Research article Special Issues

Stieltjes integral boundary value problem involving a nonlinear multi-term Caputo-type sequential fractional integro-differential equation

  • Received: 12 May 2023 Revised: 27 September 2023 Accepted: 29 September 2023 Published: 18 October 2023
  • MSC : 26A33, 34A08, 34B15

  • In this article, we analyze the existence and uniqueness of mild solution to the Stieltjes integral boundary value problem involving a nonlinear multi-term, Caputo-type sequential fractional integro-differential equation. Krasnoselskii's fixed-point theorem and the Banach contraction principle are utilized to obtain the existence and uniqueness of the mild solution of the aforementioned problem. Furthermore, the Hyers-Ulam stability is obtained with the help of established methods. Our proposed model contains both the integer order and fractional order derivatives. As a result, the exponential function appears in the solution of the model, which is a fundamental and naturally important function for integer order differential equations and its many properties. Finally, two examples are provided to illustrate the key findings.

    Citation: Jiqiang Zhang, Siraj Ul Haq, Akbar Zada, Ioan-Lucian Popa. Stieltjes integral boundary value problem involving a nonlinear multi-term Caputo-type sequential fractional integro-differential equation[J]. AIMS Mathematics, 2023, 8(12): 28413-28434. doi: 10.3934/math.20231454

    Related Papers:

  • In this article, we analyze the existence and uniqueness of mild solution to the Stieltjes integral boundary value problem involving a nonlinear multi-term, Caputo-type sequential fractional integro-differential equation. Krasnoselskii's fixed-point theorem and the Banach contraction principle are utilized to obtain the existence and uniqueness of the mild solution of the aforementioned problem. Furthermore, the Hyers-Ulam stability is obtained with the help of established methods. Our proposed model contains both the integer order and fractional order derivatives. As a result, the exponential function appears in the solution of the model, which is a fundamental and naturally important function for integer order differential equations and its many properties. Finally, two examples are provided to illustrate the key findings.



    加载中


    [1] S. Abbas, M. Benchohra, G. M. N'Guerekata, Topics in fractional differential equations, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-4036-9
    [2] B. Ahmad, A. Alsaedi, S. K. Ntouyas, J. Tariboon, Hadamard-type fractional differential equations, inclusions and inequalities, Springer, 2017. https://doi.org/10.1007/978-3-319-52141-1
    [3] B. Ahmad, J. J. Nieto, Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Bound. Value Probl., 2009 (2009), 708576. https://doi.org/10.1155/2009/708576 doi: 10.1155/2009/708576
    [4] B. Ahmad, J. J. Nieto, Existence of solutions for nonlocal boundary value problems of higher-order nonlinear fractional differential equations, Abstr. Appl. Anal., 2009 (2009), 494720. https://doi.org/10.1155/2009/494720 doi: 10.1155/2009/494720
    [5] B. Ahmad, R. P. Agarwal, M. Alblewi, A. Alsaedi, On Nonlinear multi-term fractional integro-differential equations with Anti-periodic boundary conditions, Prog. Fract. Differ. Appl., 8 (2022), 349–356. https://doi.org/10.18576/pfda/080301 doi: 10.18576/pfda/080301
    [6] M. Alqhtani, K. M. Owolabi, K. M. Saad, E. Pindza, Spatiotemporal chaos in spatially extended fractional dynamical systems, Commun. Nonlinear Sci., 119 (2023), 107118. https://doi.org/10.1016/j.cnsns.2023.107118 doi: 10.1016/j.cnsns.2023.107118
    [7] M. Alqhtani, K. M. Saad, Numerical solutions of space-fractional diffusion equations via the exponential decay kernel, AIMS Math., 7 (2022), 6535–6549. https://doi.org/10.3934/math.2022364 doi: 10.3934/math.2022364
    [8] D. Baleanu, J. A. T. Machado, A. C. J. Luo, Fractional dynamics and control, New York: Springer, 2011. https://doi.org/10.1007/978-1-4614-0457-6
    [9] M. Benchora, S. Hamani, J. Henderson, Functional differential inclusions with integral boundary conditions, Electron. J. Qual. Theory Differ. Equ., 15 (2007), 1–13. https://doi.org/10.14232/ejqtde.2007.1.15 doi: 10.14232/ejqtde.2007.1.15
    [10] M. Benchohra, S. Hamani, S. K. Ntouyas, Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Anal. Theor., 71 (2009), 2391–2396. https://doi.org/10.1016/j.na.2009.01.073 doi: 10.1016/j.na.2009.01.073
    [11] T. A. Burton, T. Furumochi, Krasnoselskii's fixed point theorem and stability, Nonlinear Anal. Theor., 49 (2002), 445–454. https://doi.org/10.1016/S0362-546X(01)00111-0 doi: 10.1016/S0362-546X(01)00111-0
    [12] A. Carpinteri, F. Mainardi, Fractals and fractional calculus in continuum mechanics, Springer, 1997. https://doi.org/10.1007/978-3-7091-2664-6
    [13] M. Cichon, H. A. H. Salem, On the lack of equivalence between differential and integral forms of the Caputo-type fractional problems, J. Pseudo-Differ. Oper. Appl., 11 (2020), 1869–1895. https://doi.org/10.1007/s11868-020-00345-z doi: 10.1007/s11868-020-00345-z
    [14] K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Berlin: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2
    [15] H. Fallahgoul, S. Focardi, F. Fabozzi, Fractional calculus and fractional processes with applications to financial economics: Theory and application, Academic Press, 2016.
    [16] J. Graef, L. Kong, M. Wang, Existence and uniqueness of solutions for a fractional boundary value problem on a graph, Fract. Calc. Appl. Anal., 17 (2014), 499–510. https://doi.org/10.2478/s13540-014-0182-4 doi: 10.2478/s13540-014-0182-4
    [17] J. Henderson, R. Luca, Nonexistence of positive solutions for a system of coupled fractional boundary value problems, Boundary Value Probl., 2015 (2015), 138. https://doi.org/10.1186/s13661-015-0403-8 doi: 10.1186/s13661-015-0403-8
    [18] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
    [19] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [20] R. Magin, Fractional calculus in Bioengineering Begell House Publishers, 2006.
    [21] M. Obloza, Hyers stability of the linear differential equation, 1993.
    [22] H. A. H. Salem, M.Cichon, W. Shammakh, Generalized fractional calculus in Banach spaces and applications to existence results for boundary value problems, Bound. Value Probl., 2023 (2023), 57. https://doi.org/10.1186/s13661-023-01745-y doi: 10.1186/s13661-023-01745-y
    [23] H. A. H. Salem, M. Cichon, Analysis of tempered fractional calculus in H$\ddot{o}$lder and Orlicz spaces, Symmetry, 14 (2022), 1581. https://doi.org/10.3390/sym14081581 doi: 10.3390/sym14081581
    [24] H. M. Srivastava, K. M. Saad, W. M. Hamanah, Certain new models of the multi-space fractal-fractional Kuramoto-Sivashinsky and Korteweg-de Vries equations, Mathematics, 10 (2022), 1089. https://doi.org/10.3390/math10071089 doi: 10.3390/math10071089
    [25] S. M. Ulam, A collection of mathematical problems, 1960.
    [26] J. Vanterler da C. Sousa, E. Capelas de Oliveira, On the $\psi$-Hilfer fractional derivatives, Commun. Nonlinear Sci., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
    [27] J. Vanterler da C. Sousa, D. Santos de Oliveira, E. Capelas de Oliveira, On the existence and stability for non-instantaneous impulsive fractional integrodifferential equation, Math. Method. Appl. Sci., 42 (2019), 1249–1261. https://doi.org/10.1002/mma.5430 doi: 10.1002/mma.5430
    [28] L. Vangipuram, L. Srinivasa, D. J. Vasundhara, Theory of fractional dynamic systems, 2009.
    [29] G. Wang, S. Liu, L. Zhang, Eigenvalue problem for nonlinear fractional differential equations with integral boundary conditions, Abstr. Appl. Anal., 2014 (2014), 916260. https://doi.org/10.1155/2014/916260 doi: 10.1155/2014/916260
    [30] R. L. Wheeden, Measure and Integral: An Introduction to Real Analysis, CRC Press, 2015.
    [31] A. Zada, M. Alam, U. Riaz, Analysis of q-fractional implicit boundary value problems having Stieltjes integral conditions, Math. Method. Appl. Sci., 44 (2021), 4381–4413. https://doi.org/10.1002/mma.7038 doi: 10.1002/mma.7038
    [32] A. Zada, S. Ali, T. Li, Analysis of a new class of impulsive implicit sequential fractional differential equations, Int. J. Nonlinear Sci. Num., 21 (2020), 571–587. https://doi.org/10.1515/ijnsns-2019-0030 doi: 10.1515/ijnsns-2019-0030
    [33] A. Zada, S. Ali, Stability of integral Caputo-type boundary value problem with noninstantaneous impulses, Int. J. Appl. Comput. Math., 5 (2019), 55. https://doi.org/10.1007/s40819-019-0640-0 doi: 10.1007/s40819-019-0640-0
    [34] A. Zada, W. Ali, C. Park, Ulam's type stability of higher order nonlinear delay differential equations via integral inequality of Gr$\ddot{o}$nwall-Bellman-Bihari's type, Appl. Math. Comput., 350 (2019), 60–65. https://doi.org/10.1016/j.amc.2019.01.014 doi: 10.1016/j.amc.2019.01.014
    [35] A. Zada, S. O. Shah, Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses, Hacet. J. Math. Stat., 47 (2018), 1196–1205.
    [36] A. Zada, S. Shaleena, T. Li, Stability analysis of higher order nonlinear differential equations in $\beta$-normed spaces, Math. Method. Appl. Sci., 42 (2019), 1151–1166. https://doi.org/10.1002/mma.5419 doi: 10.1002/mma.5419
    [37] L. Zhang, B. Ahmadr, G. Wang, Successive iterations for positive extremal solutions of nonlinear fractional differential equations on a half-line, B. Aust. Math. Soc., 91 (2015), 116–128. https://doi.org/10.1017/S0004972714000550 doi: 10.1017/S0004972714000550
    [38] B. Zhang, R. Majeed, M. Alam, On fractional Langevin equations with stieltjes integral conditions, Mathematics, 10 (2022), 3877. https://doi.org/10.3390/math10203877 doi: 10.3390/math10203877
    [39] G. M. Zaslavsky, Hamiltonian chaos and fractional dynamics, Oxford University Press, 2005.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(686) PDF downloads(88) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog