Research article

A framework for establishing constraint Jacobian matrices of planar rigid-flexible-multibody systems

  • Received: 03 January 2023 Revised: 14 June 2023 Accepted: 19 June 2023 Published: 06 July 2023
  • MSC : 65D17, 65D30

  • Constraint violation correction is an important research topic in solving multibody system dynamics. For a multibody system dynamics method which derives acceleration equations in a recursive manner and avoids overall dynamics equations, a fast and accurate solution to the violation problem is paramount. The direct correction method is favored due to its simplicity, high accuracy and low computational cost. This method directly supplements the constraint equations and performs corrections, making it an effective solution for addressing violation problems. However, calculating the significant Jacobian matrices for this method using dynamics equations can be challenging, especially for complex multibody systems. This paper presents a programmatic framework for deriving Jacobian matrices of planar rigid-flexible-multibody systems in a simple semi-analytic form along two paths separated by a secondary joint. The approach is verified by comparing constraint violation errors with and without the constraint violation correction in numerical examples. Moreover, the proposed method's computational speed is compared with that of the direct differential solution, verifying its efficiency. The straightforward, highly programmable and universal approach provides a new idea for programming large-scale dynamics software and extends the application of dynamics methods focused on deriving acceleration equations.

    Citation: Lina Zhang, Xiaoting Rui, Jianshu Zhang, Guoping Wang, Junjie Gu, Xizhe Zhang. A framework for establishing constraint Jacobian matrices of planar rigid-flexible-multibody systems[J]. AIMS Mathematics, 2023, 8(9): 21501-21530. doi: 10.3934/math.20231096

    Related Papers:

  • Constraint violation correction is an important research topic in solving multibody system dynamics. For a multibody system dynamics method which derives acceleration equations in a recursive manner and avoids overall dynamics equations, a fast and accurate solution to the violation problem is paramount. The direct correction method is favored due to its simplicity, high accuracy and low computational cost. This method directly supplements the constraint equations and performs corrections, making it an effective solution for addressing violation problems. However, calculating the significant Jacobian matrices for this method using dynamics equations can be challenging, especially for complex multibody systems. This paper presents a programmatic framework for deriving Jacobian matrices of planar rigid-flexible-multibody systems in a simple semi-analytic form along two paths separated by a secondary joint. The approach is verified by comparing constraint violation errors with and without the constraint violation correction in numerical examples. Moreover, the proposed method's computational speed is compared with that of the direct differential solution, verifying its efficiency. The straightforward, highly programmable and universal approach provides a new idea for programming large-scale dynamics software and extends the application of dynamics methods focused on deriving acceleration equations.



    加载中


    [1] F. M. Amirouche, Computational methods in multibody dynamics, Englewood Cliffs, NJ: Prentice-Hall, 1992.
    [2] J. G. De Jalon, E. Bayo, Kinematic and dynamic simulation of multibody systems: The real-time challenge, Springer, 2012. https://doi.org/10.1007/978-1-4612-2600-0
    [3] W. Jens, Dynamics of systems of rigid bodies, Berlin: Springer, 2013. https://doi.org/10.1007/978-3-322-90942-8
    [4] Y. Liu, Z. Pan, X. Ge, Dynamics of multibody systems, Beijing: Higher Education Press, 2014.
    [5] P. E. Nikravesh, Computer-aided analysis of mechanical systems, Upper Saddle River: Prentice-Hall, 1988.
    [6] R. E. Roberson, R. Schwertassek, Dynamics of multibody systems, Berlin: Springer, 2012. https://doi.org/10.1007/978-3-642-86464-3
    [7] A. A. Shabana, Dynamics of multibody systems, New York: Cambridge University Press, 2020. https://doi.org/10.1017/9781108757553
    [8] S. Werner, Multibody systems handbook, Berlin: Springer, 1990. https://doi.org/10.1007/978-3-642-50995-7
    [9] W. M. Silver, On the equivalence of Lagrangian and Newton-Euler dynamics for manipulators, Int. J. Rob. Res., 1 (1982), 60–70. https://doi.org/10.1177/027836498200100204 doi: 10.1177/027836498200100204
    [10] A. Cammarata, R. Sinatra, P. D. Maddìo, Static condensation method for the reduced dynamic modeling of mechanisms and structures, Arch. Appl. Mech., 89 (2019), 2033–2051. https://doi.org/10.1007/s00419-019-01560-x doi: 10.1007/s00419-019-01560-x
    [11] R. Featherstone, Rigid body dynamics algorithms, Springer, 2014. https://doi.org/10.1007/978-1-4899-7560-7
    [12] F. I. T. Petrescu, Advanced dynamics processes applied to an articulated robot, Processes, 10 (2022), 640. https://doi.org/10.3390/pr10040640 doi: 10.3390/pr10040640
    [13] X. Rui, J. Zhang, X. Wang, B. Rong, B. He, Z. Jin, Multibody system transfer matrix method: The past, the present, and the future, Int. J. Mech. Syst. Dyn., 2 (2022), 3–26. https://doi.org/10.1002/msd2.12037 doi: 10.1002/msd2.12037
    [14] R. Xue, D. Bestle, Reduced multibody system transfer matrix method using decoupled hinge equations, Int. J. Mech. Syst. Dyn., 1 (2021), 12. https://doi.org/10.1002/msd2.12026 doi: 10.1002/msd2.12026
    [15] H. Brandl, R. Johanni, M. Otter, A very efficient algorithm for the ssimulation of robots and similar multibody systems without inversion of the mass matrix, IFAC Proc., 19 (1986), 95–100. https://doi.org/10.1016/S1474-6670(17)59460-4 doi: 10.1016/S1474-6670(17)59460-4
    [16] A. Cammarata, R. Sinatra, P. D. Maddio, Interface reduction in flexible multibody systems using the floating frame of reference formulation, J. Sound Vib., 523 (2022). https://doi.org/10.1016/j.jsv.2021.116720 doi: 10.1016/j.jsv.2021.116720
    [17] K. S. Anderson, Recursive derivation of explicit equations of motion for efficient dynamic/control simulation of large multibody systems, Stanford University, 1990.
    [18] A. Jain, G. Rodriguez, Recursive flexible multibody system dynamics using spatial operators, J. Guid. Control Dyn., 15 (1992), 1453–1466. https://doi.org/10.2514/3.11409 doi: 10.2514/3.11409
    [19] H. Brandl, An algorithm for the simulation of multibody systems with kinematic loops, Proc.7th World Congr. Theory Mach. Mech., 1987.
    [20] F. Marques, A. P. Souto, P. Flores, On the constraints violation in forward dynamics of multibody systems, Multibody Syst. Dyn., 39 (2017), 385–419. https://doi.org/10.1007/s11044-016-9530-y doi: 10.1007/s11044-016-9530-y
    [21] P. E. Nikravesh, Some methods for dynamic analysis of constrained mechanical systems: a survey, Berlin: Springer, 1984. https://doi.org/10.1007/978-3-642-52465-3_14
    [22] J. Baumgarte, Stabilization of constraints and integrals of motion in dynamical systems, Comput. Methods Appl. Mech. Eng., 1 (1972), 1–16. https://doi.org/10.1016/0045-7825(72)90018-7 doi: 10.1016/0045-7825(72)90018-7
    [23] S. T. Lin, J. N. Huang, Stabilization of baumgarte's method using the Runge-Kutta approach, J. Mech. Design, 124 (2002). https://doi.org/10.1115/1.1519277 doi: 10.1115/1.1519277
    [24] P. Zhang, A Stabilization of constraints in the numerical solution of Euler-Lagrange equation, Chin. J. Eng. Math., 20 (2003), 13–18. https://doi.org/10.3969/j.issn.1005-3085.2003.04.003 doi: 10.3969/j.issn.1005-3085.2003.04.003
    [25] P. Flores, M. Machado, E. Seabra, T. Miguel, A parametric study on the baumgarte stabilization method for forward dynamics of constrained multibody systems, J. Comput. Nonlinear Dyn., 6 (2009), 011019. https://doi.org/10.1115/1.4002338 doi: 10.1115/1.4002338
    [26] K. T. Wehage, R. A. Wehage, B. Ravani, Generalized coordinate partitioning for complex mechanisms based on kinematic substructuring, Mech. Mach. Theory, 92 (2015), 464–483. https://doi.org/10.1016/j.mechmachtheory.2015.06.006 doi: 10.1016/j.mechmachtheory.2015.06.006
    [27] P. Fisette, B. Vaneghem, Numerical integration of multibody system dynamic equations using the coordinate partitioning method in an implicit Newmark scheme, Comput. Methods Appl. Mech. Eng., 135 (1996), 85–105. https://doi.org/10.1016/0045-7825(95)00926-4 doi: 10.1016/0045-7825(95)00926-4
    [28] E. J. Haug, J. Yen, Generalized coordinate partitioning methods for numerical integration of differential-algebraic equations of dynamics, In: Real-time integration methods for mechanical system simulation, Springer, 1991. https://doi.org/10.1007/978-3-642-76159-1_5
    [29] R. Singh, P. Likins, Singular value decomposition for constrained dynamical systems, J. Appl. Mech., 52 (1985), 943–948. https://doi.org/10.1115/1.3169173 doi: 10.1115/1.3169173
    [30] S. Kim, M. Vanderploeg, QR decomposition for state space representation of constrained mechanical dynamic systems, J. Mech. Design, 108 (1986), 183–188. https://doi.org/10.1115/1.3260800 doi: 10.1115/1.3260800
    [31] Q. Yu, J. Hong, A new violation correction method for constraint multibody systems, Chin. J. Theor. Appl., 30 (1998), 300–306. https://doi.org/10.6052/0459-1879-1998-3-1995-130 doi: 10.6052/0459-1879-1998-3-1995-130
    [32] G. Lyu, R. Liu, Errors control of constraint violation in dynamical simulation for constrained mechanical systems, J. Comput. Nonlinear Dyn., 14 (2019). https://doi.org/10.1115/1.4042493 doi: 10.1115/1.4042493
    [33] X. Xu, J. Luo, Z. Wu, Extending the modified inertia representation to constrained rigid multibody systems, J. Appl. Mech., 87 (2020), 011010. https://doi.org/10.1115/1.4045001 doi: 10.1115/1.4045001
    [34] J. Zhang, D. Liu, Y. Liu, A constraint violation suppressing formulation for spatial multibody dynamics with singular mass matrix, Multibody Syst Dyn., 36 (2016), 87–110. https://doi.org/10.1007/s11044-015-9458-7 doi: 10.1007/s11044-015-9458-7
    [35] L. Zhang, X. Rui, J. Zhang, J. Gu, H. Zheng, T. Li, Study on transfer matrix method for the planar multibody system with closed-loops, J. Comput. Nonlinear Dyn., 16 (2021). https://doi.org/10.1115/1.4052433 doi: 10.1115/1.4052433
    [36] S. Yoon, R. M. Howe, D. T. Greenwood, Geometric elimination of constraint violations in numerical simulation of lagrangian equations, J. Mech. Design, 116 (1994), 1058–1064. https://doi.org/10.1115/1.2919487 doi: 10.1115/1.2919487
    [37] Y. Q, I. M. Chen, A direct violation correction method in numerical simulation of constrained multibody systems, Comput. Mech., 26 (2000), 52–57. https://doi.org/10.1007/s004660000149 doi: 10.1007/s004660000149
    [38] J. Hong, Computational multibody system dynamics, Beijing: Higher Education Press, 1999.
    [39] D. Negrut, A. Dyer, Adams/solver primer, MSC Software Ann Arbor, 2004.
    [40] J. Wittenburg, Dynamics of mulitibody systems-a brief review, Space Humanity, 1989, 89–92. https://doi.org/10.1016/B978-0-08-037877-0.50015-6 doi: 10.1016/B978-0-08-037877-0.50015-6
    [41] R. James, The unified modeling language reference manual, Addison-Wesley Professional, 2006.
    [42] F. Liu, J. Zhang, Q. Hu, A modified constraint force algorithm for flexible multibody dynamics with loop constraints, Nonlinear Dyn., 90 (2017), 1885–1906. https://doi.org/10.1007/s11071-017-3770-0 doi: 10.1007/s11071-017-3770-0
    [43] H. Lu, X. Rui, Y. Ding, Y. Chang, Y. Chen, J. Ding, X. Zhang, A hybrid numerical method for vibration analysis of linear multibody systems with flexible components, Appl. Math. Model., 101 (2022), 748–771. https://doi.org/10.1016/j.apm.2021.09.015 doi: 10.1016/j.apm.2021.09.015
    [44] Y. Lu, Z. Chang, Y. Lu, Y. Wang, Development and kinematics/statics analysis of rigid-flexible-soft hybrid finger mechanism with standard force sensor, Robot. Comput. Integr. Manuf., 67 (2021), 101978. https://doi.org/10.1016/j.rcim.2020.101978 doi: 10.1016/j.rcim.2020.101978
    [45] J. Zhang, X. Rui, F. Liu, Q. Zhou, L. Gu, Substructuring technique for dynamics analysis of flexible beams with large deformation, J. Shanghai Jiaotong Univ., 22 (2017), 562–569. https://doi.org/10.1007/s12204-017-1875-8 doi: 10.1007/s12204-017-1875-8
    [46] A. E. Nabawy, A. A. Abdelrahman, W. S. Abdalla, A. M. Abdelhaleem, S. S. Alieldin, Analysis of the dynamic behavior of the double wishbone suspension system, Int. J. Appl. Mech., 11 (2019), 1950044. https://doi.org/10.1142/S1758825119500443 doi: 10.1142/S1758825119500443
    [47] B. Zhang, Z. Li, Mathematical modeling and nonlinear analysis of stiffness of double wishbone independent suspension, J. Mech. Sci. Technol., 35 (2021), 5351–5357. https://doi.org/10.1007/s12206-021-1107-x doi: 10.1007/s12206-021-1107-x
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1162) PDF downloads(70) Cited by(1)

Article outline

Figures and Tables

Figures(22)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog