving a nonlinear multi-term, Caputo-type sequential fractional integro-differential equation. Krasnoselskii's fixed-point theorem and the Banach contraction principle are utilized to obtain the existence and uniqueness of the mild solution of the aforementioned problem. Furthermore, the Hyers-Ulam stability is obtained with the help of established methods. Our proposed model contains both the integer order and fractional order derivatives. As a result, the exponential function appears in the solution of the model, which is a fundamental and naturally important function for integer order differential equations and its many properties. Finally, two examples are provided to illustrate the key findings.

    Citation: Jiqiang Zhang, Siraj Ul Haq, Akbar Zada, Ioan-Lucian Popa. Stieltjes integral boundary value problem involving a nonlinear multi-term Caputo-type sequential fractional integro-differential equation[J]. AIMS Mathematics, 2023, 8(12): 28413-28434. doi: 10.3934/math.20231454

    Related Papers:

    [1] Gunaseelan Mani, Rajagopalan Ramaswamy, Arul Joseph Gnanaprakasam, Vuk Stojiljković, Zaid. M. Fadail, Stojan Radenović . Application of fixed point results in the setting of F-contraction and simulation function in the setting of bipolar metric space. AIMS Mathematics, 2023, 8(5): 10395-10396. doi: 10.3934/math.2023526
    [2] Amer Hassan Albargi . Some new results in F-metric spaces with applications. AIMS Mathematics, 2023, 8(5): 10420-10434. doi: 10.3934/math.2023528
    [3] Amer Hassan Albargi, Jamshaid Ahmad . Fixed point results of fuzzy mappings with applications. AIMS Mathematics, 2023, 8(5): 11572-11588. doi: 10.3934/math.2023586
    [4] Erdal Karapınar, Marija Cvetković . An inevitable note on bipolar metric spaces. AIMS Mathematics, 2024, 9(2): 3320-3331. doi: 10.3934/math.2024162
    [5] Hanadi Zahed, Zhenhua Ma, Jamshaid Ahmad . On fixed point results in F-metric spaces with applications. AIMS Mathematics, 2023, 8(7): 16887-16905. doi: 10.3934/math.2023863
    [6] Monairah Alansari, Mohammed Shehu Shagari, Akbar Azam, Nawab Hussain . Admissible multivalued hybrid Z-contractions with applications. AIMS Mathematics, 2021, 6(1): 420-441. doi: 10.3934/math.2021026
    [7] Zhenhua Ma, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei . Fixed point results for generalized contractions in controlled metric spaces with applications. AIMS Mathematics, 2023, 8(1): 529-549. doi: 10.3934/math.2023025
    [8] Joginder Paul, Mohammad Sajid, Naveen Chandra, Umesh Chandra Gairola . Some common fixed point theorems in bipolar metric spaces and applications. AIMS Mathematics, 2023, 8(8): 19004-19017. doi: 10.3934/math.2023969
    [9] Abdellah Taqbibt, M'hamed Elomari, Milica Savatović, Said Melliani, Stojan Radenović . Fixed point results for a new α-θ-Geraghty type contraction mapping in metric-like space via CG-simulation functions. AIMS Mathematics, 2023, 8(12): 30313-30334. doi: 10.3934/math.20231548
    [10] Hanadi Zahed, Ahmed Al-Rawashdeh, Jamshaid Ahmad . Common fixed point results in F-metric spaces with application to nonlinear neutral differential equation. AIMS Mathematics, 2023, 8(2): 4786-4805. doi: 10.3934/math.2023237
  • In this article, we analyze the existence and uniqueness of mild solution to the Stieltjes integral boundary value problem involving a nonlinear multi-term, Caputo-type sequential fractional integro-differential equation. Krasnoselskii's fixed-point theorem and the Banach contraction principle are utilized to obtain the existence and uniqueness of the mild solution of the aforementioned problem. Furthermore, the Hyers-Ulam stability is obtained with the help of established methods. Our proposed model contains both the integer order and fractional order derivatives. As a result, the exponential function appears in the solution of the model, which is a fundamental and naturally important function for integer order differential equations and its many properties. Finally, two examples are provided to illustrate the key findings.



    The famous Banach Contraction Principle [1] of 1922 laid the foundation for the Metric Fixed Point theory. Over the years, plenty of generalizations have been made by various researchers to the Banach Contraction Principle using different types of contractive conditions in various topological spaces which are both Hausdorff and non-Hausdorff in nature and presented analytical applications of the derived results. In the sequel, in 2012, [2] introduced F-contraction and established fixed point results in the setting of complete metric spaces. In 2004, P. Dhivya et al. [3] analyzed the coupled fixed point and best proximity points involving simulation functions. Later, in 2015, Khojasteh, Shukla and Radenović [5], introduced the concept of simulation function and proved fixed point theorems using these functions. Subsequently, various fixed point results have been proved using various contractive conditions and simulation functions by numerous researchers in metric and metric-like spaces [4,5,6,7,8,9,10,11,12,13,14].

    As the distance function for a pair of points is always nonnegative real, metric fixed point theory has varied applications. The generalization of metric and metric-like spaces and the study of their properties have always been a matter of interest to researchers. As a result, Gahler [15] adopted metrics that are non-negative reals (i.e., [0,+)) and presented the idea of 2-metric spaces. In metric spaces, different types of distance functions are considered. Still, we can see the distance arising between the elements of two different sets where in distance between the same type of points is either unknown or undefined due to the non-availability of information. The distance between points and lines of Euclidean space, and the distance between sets and points of a metric space are these types of distances to name a few.

    Formalizing these types of distances, in the year 2016, Mutlu et al. [16] introduced the concept of Bi-polar metric space and established fixed point theorems in these spaces but without analyzing the topological structure in detail. In the recent past, many researchers have established various fixed point results using various types of contractions in the setting of Bi-polar metric spaces. One can refer to [17,18,19,20,21,23,24,25,26] and references there on for better understanding. The existence of fixed points of contraction mappings in Bi-polar metric spaces is currently an important topic in fixed point theory, which can be considered as a generalization of the Banach contraction principle.

    Moreover, varied applications of metric fixed point theory have been reported in different areas such as variational inequalities, differential, and integral equations, fractal calculus and dynamical systems and space science, etc.

    Inspired by the scope and its varied applications, the study is performed to examine the following:

    ● To analyze the existence of unique fixed point in the setting of Bi-polar metric spaces using F-contraction.

    ● To analyze the existence of unique fixed point in the setting of Bi-polar metric spaces using Simulation Functions.

    ● To apply the derived results to find solutions to integral equations.

    Accordingly, the rest of the paper is organized as follows. In Section 2, we review some definitions and concepts present in literature and some monograph. In Section 3, we establish fixed point results using F-contraction and simulation functions in the setting of Bi-polar metric space and supplement the derived results with examples. We have also applied the derived results to find the analytical solution of integral equations.

    Before proceeding further, we present a notation table listing the symbols and their meanings that are frequently used in this manuscript (see Table 1):

    Table 1.  List of symbols used in this article.
    Symbols Description
    Υ,Ω Sets
    d Metric distance function
    M Mapping
    F Set of all functions F:(0,+)R
    R Real Number
    β Element of Ω
    Element of Υ
    σ Element of N
    ϱ Bi-polar distance function
    ξ Simulation Function
    Θ Set of all simulation functions
    ξ:[0,+)×[0,+)R

     | Show Table
    DownLoad: CSV

    The following are required in the sequel. Let us begin with the concept of a F-contraction introduced by Wardowski [2].

    Definition 2.1. [2] Let (Υ,d) be a metric space. A mapping M:ΥΥ is called an F-contraction if there exist τ>0 and FF such that

    τ+F(d(M,M1))F(d(,1))

    holds for any ,1Υ with d(M,M1)>0, where F is the set of all functions F:(0,+)R satisfying the following conditions:

    (A1) F is strictly increasing;

    (A2) For each sequence {n} of positive numbers, we have

    limn+n=0ifflimn+F(n)=;

    (A3) There exists k(0,1) such that lim0+kF()=0.

    Definition 2.2. [16] Let Υ and Ω be non-void sets and ϱ:Υ×Ω[0,+) be a function, such that

    (a) ϱ(,β)=0 if and only if =β, for all (,β)Υ×Ω;

    (b) ϱ(,β)=ϱ(β,), for all (,β)ΥΩ;

    (c) ϱ(,β)ϱ(,γ)+ϱ(1,γ)+ϱ(1,β), for all ,1Υ and γ,βΩ.

    The pair (Υ,Ω,ϱ) is called a Bi-polar metric space.

    Example 2.3. Let Φ=[0,1], Ψ=[1,1] and φ:Φ×Ψ[0,+) be defined by

    φ(η,σ)=|ησ|

    for all ηΦ and σΨ. Then (Υ,Ω,ϱ) is a Bi-polar metric space.

    Definition 2.4. [16] Let M:Υ1Ω1Υ2Ω2 be a mapping, where (Υ1,Ω1) and (Υ2,Ω2) pairs of sets.

    (H1) If M(Υ1)Υ2 and M(Ω1)Ω2, then M is called a covariant map, or a map from (Υ1,Ω1,ϱ1) to (Υ2,Ω2,ϱ2) and this is written as \mathcal{M} :(\varUpsilon_{1}, \varOmega_{1}, \varrho_{1})\rightrightarrows (\varUpsilon_{2}, \varOmega_{2}, \varrho_{2}) .

    (H2) If \mathcal{M}(\varUpsilon_{1})\subseteq \varOmega_{2} and \mathcal{M}(\varOmega_{1})\subseteq \varUpsilon_{2} , then \mathcal{M} is called a contravariant map from (\varUpsilon_{1}, \varOmega_{1}, \varrho_{1})\, \, to\, \, (\varUpsilon_{2}, \varOmega_{2}, \varrho_{2}) and this is denoted as \mathcal{M} :(\varUpsilon_{1}, \varOmega_{1}, \varrho_{1}) \leftrightarrows(\varUpsilon_{2}, \varOmega_{2}, \varrho_{2}) .

    Definition 2.5. [16] Let (\varUpsilon, \varOmega, \varrho) be a Bi-polar metric space.

    (B1) A point {\pmb{\aleph}}\in\varUpsilon\cup\varOmega is said to be a left point if {\pmb{\aleph}}\in \varUpsilon , a right point if {\pmb{\aleph}}\in \varOmega and a central point if both hold.

    (B2) A sequence \{{\pmb{\aleph}}_{\sigma}\}\subset\varUpsilon is called a left sequence and a sequence \{\beta_{\sigma}\}\subset\varOmega is called a right sequence.

    (B3) A sequence \{\eta_{\sigma}\}\subset\varUpsilon \cup\varOmega is said to converge to a point \eta if and only if \{\eta_{\sigma}\} is a left sequence, \eta is a right point and \lim\limits_{\sigma\to +\infty}\varrho(\eta_{\sigma}, \eta) = 0 or \{\eta_{\sigma}\} is a right sequence, \eta is a left point and \lim\limits_{\sigma\to +\infty}\varrho(\eta, \eta_{\sigma}) = 0 .

    (B4) A sequence \{({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})\}\subset\varUpsilon \times \varOmega is called a bisequence. If the sequences \{{\pmb{\aleph}}_{\sigma}\} and \{\beta_{\sigma}\} both converge then the bisequence \{({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})\} is called convergent in \varUpsilon \times \varOmega .

    (B5) If \{{\pmb{\aleph}}_{\sigma}\} and \{\beta_{\sigma}\} both converge to a point \beta\in\varUpsilon \cap\varOmega then the bisequence \{({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})\} is called biconvergent. A sequence \{({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})\} is a Cauchy bisequence if \lim\limits_{\sigma, \zeta\to +\infty}\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\zeta}) = 0 .

    (B6) A Bi-polar metric space is said to be complete if every Cauchy bisequence is convergent.

    Definition 2.6. [5] Let \xi: [0, +\infty) \times [0, +\infty) \to \mathbb{R} be a mapping, then \xi is called a simulation function if

    (\xi 1) \xi(0, 0) = 0 ;

    (\xi 2) \xi(\delta, \eta) < \eta-\delta for all \delta, \eta > 0 ;

    (\xi 3) if \{\delta_{\sigma}\}, \{\eta_{\sigma}\} are sequences in (0, +\infty) such that \lim \limits_{\sigma\to +\infty}\delta_{\sigma} = \lim \limits_{\sigma\to +\infty}\eta_{\sigma} > 0 , then

    \begin{align*} \lim \limits_{\sigma\to +\infty}\sup\xi(\delta_{\sigma}, \eta_{\sigma}) < 0. \end{align*}

    We denote the set of all simulation functions by \Theta .

    Example 2.7. [5] Let \xi_{\mathfrak{i}}: [0, +\infty) \times [0, +\infty) \to \mathbb{R} , \mathfrak{i} = 1, 2, 3 be defined by

    (G1) \xi_{1}(\delta, \eta) = \psi(\eta)-\phi(\delta) for all \delta, \eta\in [0, +\infty) , where \phi, \psi: [0, +\infty)\to [0, +\infty) are two continuous functions such that \psi(\delta) = \phi(\delta) = 0 if and only if \delta = 0 and \psi(\delta) < \delta\leq \phi(\delta) for all \delta > 0 .

    (G2) \xi_{2}(\delta, \eta) = \eta-\frac{\mathfrak{f}(\delta, \eta)}{\mathfrak{g}(\delta, \eta)}\delta for all \delta, \eta\in [0, +\infty) where \mathfrak{f}, \mathfrak{g}: [0, +\infty)\to [0, +\infty) are two continuous functions with respect to each variable such that \mathfrak{f}(\delta, \eta) > \mathfrak{g}(\delta, \eta) for all \delta, \eta > 0 .

    (G3) \xi_{3}(\delta, \eta) = \eta-\phi(\eta)-\delta for all \delta, \eta \in [0, +\infty) , where \phi: [0, +\infty)\to [0, +\infty) is a continuous function such that \phi(\delta) = 0 if and only if \delta = 0 .

    Then \xi_{\mathfrak{i}} for \mathfrak{i} = 1, 2, 3 are simulation functions.

    Definition 2.8. Let (\varUpsilon, \varOmega, \varrho) be a Bi-polar metric space, \mathcal{M}: (\varUpsilon, \varOmega, \varrho) \rightrightarrows (\varUpsilon, \varOmega, \varrho) a mapping and \xi \in \Theta . Then \mathcal{M} is called a \Theta -contraction with respect to \xi if

    \begin{align*} \xi(\varrho(\mathcal{ M}{\pmb{\aleph}}, \mathcal{ M}\beta), \varrho({\pmb{\aleph}}, \beta))\geq 0\; \; {\rm{for\ all}}\; {\pmb{\aleph}}\in \varUpsilon, \beta\in \varOmega. \end{align*}

    Now we present our main results.

    In 2016, Mutlu et al. [16], introduced the cocept of a contraction and proved the following theorem.

    Definition 3.1. Let (\varUpsilon_{1}, \varOmega_{1}, \varrho_{1})\, \, to\, \, (\varUpsilon_{2}, \varOmega_{2}, \varrho_{2}) be bipolar metric spaces and \lambda > 0 . A covariant map \mathcal{M} : (\varUpsilon_{1}, \varOmega_{1}, \varrho_{1})\rightrightarrows (\varUpsilon_{2}, \varOmega_{2}, \varrho_{2}) such that \varrho_{2}(\mathcal{M}({\pmb{\aleph}}), \mathcal{M}(\beta)) \leq\lambda\varrho_{1}({\pmb{\aleph}}, \beta) for all {\pmb{\aleph}} \in \varUpsilon_{1}, \beta \in \varOmega_{1} , or a contravariant map \mathcal{M}: (\varUpsilon_{1}, \varOmega_{1}, \varrho_{1}) \leftrightarrows (\varUpsilon_{2}, \varOmega_{2}, \varrho_{2}) such that \varrho_{2}(\mathcal{M}({\pmb{\aleph}}), \mathcal{M}(\beta)) \leq\lambda\varrho_{1}({\pmb{\aleph}}, \beta) for all {\pmb{\aleph}} \in \varUpsilon_{1}, \beta \in \varOmega_{1} is called Lipschitz continuous. If \lambda = 1 , then this covariant or contravariant map is said to be non-expansive, and if \lambda\in (0, 1) , it is called a contraction.

    Theorem 3.2. Let (\varUpsilon, \varOmega, \varrho) be a complete Bi-polar metric space and given a contraction \mathcal{M} : (\varUpsilon, \varOmega, \varrho) \rightrightarrows (\varUpsilon, \varOmega, \varrho) . Then the function \mathcal{M} : \varUpsilon\cup\varOmega \rightarrow \varUpsilon\cup\varOmega has a unique fixed point.

    Motivated by the above theorem, we prove fixed point theorems on Bi-polar metric space using \mathcal{F} -contraction and simulation functions.

    Now we present our first fixed point theorem on Bi-polar metric space using \mathcal{F} -contraction function.

    Theorem 3.3. Let (\varUpsilon, \varOmega, \varrho) be a complete Bi-polar metric space. Suppose \mathcal{M} : (\varUpsilon, \varOmega, \varrho) \rightrightarrows (\varUpsilon, \varOmega, \varrho) is a covariant mapping and there exists \tau > 0 such that

    \begin{align*} \tau+\mathcal{F}(\varrho(\mathcal{M}({\pmb{\aleph}}), \mathcal{M}(\beta))) \leq \mathcal{F}( \varrho({\pmb{\aleph}}, \beta)) \, \, {{{for\ all}}} \, \, {\pmb{\aleph}} \in \varUpsilon, \beta \in \varOmega, \end{align*}

    holds for any {\pmb{\aleph}}\in \varUpsilon , \beta\in \Omega with \varrho(\mathcal{M}({\pmb{\aleph}}), \mathcal{M}(\beta)) > 0 . Then the function \mathcal{M} : \varUpsilon \cup \varOmega \rightarrow \varUpsilon \cup \varOmega has a unique fixed point.

    Proof. Let {\pmb{\aleph}}_{0} \in \varUpsilon and \beta_{0} \in \varOmega . For each \sigma\in\mathbb{N} , define \mathcal{M}({\pmb{\aleph}}_{\sigma}) = {\pmb{\aleph}}_{\sigma+1} and \mathcal{M}(\beta_{\sigma}) = \beta_{\sigma+1} . Then (\{{\pmb{\aleph}}_{\sigma}\} , \{\beta_{\sigma}\}) is a bisequence on ( \varUpsilon, \varOmega, \varrho ) and {\pmb{\aleph}}_{\sigma}\neq\beta_{\sigma} . By hypothesis of the theorem, we have

    \begin{align} \mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})) & = \mathcal{F}(\varrho(\mathcal{M}({\pmb{\aleph}}_{\sigma-1}), \mathcal{M}(\beta_{\sigma-1}))) \\ &\leq \mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma-1}, \beta_{\sigma-1}))-\tau \\ &\vdots\\ &\leq \mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{0}))-\sigma\tau. \end{align} (3.1)

    As \sigma\to +\infty , we have

    \begin{align*} \lim\limits_{\sigma\to +\infty} \mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})) = -\infty. \end{align*}

    Using (A2), we derive that

    \begin{align} \lim\limits_{\sigma\to +\infty} \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma}) = 0. \end{align} (3.2)

    Using (A3), there exists \mathfrak{k}\in (0, 1) such that

    \begin{align} \lim\limits_{\sigma \rightarrow +\infty}\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})) = 0. \end{align} (3.3)

    Using (3.1), for all \sigma\in \mathbb{N}

    \begin{align} \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma}))&-\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{0}))\\ &\leq \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}(\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{0}))-\sigma\tau)-\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{0}))\\ & = -\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}\sigma\tau\\ &\leq 0. \label{bft4} \end{align} (3.4)

    As \sigma\to +\infty in (3.4), and using (3.2) and (3.3), we derive that

    \begin{align} \lim\limits_{\sigma\to +\infty}\sigma\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}} = 0. \end{align} (3.5)

    Now, let us observe that from (3.5) there exists \sigma_{1} such that \sigma\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}\leq 1 for all \sigma\geq \sigma_{1} . Consequently we have

    \begin{align*} \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})\leq \frac{1}{\sigma^{\frac{1}{\mathfrak{k}}}}, \, \, \, {\rm{for\ all}}\, \, \sigma\geq \sigma_{1}. \end{align*}

    Also,

    \begin{align} \mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1})) & = \mathcal{F}(\varrho(\mathcal{M}({\pmb{\aleph}}_{\sigma-1}), \mathcal{M}(\beta_{\sigma})))\\ &\leq \mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma-1}, \beta_{\sigma}))-\tau \\ &\vdots\\ &\leq \mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{1}))-\sigma\tau. \end{align} (3.6)

    As \sigma\to +\infty , we have

    \begin{align*} \lim\limits_{\sigma\to +\infty} \mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1})) = -\infty. \end{align*}

    Using (A2), we derive that

    \begin{align} \lim\limits_{\sigma\to +\infty} \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1}) = 0. \end{align} (3.7)

    Using (A3), there exists \mathfrak{k}\in (0, 1) such that

    \begin{align} \lim\limits_{\sigma \rightarrow +\infty}\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1})) = 0. \end{align} (3.8)

    Using (3.6), for all \sigma\in \mathbb{N}

    \begin{align} \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1}))&-\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{1}))\\ &\leq \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1})^{\mathfrak{k}}(\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{1}))-\sigma\tau)-\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{1}))\\ & = -\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1})^{\mathfrak{k}}\sigma\tau\\ &\leq 0. \end{align} (3.9)

    As \sigma\to +\infty in (3.9), and using (3.7) and (3.8), we derive that

    \begin{align} \lim\limits_{\sigma\to +\infty}\sigma\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1})^{\mathfrak{k}} = 0. \end{align} (3.10)

    Now, let us observe that from (3.10) there exists \sigma_{2} such that \sigma\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1})^{\mathfrak{k}}\leq 1 for all \sigma\geq \sigma_{2} . Consequently we have

    \begin{align*} \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1})\leq \frac{1}{\sigma^{\frac{1}{\mathfrak{k}}}}, \, \, {\rm{for\ all}}\, \, \sigma\geq \sigma_{2}. \end{align*}

    Let \sigma = \max\{\sigma_{1}, \sigma_{2}\} .

    \begin{align*} \varrho({\pmb{\aleph}}_{\sigma+\mathfrak{p}}, \beta_{\sigma})&\leq \varrho({\pmb{\aleph}}_{\sigma+\mathfrak{p}}, \beta_{\sigma+1}) + \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1}) + \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma}) \\ &\leq \varrho({\pmb{\aleph}}_{\sigma+\mathfrak{p}}, \beta_{\sigma+2}) + \varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma+2}) + \varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma+1}) + \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1}) + \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})\\ &\vdots\\ &\leq \varrho({\pmb{\aleph}}_{\sigma+\mathfrak{p}}, \beta_{\sigma+\mathfrak{p}}) +\cdots+ \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1}) + \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma}) \\ &\leq \sum\limits_{\mathfrak{i} = \sigma}^{+\infty}\frac{1}{\mathfrak{i}^{\frac{1}{\mathfrak{k}}}}. \end{align*}

    Since \mathfrak{k}\in (0, 1) , the series \sum_{\mathfrak{i} = \sigma}^{+\infty}\frac{1}{\mathfrak{i}^{\frac{1}{\mathfrak{k}}}} is convergent. Therefore, (\{{\pmb{\aleph}}_{\sigma}\}, \{\beta_{\sigma}\})) is a Cauchy bisequence. Since (\varUpsilon, \varOmega, \varrho) is complete, then \{{\pmb{\aleph}}_{\sigma}\}\to \mathfrak{u} and \{\beta_{\sigma}\}\to \mathfrak{u} , where \mathfrak{u} \in \varUpsilon \cap \varOmega and

    \begin{align*} \{\mathcal{M}(\beta_{\sigma})\} = \{\beta_{\sigma+1}\} \rightarrow \mathfrak{u}\in \varUpsilon \cap \varOmega. \end{align*}

    Since \mathcal{M} is continuous \mathcal{M}(\beta_{\sigma}) \rightarrow \mathcal{M}(\mathfrak{u}) , so \mathcal{M}(\mathfrak{u}) = \mathfrak{u} . Hence \mathfrak{u} is a fixed point of \mathcal{M} . If \mathfrak{v} is any fixed point of \mathcal{M} , then \mathcal{M}(\mathfrak{v}) = \mathfrak{v} implies that \mathfrak{v}\in \varUpsilon\cap\varOmega and

    \begin{align*} \tau\leq \mathcal{F}(\varrho(\mathcal{M}(\mathfrak{u}) , \mathcal{M}(\mathfrak{v}))-\mathcal{F}(\varrho(\mathfrak{u}, \mathfrak{v})) = 0, \end{align*}

    which is absurd. Hence \mathfrak{u} = \mathfrak{v} .

    Remark 3.4. If we take \varUpsilon = \varOmega , then our result is reduced to Theorem 2.1 in [2].

    Theorem 3.5. Let (\varUpsilon, \varOmega, \varrho) be a complete Bi-polar metric space. Suppose \mathcal{M} : (\varUpsilon, \varOmega, \varrho) \leftrightarrows (\varUpsilon, \varOmega, \varrho) is a contravariant mapping and there exists \tau > 0 such that

    \begin{align*} \tau+\mathcal{F}(\varrho(\mathcal{M}(\varpi), \mathcal{M}({\pmb{\aleph}}))) \leq \mathcal{F}(\varrho({\pmb{\aleph}}, \varpi)) \, \, \mathit{{\rm{for\ all}}}\, \, {\pmb{\aleph}} \in \varUpsilon, \varpi \in \varOmega, \end{align*}

    holds for any {\pmb{\aleph}}\in \varUpsilon , \beta\in \Omega with \varrho(\mathcal{M}({\pmb{\aleph}}), \mathcal{M}(\beta)) > 0 . Then the function \mathcal{M} : \varUpsilon \cup \varOmega \rightarrow \varUpsilon \cup \varOmega has a unique fixed point.

    Proof. Let {\pmb{\aleph}}_{0} \in \varUpsilon . For each \sigma\in \mathbb{N} , define \mathcal{M}({\pmb{\aleph}}_{\sigma}) = \beta_{\sigma} and \mathcal{M}(\beta_{\sigma}) = {\pmb{\aleph}}_{\sigma+1} . Then (\{{\pmb{\aleph}}_{\sigma}\}, \{\beta_{\sigma}\}) is a bisequence on (\varUpsilon, \varOmega, \varrho) and {\pmb{\aleph}}_{\sigma}\neq\beta_{\sigma} . Then

    \begin{align} \mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})) & = \mathcal{F}(\varrho(\mathcal{M}(\beta_{\sigma-1}), \mathcal{M}({\pmb{\aleph}}_{\sigma}))) \\ &\leq \mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma-1}))-\tau \\ & = \mathcal{F}(\varrho(\mathcal{M}(\beta_{\sigma-1}), \mathcal{M}({\pmb{\aleph}}_{\sigma-1})))-\tau \\ &\leq \mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma-1}, \beta_{\sigma-1})-2\tau \\ &\vdots \\ &\leq\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{0}))-2\sigma\tau. \end{align} (3.11)

    As \sigma\to +\infty , we have

    \begin{align*} \lim\limits_{\sigma\to +\infty} \mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})) = -\infty. \end{align*}

    Using (A2), we derive that

    \begin{align} \lim\limits_{\sigma\to +\infty} \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma}) = 0. \end{align} (3.12)

    Using (A3), there exists \mathfrak{k}\in (0, 1) such that

    \begin{align} \lim\limits_{\sigma \rightarrow +\infty}\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})) = 0. \end{align} (3.13)

    Using (3.11), for all \sigma\in \mathbb{N}

    \begin{align} \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma}))&-\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{0}))\\ &\leq \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}(\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{0}))-2\sigma\tau)-\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{0}))\\ & = -\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}2\sigma\tau\\ &\leq 0. \end{align} (3.14)

    As \sigma\to +\infty in (3.14), and using (3.12) and (3.13), we derive that

    \begin{align} \lim\limits_{\sigma\to +\infty}2\sigma\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}} = 0. \end{align} (3.15)

    Now, let us observe that from (3.15) there exists \sigma_{1} such that 2\sigma\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}\leq 1 for all \sigma\geq \sigma_{1} . Consequently we have

    \begin{align*} \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})\leq \frac{1}{(2\sigma)^{\frac{1}{\mathfrak{k}}}}, \, \, {\rm{for\ all}}\, \, \sigma\geq \sigma_{1}. \end{align*}

    Also,

    \begin{align} \mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})) & = \mathcal{F}(\varrho(\mathcal{M}(\beta_{\sigma}), \mathcal{M}({\pmb{\aleph}}_{\sigma})))\\ &\leq\mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma}))-\tau\\ &\leq\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{0}))-(2\sigma+1)\tau. \end{align} (3.16)

    As \sigma\to +\infty , we have

    \begin{align*} \lim\limits_{\sigma\to +\infty} \mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})) = -\infty. \end{align*}

    Using (A2), we derive that

    \begin{align} \lim\limits_{\sigma\to +\infty} \varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma}) = 0. \end{align} (3.17)

    Using (A3), there exists \mathfrak{k}\in (0, 1) such that

    \begin{align} \lim\limits_{\sigma \rightarrow +\infty}\varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})) = 0. \end{align} (3.18)

    Using (3.16), for all \sigma\in \mathbb{N}

    \begin{align} \varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma}))&-\varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{0}))\\ &\leq \varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})^{\mathfrak{k}}(\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{0})-(2\sigma+1)\tau)\\ &-\varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{0}))\\ & = -\varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})^{\mathfrak{k}}(2\sigma+1)\tau\\ &\leq 0. \end{align} (3.19)

    As \sigma\to +\infty in (3.19), and using (3.17) and (3.18), we derive that

    \begin{align} \lim\limits_{\sigma\to +\infty}(2\sigma+1)\varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})^{\mathfrak{k}} = 0. \end{align} (3.20)

    Now, let us observe that from (3.20) there exists \sigma_{1} such that (2\sigma+1)\varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})^{\mathfrak{k}}\leq 1 for all \sigma\geq \sigma_{1} . Consequently we have

    \begin{align*} \varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})\leq \frac{1}{(2\sigma+1)^{\frac{1}{\mathfrak{k}}}}, \, \, {\rm{for\ all}}\, \, \, \sigma\geq \sigma_{1}. \end{align*}

    Now,

    \begin{align*} \varrho({\pmb{\aleph}}_{\sigma+\mathfrak{p}}, \beta_{\sigma}) &\leq\varrho({\pmb{\aleph}}_{\sigma+\mathfrak{p}}, \beta_{\sigma+1}) + \varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma+1})+ \varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})\\ &\leq\varrho({\pmb{\aleph}}_{\sigma+\mathfrak{p}}, \beta_{\sigma+1})+ \frac{1}{(2(\sigma+1))^{\frac{1}{\mathfrak{k}}}}+\frac{1}{(2\sigma+1)^{\frac{1}{\mathfrak{k}}}}\\ &\leq\varrho({\pmb{\aleph}}_{\sigma+\mathfrak{p}}, \beta_{\sigma+2}) + \varrho({\pmb{\aleph}}_{\sigma+2}, \beta_{\sigma+2})+ \varrho({\pmb{\aleph}}_{\sigma+2}, \beta_{\sigma+1})\\ &\; \; \; + \frac{1}{(2(\sigma+1))^{\frac{1}{\mathfrak{k}}}}+\frac{1}{(2\sigma+1)^{\frac{1}{\mathfrak{k}}}}\\ &\leq\varrho({\pmb{\aleph}}_{\sigma+\mathfrak{p}}, \beta_{\sigma+2}) +\frac{1}{(2(\sigma+2))^{\frac{1}{\mathfrak{k}}}}+\frac{1}{(2\sigma+3)^{\frac{1}{\mathfrak{k}}}}+ \frac{1}{(2(\sigma+1))^{\frac{1}{\mathfrak{k}}}}+\frac{1}{(2\sigma+1)^{\frac{1}{\mathfrak{k}}}}\\ &\vdots\\ &\leq \sum\limits_{\mathfrak{i} = 2\sigma+1}^{+\infty}\frac{1}{\mathfrak{i}^{\frac{1}{\mathfrak{k}}}}. \end{align*}

    Since \mathfrak{k}\in (0, 1) , the series \sum_{\mathfrak{i} = \sigma}^{+\infty}\frac{1}{\mathfrak{i}^{\frac{1}{\mathfrak{k}}}} is convergent. Therefore, (\{{\pmb{\aleph}}_{\sigma}\}, \{\beta_{\sigma}\})) is a Cauchy bisequence. Since (\varUpsilon, \varOmega, \varrho) is complete, then \{{\pmb{\aleph}}_{\sigma}\}\to \mathfrak{u} and \{\beta_{\sigma}\}\to \mathfrak{u} where \mathfrak{u} \in \varUpsilon \cap \varOmega and

    \begin{align*} \{\mathcal{M}(\beta_{\sigma})\} = \{\beta_{\sigma+1}\} \rightarrow \mathfrak{u}\in \varUpsilon \cap \varOmega. \end{align*}

    Since \mathcal{M} is continuous \mathcal{M}(\beta_{\sigma}) \rightarrow \mathcal{M}(\mathfrak{u}) , so \mathcal{M}(\mathfrak{u}) = \mathfrak{u} . Hence \mathfrak{u} is a fixed point of \mathcal{M} . If \mathfrak{v} is any fixed point of \mathcal{M} , then \mathcal{M}(\mathfrak{v}) = \mathfrak{v} implies that \mathfrak{v}\in \varUpsilon\cap\varOmega and

    \begin{align*} \tau\leq \mathcal{F}(\varrho(\mathcal{M}(\mathfrak{u}) , \mathcal{M}(\mathfrak{v}))-\mathcal{F}(\varrho(\mathfrak{u}, \mathfrak{v})) = 0, \end{align*}

    which is absurd. Hence \mathfrak{u} = \mathfrak{v} .

    Example 3.6. Let \varUpsilon = [0, 1] and \varOmega = [1, 2] be equipped with \varrho({\pmb{\aleph}}, \beta) = |{\pmb{\aleph}}-\beta| for all {\pmb{\aleph}} \in \varUpsilon and \beta\in \varOmega . Then, (\varUpsilon, \varOmega, \varrho) is a complete Bi-polar metric space. Define \mathcal{M} :\varUpsilon\cup\varOmega \rightrightarrows\varUpsilon\cup\varOmega by

    \begin{equation*} \mathcal{M}({\pmb{\aleph}}) = \frac{{\pmb{\aleph}}+4}{5}, \end{equation*}

    for all {\pmb{\aleph}} \in \varUpsilon\cup \varOmega . Let {\pmb{\aleph}}\in \varUpsilon and \beta\in \varOmega . Now, let us consider the mapping \mathcal{F} defined by \mathcal{F}(\delta) = \ln \delta . Let \tau > 0 . Note that if \varrho(\mathcal{M} {\pmb{\aleph}}, \mathcal{M}\beta) > 0 implies

    \begin{align*} \tau+\mathcal{F}(\varrho(\mathcal{M} {\pmb{\aleph}}, \mathcal{M}\beta))\leq \mathcal{F}(\varrho( {\pmb{\aleph}}, \beta)), \, \, \forall\, {\pmb{\aleph}}\in \varUpsilon\, \, and\, \, \beta\in \varOmega, \end{align*}

    is equivalent to

    \begin{align*} \varrho(\mathcal{M} {\pmb{\aleph}}, \mathcal{M}\beta)\leq e^{-\tau}(\varrho({\pmb{\aleph}}, \beta)), \, \, \forall\, {\pmb{\aleph}}\in \varUpsilon\, \, and\, \, \beta\in \varOmega. \end{align*}

    Then

    \begin{align*} \varrho(\mathcal{M} {\pmb{\aleph}}, \mathcal{M}\beta) = \varrho\bigg(\frac{{\pmb{\aleph}}+4}{5}, \frac{\beta+4}{5}\bigg) = \bigg|\frac{{\pmb{\aleph}}}{5}-\frac{\beta}{5}\bigg|\leq\frac{1}{3}\varrho({\pmb{\aleph}}, \beta), \end{align*}

    which implies that

    \begin{align} \varrho(\mathcal{M} {\pmb{\aleph}}, \mathcal{M}\beta)\leq e^{-\tau}(\varrho({\pmb{\aleph}}, \beta)), \, \, \forall\, {\pmb{\aleph}}\in \varUpsilon\, \, and\, \, \beta\in \varOmega. \end{align} (3.21)

    Therefore, all the conditions of Theorem 3.8 are satisfied. Hence we can conclude that \mathcal{M} has a unique fixed point, which is {\pmb{\aleph}} = 1 .

    Now we examine the existence and unique solution to an integral equation as an application of Theorem 3.3.

    Theorem 3.7. Let us consider the integral equation

    \begin{align*} {\pmb{\aleph}}(\delta) = \mathfrak{b}(\delta)+\int_{\mathcal{E}_{1}\mathcal{E}_{2}}\mathcal{G}\mathfrak(\delta, \eta, {\pmb{\aleph}}(\eta))d\eta, \, \, \delta\in \mathcal{E}_{1}\cup\mathcal{E}_{2}, \end{align*}

    where \mathcal{E}_{1}\cup\mathcal{E}_{2} is a Lebesgue measurable set. Suppose

    (T1) \mathcal{M}:(\mathcal{E}^{2}_{1}\cup\mathcal{E}^{2}_{2})\times [0, +\infty)\to[0, +\infty) and b\in L^{\infty}(\mathcal{E}_{1})\cup L^{\infty}(\mathcal{E}_{2}) ;

    (T2) There is a continuous function \theta :\mathcal{E}^{2}_{1}\cup\mathcal{E}^{2}_{2}\to [0, +\infty) and \tau > 0 such that

    \begin{align*} |\mathcal{G}(\delta, \eta, {\pmb{\aleph}}(\eta))-\mathcal{G}(\delta, \eta, \beta(\eta)|\leq e^{-\tau}|\theta(\delta, \eta)|(|{\pmb{\aleph}}(\eta)-\beta(\eta)|, \end{align*}

    for \delta, \eta\in \mathcal{E}^{2}_{1}\cup\mathcal{E}^{2}_{2} ;

    (T3) ||\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}\theta(\delta, \eta)d\eta||_{\infty}\leq 1 i.e \sup_{\delta\in\mathcal{E}_{1}\cup\mathcal{E}_{2}}\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}|\theta(\delta, \eta)|d\eta\leq 1 .

    Then the integral equation has a unique solution in L^{\infty}(\mathcal{E}_{1})\cup L^{\infty}(\mathcal{E}_{2}) .

    Proof. Let \varUpsilon = L^{\infty}(\mathcal{E}_{1}) and \varOmega = L^{\infty}(\mathcal{E}_{2}) be two normed linear spaces, where \mathcal{E}_{1}, \mathcal{E}_{2} are Lebesgue measurable sets and m(\mathcal{E}_{1}\cup\mathcal{E}_{2}) < \infty .

    Consider \varrho : \varUpsilon\times \varOmega\to [0, +\infty) to be defined by \varrho({\pmb{\aleph}}, \beta) = ||{\pmb{\aleph}}-\beta||_{\infty} for all ({\pmb{\aleph}}, \beta)\in \varUpsilon\times\varOmega . Then (\varUpsilon, \varOmega, \varrho) is a complete Bi-polar metric space.

    Define the covariant mapping \mathcal{M}:L^{\infty}(\mathcal{E}_{1})\cup L^{\infty}(\mathcal{E}_{2})\to L^{\infty}(\mathcal{E}_{1})\cup L^{\infty}(\mathcal{E}_{2}) by

    \begin{align*} \mathcal{M}({\pmb{\aleph}}(\delta)) = \mathfrak{b}(\delta)+\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}\mathcal{G}(\delta, \eta, {\pmb{\aleph}}(\eta))d\eta, \, \, \delta\in \mathcal{E}_{1}\cup\mathcal{E}_{2}. \end{align*}

    Now, we have

    \begin{align*} \varrho(\mathcal{M}{\pmb{\aleph}}(\delta), \mathcal{M}\beta(\delta))& = ||\mathcal{M}{\pmb{\aleph}}(\delta)-\mathcal{M}\beta(\delta)||\\ & = \bigg|\mathfrak{b}(\delta)+\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}\mathcal{G}(\delta, \eta, {\pmb{\aleph}}(\eta))d\eta-\bigg(\mathfrak{b}(\delta)+\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}\mathcal{G}(\delta, \eta, {\pmb{\aleph}}(\eta))d\eta\bigg)\bigg|\\ &\leq\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}|\mathcal{G}(\delta, \eta, {\pmb{\aleph}}(\eta))-\mathcal{G}(\delta, \eta, \beta(\eta))|d\eta\\ &\leq\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}e^{-\tau}|\theta(\delta, \eta)|(|{\pmb{\aleph}}(\eta)-\beta(\eta)|)d\eta\\ &\leq e^{-\tau}(||{\pmb{\aleph}}(\eta)-\beta(\eta)||)\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}|\theta(\delta, \eta)|d\eta\\ &\leq e^{-\tau}(||{\pmb{\aleph}}(\eta)-\beta(\eta)||)\sup\limits_{\delta\in\mathcal{E}_{1}\cup\mathcal{E}_{2}}\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}|\theta(\delta, \eta)|d\eta\\ &\leq e^{-\tau}(||{\pmb{\aleph}}(\eta)-\beta(\eta)||)\\ & = e^{-\tau} \varrho({\pmb{\aleph}}, \beta). \end{align*}

    Hence, all the hypothesis of a Theorem 3.3 are satisfied with \mathcal{F}(\delta) = \ln \delta and consequently, the integral equation has a unique solution.

    Here we present a fixed point theorem on Bi-polar metric space using simulation function.

    Theorem 3.8. Let (\varUpsilon, \varOmega, \varrho) be a complete Bi-polar metric space and given a \Theta -contraction \mathcal{M} : (\varUpsilon, \varOmega, \varrho) \rightrightarrows (\varUpsilon, \varOmega, \varrho) . Then the function \mathcal{M} : \varUpsilon \cup \varOmega \rightarrow \varUpsilon \cup \varOmega has a unique fixed point.

    Proof. Let {\pmb{\aleph}}_{0} \in \varUpsilon and \beta_{0} \in \varOmega . For each \sigma\in\mathbb{N} , define \mathcal{M}({\pmb{\aleph}}_{\sigma}) = {\pmb{\aleph}}_{\sigma+1} and \mathcal{M}(\beta_{\sigma}) = \beta_{\sigma+1} . Then (\{{\pmb{\aleph}}_{\sigma}\} , \{\beta_{\sigma}\}) is a bisequence on ( \varUpsilon, \varOmega, \varrho ). Since \mathcal{M} is a \Theta -contraction, we have

    \begin{align*} 0&\leq\xi(\varrho(\mathcal{M}{\pmb{\aleph}}_{\sigma-1}, \mathcal{M}\beta_{\sigma-1}), \varrho({\pmb{\aleph}}_{\sigma-1}, \beta_{\sigma-1}))\\ & = \xi(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma}), \varrho({\pmb{\aleph}}_{\sigma-1}, \beta_{\sigma-1}))\\ & < \varrho({\pmb{\aleph}}_{\sigma-1}, \beta_{\sigma-1})-\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma}), \end{align*}

    which implies that

    \begin{align*} \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma}) < \varrho({\pmb{\aleph}}_{\sigma-1}, \beta_{\sigma-1}), \, \, {\rm{for\ all}}\, \, \sigma\in \mathbb{N}. \end{align*}

    Therefore, the sequence \{\varrho({\pmb{\aleph}}_{\sigma-1}, \beta_{\sigma-1})\} is nonincreasing bisequence and so we can find \mathfrak{r}\geq 0 satisfying \lim\limits_{\sigma\to +\infty}\varrho({\pmb{\aleph}}_{\sigma-1}, \beta_{\sigma-1}) = \mathfrak{r} . Assume that \mathfrak{r}\neq 0 . Let \delta_{\sigma} = \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma}) and \eta_{\sigma} = \varrho({\pmb{\aleph}}_{\sigma-1}, \beta_{\sigma-1}) , then \lim\limits_{\sigma\to +\infty}\delta_{\sigma} = \lim\limits_{\sigma\to +\infty}\eta_{\sigma} = \mathfrak{r} > 0 and \delta_{\sigma} < \eta_{\sigma} , for all \sigma\in \mathbb{N} . Therefore,

    \begin{align*} 0\leq\lim\limits_{\sigma\to +\infty}\sup\xi(\delta_{\sigma}, \eta_{\sigma}) < 0, \end{align*}

    which is a contradiction. Thus,

    \begin{align*} \lim\limits_{\sigma\to +\infty}\varrho({\pmb{\aleph}}_{\sigma-1}, \beta_{\sigma-1}) = 0. \end{align*}

    Since \mathcal{M} is a \Theta -contraction, we have

    \begin{align*} 0&\leq\xi(\varrho(\mathcal{M}{\pmb{\aleph}}_{\zeta-1}, \mathcal{M}\beta_{\sigma-1}), \varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma-1}))\\ & = \xi(\varrho({\pmb{\aleph}}_{\zeta}, \beta_{\sigma}), \varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma-1}))\\ & < \varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma-1})-\varrho({\pmb{\aleph}}_{\zeta}, \beta_{\sigma}), \end{align*}

    which implies that

    \begin{align*} \varrho({\pmb{\aleph}}_{\zeta}, \beta_{\sigma}) < \varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma-1}), \, \, {\rm{for\ all}}\, \, \sigma\in \mathbb{N}. \end{align*}

    Therefore, the sequence \{\varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma-1})\} is nonincreasing bisequence and so we can find \mathfrak{r}\geq 0 satisfying \lim\limits_{\sigma\to +\infty}\varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma-1}) = \mathfrak{r} . Assume that \mathfrak{r}\neq 0 . Let \delta_{\sigma} = \varrho({\pmb{\aleph}}_{\zeta}, \beta_{\sigma}) and \eta_{\sigma} = \varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma-1}) , then \lim\limits_{\sigma\to +\infty}\delta_{\sigma} = \lim\limits_{\sigma\to +\infty}\eta_{\sigma} = \mathfrak{r} > 0 and \delta_{\sigma} < \eta_{\sigma} , for all \sigma\in \mathbb{N} . Therefore,

    \begin{align*} 0\leq\lim\limits_{\sigma\to +\infty}\sup\xi(\delta_{\sigma}, \eta_{\sigma}) < 0, \end{align*}

    which is a contradiction. Thus,

    \begin{align*} \lim\limits_{\sigma\to +\infty}\varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma-1}) = 0. \end{align*}

    Since \mathcal{M} is a \Theta -contraction, we have

    \begin{align*} 0&\leq\xi(\varrho(\mathcal{M}{\pmb{\aleph}}_{\zeta-1}, \mathcal{M}\beta_{\sigma}), \varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma}))\\ & = \xi(\varrho({\pmb{\aleph}}_{\zeta}, \beta_{\sigma+1}), \varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma}))\\ & < \varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma})-\varrho({\pmb{\aleph}}_{\zeta}, \beta_{\sigma+1}), \end{align*}

    which implies that

    \begin{align*} \varrho({\pmb{\aleph}}_{\zeta}, \beta_{\sigma+1}) < \varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma}), \, \, {\rm{for\ all}}\, \, \sigma\in \mathbb{N}. \end{align*}

    Therefore, the sequence \{\varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma})\} is nonincreasing bisequence and so we can find \mathfrak{r}\geq 0 satisfying \lim\limits_{\sigma\to +\infty}\varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma}) = \mathfrak{r} . Assume that \mathfrak{r}\neq 0 . Let \delta_{\sigma} = \varrho({\pmb{\aleph}}_{\zeta}, \beta_{\sigma+1}) and \eta_{\sigma} = \varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma}) , then \lim\limits_{\sigma\to +\infty}\delta_{\sigma} = \lim\limits_{\sigma\to +\infty}\eta_{\sigma} = \mathfrak{r} > 0 and \delta_{\sigma} < \eta_{\sigma} , for all \sigma\in \mathbb{N} . Therefore,

    \begin{align*} 0\leq\lim\limits_{\sigma\to +\infty}\sup\xi(\delta_{\sigma}, \eta_{\sigma}) < 0, \end{align*}

    which is a contradiction. Thus,

    \begin{align*} \lim\limits_{\sigma\to +\infty}\varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma}) = 0. \end{align*}

    Now, we show that (\{{\pmb{\aleph}}_{\sigma}\}, \{\beta_{\sigma}\}) is a Cauchy bisequence. On the contrary, assume that (\{{\pmb{\aleph}}_{\sigma}\}, \{\beta_{\sigma}\}) is not a Cauchy bisequence. Then, there exists an \epsilon > 0 for which we can find two subsequences \{{\pmb{\aleph}}_{\sigma_{\mathfrak{k}}}\} of \{{\pmb{\aleph}}_{\sigma}\} and \{\beta_{\zeta_{\mathfrak{k}}}\} of \{\beta_{\zeta}\} such that \sigma_{\mathfrak{k}} > \zeta_{\mathfrak{k}} > \mathfrak{k} , for all \mathfrak{k}\in \mathbb{N} and

    \begin{align} \varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}}, \beta_{\sigma_{\mathfrak{k}}})\geq \epsilon. \end{align} (3.22)

    Suppose that \sigma_{\mathfrak{k}} is the least integer exceeding \zeta_{\mathfrak{k}} satisfying inequality (3.22). Then,

    \begin{align} \varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}}, \beta_{\sigma_{\mathfrak{k}-1}}) < \epsilon. \end{align} (3.23)

    Using (3.22), (3.23) and (c), we obtain

    \begin{align*} \epsilon&\leq \varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}}, \beta_{\sigma_{\mathfrak{k}}})\\ &\leq \varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}}, \beta_{\sigma_{\mathfrak{k}}-1})+\varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}-1}, \beta_{\sigma_{\mathfrak{k}}-1})+\varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}-1}, \beta_{\sigma_{\mathfrak{k}}}). \end{align*}

    As \mathfrak{k}\to +\infty , we obtain

    \begin{align*} \lim\limits_{\mathfrak{k}\to +\infty}\varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}}, \beta_{\sigma_{\mathfrak{k}}}) = \epsilon. \end{align*}

    Since \mathcal{M} is a \Theta -contraction, we have

    \begin{align*} 0&\leq\xi(\varrho(\mathcal{M}{\pmb{\aleph}}_{\zeta_{\mathfrak{k}}-1}, \mathcal{M}\beta_{\sigma_{\mathfrak{k}}-1}), \varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}-1}, \beta_{\sigma_{\mathfrak{k}}-1}))\\ & = \xi(\varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}}, \beta_{\sigma_{\mathfrak{k}}}), \varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}-1}, \beta_{\sigma_{\mathfrak{k}}-1}))\\ & < \varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}-1}, \beta_{\sigma_{\mathfrak{k}}-1})-\varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}}, \beta_{\sigma_{\mathfrak{k}}}), \end{align*}

    which implies that

    \begin{align*} \varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}}, \beta_{\sigma_{\mathfrak{k}}}) < \varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}-1}, \beta_{\sigma_{\mathfrak{k}}-1}), \, \, {\rm{for\ all}}\, \, \sigma_{\mathfrak{k}}\in \mathbb{N}. \end{align*}

    As \sigma\to +\infty , we obtain

    \begin{align*} \epsilon < 0. \end{align*}

    Therefore (\{{\pmb{\aleph}}_{\sigma}\}, \{\beta_{\sigma}\}) is a Cauchy bisequence. Since (\varUpsilon, \varOmega, \varrho) is complete, then \{{\pmb{\aleph}}_{\sigma}\}\to \rho and \{\beta_{\sigma}\}\to \rho where \rho \in \varUpsilon \cap \varOmega . Since \mathcal{M} is continuous, \mathcal{M}(\beta_{\sigma}) \rightarrow \mathcal{M}(\rho) , so \mathcal{M}(\rho) = \rho . Hence \rho is a fixed point of \mathcal{M} . Next, we prove that \mathcal{M} has a unique fixed point. Suppose not, assume that there are two fixed points such that \varrho(\rho, \upsilon) = \varrho(\mathcal{M}(\rho), \mathcal{M}(\upsilon)) > 0 . Since \mathcal{M} is a \Theta -contraction, we have

    \begin{align*} 0&\leq \xi(\varrho(\mathcal{M}(\rho) , \mathcal{M}(\upsilon)), \varrho(\rho, \upsilon))\\ & = \xi(\varrho(\rho, \upsilon), \varrho(\rho, \upsilon))\\ & < \varrho(\rho, \upsilon)-\varrho(\rho, \upsilon). \end{align*}

    Therefore, \mathcal{M} has a unique fixed point.

    Example 3.9. Let \varUpsilon = [0, 1] and \varOmega = [1, 2] be equipped with \varrho({\pmb{\aleph}}, \beta) = |{\pmb{\aleph}}-\beta| for all {\pmb{\aleph}} \in \varUpsilon and \beta\in \varOmega . Then, (\varUpsilon, \varOmega, \varrho) is a complete Bi-polar metric space. Define \mathcal{M} :\varUpsilon\cup\varOmega \rightrightarrows\varUpsilon\cup\varOmega by

    \begin{equation*} \mathcal{M}({\pmb{\aleph}}) = \frac{{\pmb{\aleph}}+4}{5}, \end{equation*}

    for all {\pmb{\aleph}} \in \varUpsilon\cup \varOmega . We now show that \Theta -contraction with respect to \xi\in \Theta , where

    \begin{align*} \xi(\delta, \eta) = \frac{\eta}{\eta+1}-\delta, \end{align*}

    for all \delta, \eta\in [0, +\infty) . Then

    \begin{align*} \xi(\varrho(\mathcal{M} {\pmb{\aleph}}, \mathcal{M}\beta), \varrho( {\pmb{\aleph}}, \beta))& = \frac{\varrho({\pmb{\aleph}}, \beta)}{1+\varrho({\pmb{\aleph}}, \beta)}-\varrho(\mathcal{M}{\pmb{\aleph}}, \mathcal{M}\beta)\\ & = \frac{|{\pmb{\aleph}}-\beta|}{5+|{\pmb{\aleph}}-\beta|}-\bigg|\frac{{\pmb{\aleph}}}{5}-\frac{\beta}{5}\bigg|\geq 0. \end{align*}

    Therefore, conditions of Theorem 3.8 are fulfilled and \mathcal{M} has a unique fixed point {\pmb{\aleph}} = 1 .

    Now we examine the application of the derived result in Theorem 3.8.

    Theorem 3.10. Let

    \begin{align*} {\pmb{\aleph}}(\delta) = \mathfrak{b}(\delta)+\int_{\mathcal{A}_{1}\cup\mathcal{A}_{2}}\mathcal{H}\mathfrak(\delta, \eta, {\pmb{\aleph}}(\eta))d\eta, \, \, \delta\in \mathcal{A}_{1}\cup\mathcal{A}_{2}, \end{align*}

    where \mathcal{A}_{1}\cup\mathcal{A}_{2} is a Lebesgue measurable set. Suppose

    (T1) \mathcal{H}:(\mathcal{A}^{2}_{1}\cup\mathcal{A}^{2}_{2})\times [0, +\infty)\to[0, +\infty) and b\in L^{\infty}(\mathcal{A}_{1})\cup L^{\infty}(\mathcal{A}_{2}) ;

    (T2) There is a continuous function \theta :\mathcal{A}^{2}_{1}\cup\mathcal{A}^{2}_{2}\to [0, +\infty) and \lambda\in (0, 1) such that

    \begin{align*} |\mathcal{H}(\delta, \eta, {\pmb{\aleph}}(\eta))-\mathcal{H}(\delta, \eta, \beta(\eta)|\leq \lambda|\theta(\delta, \eta)|(|{\pmb{\aleph}}(\eta)-\beta(\eta)|, \end{align*}

    for \delta, \eta\in \mathcal{A}^{2}_{1}\cup\mathcal{A}^{2}_{2} ;

    (T3) ||\int_{\mathcal{A}_{1}\cup\mathcal{A}_{2}}\theta(\delta, \eta)d\eta||_{\infty}\leq 1 i.e \sup_{\delta\in\mathcal{A}_{1}\cup\mathcal{A}_{2}}\int_{\mathcal{A}_{1}\cup\mathcal{A}_{2}}|\theta(\delta, \eta)|d\eta\leq 1 .

    Then the integral equation has a unique solution in L^{\infty}(\mathcal{A}_{1})\cup L^{\infty}(\mathcal{A}_{2}) .

    Proof. Let \varUpsilon = L^{\infty}(\mathcal{A}_{1}) and \varOmega = L^{\infty}(\mathcal{A}_{2}) be two normed linear spaces, where \mathcal{A}_{1}, \mathcal{A}_{2} are Lebesgue measurable sets and m(\mathcal{A}_{1}\cup\mathcal{A}_{2}) < \infty .

    Consider \varrho:\varUpsilon\times \varOmega\to [0, +\infty) defined by \varrho({\pmb{\aleph}}, \beta) = ||{\pmb{\aleph}}-\beta||_{\infty} = \sup_{\delta\in \mathcal{A}_{1}\cup\mathcal{A}_{2}}|{\pmb{\aleph}}(\delta)-\beta(\delta)| for all ({\pmb{\aleph}}, \beta)\in \varUpsilon\times\varOmega . Then (\varUpsilon, \varOmega, \varrho) is a complete Bi-polar metric space.

    Define \mathcal{M}:L^{\infty}(\mathcal{A}_{1})\cup L^{\infty}(\mathcal{A}_{2})\rightrightarrows L^{\infty}(\mathcal{A}_{1})\cup L^{\infty}(\mathcal{A}_{2}) by

    \begin{align*} \mathcal{M}({\pmb{\aleph}}(\delta)) = \mathfrak{b}(\delta)+\int_{\mathcal{A}_{1}\cup\mathcal{A}_{2}}\mathcal{H}(\delta, \eta, {\pmb{\aleph}}(\eta))d\eta, \, \, \delta\in \mathcal{A}_{1}\cup\mathcal{A}_{2}. \end{align*}

    Now,

    \begin{align*} \varrho(\mathcal{M}{\pmb{\aleph}}(\delta), \mathcal{M}\beta(\delta))& = ||\mathcal{M}{\pmb{\aleph}}(\delta)-\mathcal{M}\beta(\delta)||\\ & = \bigg|\mathfrak{b}(\delta)+\int_{\mathcal{A}_{1}\cup\mathcal{A}_{2}}\mathcal{H}(\delta, \eta, {\pmb{\aleph}}(\eta))d\eta-\bigg(\mathfrak{b}(\delta)+\int_{\mathcal{A}_{1}\cup\mathcal{A}_{2}}\mathcal{H}(\delta, \eta, {\pmb{\aleph}}(\eta))d\eta\bigg)\bigg|\\ &\leq\int_{\mathcal{A}_{1}\cup\mathcal{A}_{2}}|\mathcal{H}(\delta, \eta, {\pmb{\aleph}}(\eta))-\mathcal{H}(\delta, \eta, \beta(\eta))|d\eta\\ &\leq\int_{\mathcal{A}_{1}\cup\mathcal{A}_{2}}\lambda|\theta(\delta, \eta)|(|{\pmb{\aleph}}(\eta)-\beta(\eta)|)d\eta\\ &\leq\lambda(||{\pmb{\aleph}}(\eta)-\beta(\eta)||)\int_{\mathcal{A}_{1}\cup\mathcal{A}_{2}}|\theta(\delta, \eta)|d\eta\\ &\leq\lambda(||{\pmb{\aleph}}(\eta)-\beta(\eta)||)\sup\limits_{\delta\in\mathcal{A}_{1}\cup\mathcal{A}_{2}}\int_{\mathcal{A}_{1}\cup\mathcal{A}_{2}}|\theta(\delta, \eta)|d\eta\\ &\leq \lambda||{\pmb{\aleph}}(\eta)-\beta(\eta)||\\ & = \lambda \varrho({\pmb{\aleph}}, \beta), \end{align*}

    which implies that

    \begin{align*} \lambda \varrho({\pmb{\aleph}}, \beta)-\varrho(\mathcal{M}{\pmb{\aleph}}(\delta), \mathcal{M}\beta(\delta))\geq 0. \end{align*}

    We consider the simulation function as \xi(\delta, \eta) = \lambda\eta-\delta . Then

    \begin{align*} \xi(\varrho(\mathcal{M}{\pmb{\aleph}}(\delta), \mathcal{M}\beta(\delta)), \varrho({\pmb{\aleph}}, \beta))\geq 0. \end{align*}

    Therefore, all the hypothesis of a Theorem 3.8 are fulfilled. Hence, the integral equation has a unique solution.

    In the present work, we established fixed point results using \mathcal{F} -contraction and simulation functions. The derived results have been supported with suitable example and application to find analytical solution of integral equation. Our results are extensions/generalisation of some proven results in the past. Readers can explore extending the results in the setting of Bi-polar p-metric space, complex metric space etc.

    This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444).

    The authors declare no conflicts of interest.



    [1] S. Abbas, M. Benchohra, G. M. N'Guerekata, Topics in fractional differential equations, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-4036-9
    [2] B. Ahmad, A. Alsaedi, S. K. Ntouyas, J. Tariboon, Hadamard-type fractional differential equations, inclusions and inequalities, Springer, 2017. https://doi.org/10.1007/978-3-319-52141-1
    [3] B. Ahmad, J. J. Nieto, Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Bound. Value Probl., 2009 (2009), 708576. https://doi.org/10.1155/2009/708576 doi: 10.1155/2009/708576
    [4] B. Ahmad, J. J. Nieto, Existence of solutions for nonlocal boundary value problems of higher-order nonlinear fractional differential equations, Abstr. Appl. Anal., 2009 (2009), 494720. https://doi.org/10.1155/2009/494720 doi: 10.1155/2009/494720
    [5] B. Ahmad, R. P. Agarwal, M. Alblewi, A. Alsaedi, On Nonlinear multi-term fractional integro-differential equations with Anti-periodic boundary conditions, Prog. Fract. Differ. Appl., 8 (2022), 349–356. https://doi.org/10.18576/pfda/080301 doi: 10.18576/pfda/080301
    [6] M. Alqhtani, K. M. Owolabi, K. M. Saad, E. Pindza, Spatiotemporal chaos in spatially extended fractional dynamical systems, Commun. Nonlinear Sci., 119 (2023), 107118. https://doi.org/10.1016/j.cnsns.2023.107118 doi: 10.1016/j.cnsns.2023.107118
    [7] M. Alqhtani, K. M. Saad, Numerical solutions of space-fractional diffusion equations via the exponential decay kernel, AIMS Math., 7 (2022), 6535–6549. https://doi.org/10.3934/math.2022364 doi: 10.3934/math.2022364
    [8] D. Baleanu, J. A. T. Machado, A. C. J. Luo, Fractional dynamics and control, New York: Springer, 2011. https://doi.org/10.1007/978-1-4614-0457-6
    [9] M. Benchora, S. Hamani, J. Henderson, Functional differential inclusions with integral boundary conditions, Electron. J. Qual. Theory Differ. Equ., 15 (2007), 1–13. https://doi.org/10.14232/ejqtde.2007.1.15 doi: 10.14232/ejqtde.2007.1.15
    [10] M. Benchohra, S. Hamani, S. K. Ntouyas, Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Anal. Theor., 71 (2009), 2391–2396. https://doi.org/10.1016/j.na.2009.01.073 doi: 10.1016/j.na.2009.01.073
    [11] T. A. Burton, T. Furumochi, Krasnoselskii's fixed point theorem and stability, Nonlinear Anal. Theor., 49 (2002), 445–454. https://doi.org/10.1016/S0362-546X(01)00111-0 doi: 10.1016/S0362-546X(01)00111-0
    [12] A. Carpinteri, F. Mainardi, Fractals and fractional calculus in continuum mechanics, Springer, 1997. https://doi.org/10.1007/978-3-7091-2664-6
    [13] M. Cichon, H. A. H. Salem, On the lack of equivalence between differential and integral forms of the Caputo-type fractional problems, J. Pseudo-Differ. Oper. Appl., 11 (2020), 1869–1895. https://doi.org/10.1007/s11868-020-00345-z doi: 10.1007/s11868-020-00345-z
    [14] K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Berlin: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2
    [15] H. Fallahgoul, S. Focardi, F. Fabozzi, Fractional calculus and fractional processes with applications to financial economics: Theory and application, Academic Press, 2016.
    [16] J. Graef, L. Kong, M. Wang, Existence and uniqueness of solutions for a fractional boundary value problem on a graph, Fract. Calc. Appl. Anal., 17 (2014), 499–510. https://doi.org/10.2478/s13540-014-0182-4 doi: 10.2478/s13540-014-0182-4
    [17] J. Henderson, R. Luca, Nonexistence of positive solutions for a system of coupled fractional boundary value problems, Boundary Value Probl., 2015 (2015), 138. https://doi.org/10.1186/s13661-015-0403-8 doi: 10.1186/s13661-015-0403-8
    [18] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
    [19] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [20] R. Magin, Fractional calculus in Bioengineering Begell House Publishers, 2006.
    [21] M. Obloza, Hyers stability of the linear differential equation, 1993.
    [22] H. A. H. Salem, M.Cichon, W. Shammakh, Generalized fractional calculus in Banach spaces and applications to existence results for boundary value problems, Bound. Value Probl., 2023 (2023), 57. https://doi.org/10.1186/s13661-023-01745-y doi: 10.1186/s13661-023-01745-y
    [23] H. A. H. Salem, M. Cichon, Analysis of tempered fractional calculus in H\ddot{o}lder and Orlicz spaces, Symmetry, 14 (2022), 1581. https://doi.org/10.3390/sym14081581 doi: 10.3390/sym14081581
    [24] H. M. Srivastava, K. M. Saad, W. M. Hamanah, Certain new models of the multi-space fractal-fractional Kuramoto-Sivashinsky and Korteweg-de Vries equations, Mathematics, 10 (2022), 1089. https://doi.org/10.3390/math10071089 doi: 10.3390/math10071089
    [25] S. M. Ulam, A collection of mathematical problems, 1960.
    [26] J. Vanterler da C. Sousa, E. Capelas de Oliveira, On the \psi-Hilfer fractional derivatives, Commun. Nonlinear Sci., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
    [27] J. Vanterler da C. Sousa, D. Santos de Oliveira, E. Capelas de Oliveira, On the existence and stability for non-instantaneous impulsive fractional integrodifferential equation, Math. Method. Appl. Sci., 42 (2019), 1249–1261. https://doi.org/10.1002/mma.5430 doi: 10.1002/mma.5430
    [28] L. Vangipuram, L. Srinivasa, D. J. Vasundhara, Theory of fractional dynamic systems, 2009.
    [29] G. Wang, S. Liu, L. Zhang, Eigenvalue problem for nonlinear fractional differential equations with integral boundary conditions, Abstr. Appl. Anal., 2014 (2014), 916260. https://doi.org/10.1155/2014/916260 doi: 10.1155/2014/916260
    [30] R. L. Wheeden, Measure and Integral: An Introduction to Real Analysis, CRC Press, 2015.
    [31] A. Zada, M. Alam, U. Riaz, Analysis of q-fractional implicit boundary value problems having Stieltjes integral conditions, Math. Method. Appl. Sci., 44 (2021), 4381–4413. https://doi.org/10.1002/mma.7038 doi: 10.1002/mma.7038
    [32] A. Zada, S. Ali, T. Li, Analysis of a new class of impulsive implicit sequential fractional differential equations, Int. J. Nonlinear Sci. Num., 21 (2020), 571–587. https://doi.org/10.1515/ijnsns-2019-0030 doi: 10.1515/ijnsns-2019-0030
    [33] A. Zada, S. Ali, Stability of integral Caputo-type boundary value problem with noninstantaneous impulses, Int. J. Appl. Comput. Math., 5 (2019), 55. https://doi.org/10.1007/s40819-019-0640-0 doi: 10.1007/s40819-019-0640-0
    [34] A. Zada, W. Ali, C. Park, Ulam's type stability of higher order nonlinear delay differential equations via integral inequality of Gr\ddot{o}nwall-Bellman-Bihari's type, Appl. Math. Comput., 350 (2019), 60–65. https://doi.org/10.1016/j.amc.2019.01.014 doi: 10.1016/j.amc.2019.01.014
    [35] A. Zada, S. O. Shah, Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses, Hacet. J. Math. Stat., 47 (2018), 1196–1205.
    [36] A. Zada, S. Shaleena, T. Li, Stability analysis of higher order nonlinear differential equations in \beta-normed spaces, Math. Method. Appl. Sci., 42 (2019), 1151–1166. https://doi.org/10.1002/mma.5419 doi: 10.1002/mma.5419
    [37] L. Zhang, B. Ahmadr, G. Wang, Successive iterations for positive extremal solutions of nonlinear fractional differential equations on a half-line, B. Aust. Math. Soc., 91 (2015), 116–128. https://doi.org/10.1017/S0004972714000550 doi: 10.1017/S0004972714000550
    [38] B. Zhang, R. Majeed, M. Alam, On fractional Langevin equations with stieltjes integral conditions, Mathematics, 10 (2022), 3877. https://doi.org/10.3390/math10203877 doi: 10.3390/math10203877
    [39] G. M. Zaslavsky, Hamiltonian chaos and fractional dynamics, Oxford University Press, 2005.
  • This article has been cited by:

    1. Gunaseelan Mani, Rajagopalan Ramaswamy, Arul Joseph Gnanaprakasam, Amr Elsonbaty, Ola A. Ashour Abdelnaby, Stojan Radenović, Application of Fixed Points in Bipolar Controlled Metric Space to Solve Fractional Differential Equation, 2023, 7, 2504-3110, 242, 10.3390/fractalfract7030242
    2. Manoj Kumar, Pankaj Kumar, Rajagopalan Ramaswamy, Ola A. Ashour Abdelnaby, Amr Elsonbaty, Stojan Radenović, (α − ψ) Meir–Keeler Contractions in Bipolar Metric Spaces, 2023, 11, 2227-7390, 1310, 10.3390/math11061310
    3. Arul Joseph Gnanaprakasam, Gunaseelan Mani, Rajagopalan Ramaswamy, Ola A. Ashour Abdelnaby, Khizar Hyatt Khan, Stojan Radenović, Application of Fixed-Point Results to Integral Equation through F-Khan Contraction, 2023, 15, 2073-8994, 773, 10.3390/sym15030773
    4. Fahad Jahangeer, Salha Alshaikey, Umar Ishtiaq, Tania A. Lazăr, Vasile L. Lazăr, Liliana Guran, Certain Interpolative Proximal Contractions, Best Proximity Point Theorems in Bipolar Metric Spaces with Applications, 2023, 7, 2504-3110, 766, 10.3390/fractalfract7100766
    5. Erdal Karapınar, Marija Cvetković, An inevitable note on bipolar metric spaces, 2024, 9, 2473-6988, 3320, 10.3934/math.2024162
    6. Waqar Afzal, Mujahid Abbas, Sayed M. Eldin, Zareen A. Khan, Some well known inequalities for (h_1, h_2) -convex stochastic process via interval set inclusion relation, 2023, 8, 2473-6988, 19913, 10.3934/math.20231015
    7. Menaha Dhanraj, Arul Joseph Gnanaprakasam, Gunaseelan Mani, Rajagopalan Ramaswamy, Khizar Hyatt Khan, Ola Ashour A. Abdelnaby, Stojan Radenović, Fixed point theorem on an orthogonal extended interpolative \psi\mathcal{F} -contraction, 2023, 8, 2473-6988, 16151, 10.3934/math.2023825
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1361) PDF downloads(96) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog