
Constraint violation correction is an important research topic in solving multibody system dynamics. For a multibody system dynamics method which derives acceleration equations in a recursive manner and avoids overall dynamics equations, a fast and accurate solution to the violation problem is paramount. The direct correction method is favored due to its simplicity, high accuracy and low computational cost. This method directly supplements the constraint equations and performs corrections, making it an effective solution for addressing violation problems. However, calculating the significant Jacobian matrices for this method using dynamics equations can be challenging, especially for complex multibody systems. This paper presents a programmatic framework for deriving Jacobian matrices of planar rigid-flexible-multibody systems in a simple semi-analytic form along two paths separated by a secondary joint. The approach is verified by comparing constraint violation errors with and without the constraint violation correction in numerical examples. Moreover, the proposed method's computational speed is compared with that of the direct differential solution, verifying its efficiency. The straightforward, highly programmable and universal approach provides a new idea for programming large-scale dynamics software and extends the application of dynamics methods focused on deriving acceleration equations.
Citation: Lina Zhang, Xiaoting Rui, Jianshu Zhang, Guoping Wang, Junjie Gu, Xizhe Zhang. A framework for establishing constraint Jacobian matrices of planar rigid-flexible-multibody systems[J]. AIMS Mathematics, 2023, 8(9): 21501-21530. doi: 10.3934/math.20231096
[1] | Yayun Fu, Mengyue Shi . A conservative exponential integrators method for fractional conservative differential equations. AIMS Mathematics, 2023, 8(8): 19067-19082. doi: 10.3934/math.2023973 |
[2] | Yong-Chao Zhang . Least energy solutions to a class of nonlocal Schrödinger equations. AIMS Mathematics, 2024, 9(8): 20763-20772. doi: 10.3934/math.20241009 |
[3] | Tingting Ma, Yuehua He . An efficient linearly-implicit energy-preserving scheme with fast solver for the fractional nonlinear wave equation. AIMS Mathematics, 2023, 8(11): 26574-26589. doi: 10.3934/math.20231358 |
[4] | Karmina K. Ali, Resat Yilmazer . Discrete fractional solutions to the effective mass Schrödinger equation by mean of nabla operator. AIMS Mathematics, 2020, 5(2): 894-903. doi: 10.3934/math.2020061 |
[5] | Erdal Bas, Ramazan Ozarslan . Theory of discrete fractional Sturm–Liouville equations and visual results. AIMS Mathematics, 2019, 4(3): 593-612. doi: 10.3934/math.2019.3.593 |
[6] | Dengfeng Lu, Shuwei Dai . On a class of three coupled fractional Schrödinger systems with general nonlinearities. AIMS Mathematics, 2023, 8(7): 17142-17153. doi: 10.3934/math.2023875 |
[7] | Mubashir Qayyum, Efaza Ahmad, Hijaz Ahmad, Bandar Almohsen . New solutions of time-space fractional coupled Schrödinger systems. AIMS Mathematics, 2023, 8(11): 27033-27051. doi: 10.3934/math.20231383 |
[8] | Xiaojun Zhou, Yue Dai . A spectral collocation method for the coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2022, 7(4): 5670-5689. doi: 10.3934/math.2022314 |
[9] | Zunyuan Hu, Can Li, Shimin Guo . Fast finite difference/Legendre spectral collocation approximations for a tempered time-fractional diffusion equation. AIMS Mathematics, 2024, 9(12): 34647-34673. doi: 10.3934/math.20241650 |
[10] | Xiao-Yu Li, Yu-Lan Wang, Zhi-Yuan Li . Numerical simulation for the fractional-in-space Ginzburg-Landau equation using Fourier spectral method. AIMS Mathematics, 2023, 8(1): 2407-2418. doi: 10.3934/math.2023124 |
Constraint violation correction is an important research topic in solving multibody system dynamics. For a multibody system dynamics method which derives acceleration equations in a recursive manner and avoids overall dynamics equations, a fast and accurate solution to the violation problem is paramount. The direct correction method is favored due to its simplicity, high accuracy and low computational cost. This method directly supplements the constraint equations and performs corrections, making it an effective solution for addressing violation problems. However, calculating the significant Jacobian matrices for this method using dynamics equations can be challenging, especially for complex multibody systems. This paper presents a programmatic framework for deriving Jacobian matrices of planar rigid-flexible-multibody systems in a simple semi-analytic form along two paths separated by a secondary joint. The approach is verified by comparing constraint violation errors with and without the constraint violation correction in numerical examples. Moreover, the proposed method's computational speed is compared with that of the direct differential solution, verifying its efficiency. The straightforward, highly programmable and universal approach provides a new idea for programming large-scale dynamics software and extends the application of dynamics methods focused on deriving acceleration equations.
Fractional calculus is a popular subject because of having a lot of application areas of theoretical and applied sciences, like engineering, physics, biology, etc. Discrete fractional calculus is more recent area than fractional calculus and it was first defined by Diaz–Osler [1], Miller–Ross [2] and Gray–Zhang [3]. More recently, the theory of discrete fractional calculus have begun to develop rapidly with Goodrich–Peterson [4], Baleanu et al. [5,6], Ahrendt et al. [7], Atici–Eloe [8,9], Anastassiou [10], Abdeljawad et al. [11,12,13,14,15,16], Hein et al. [17] and Cheng et al. [18], Mozyrska [19] and so forth [20,21,22,23,24,25].
Fractional Sturm–Liouville differential operators have been studied by Bas et al. [26,27], Klimek et al.[28], Dehghan et al. [29]. Besides that, Sturm–Liouville differential and difference operators were studied by [30,31,32,33]. In this study, we define DFHA operators and prove the self–adjointness of DFHA operator, some spectral properties of the operator.
More recently, Almeida et al. [34] have studied discrete and continuous fractional Sturm–Liouville operators, Bas–Ozarslan [35] have shown the self–adjointness of discrete fractional Sturm–Liouville operators and proved some spectral properties of the problem.
Sturm–Liouville equation having hydrogen atom potential is defined as follows
d2Rdr2+ardRdr−ℓ(ℓ+1)r2R+(E+ar)R=0(0<r<∞). |
In quantum mechanics, the study of the energy levels of the hydrogen atom leads to this equation. Where R is the distance from the mass center to the origin, ℓ is a positive integer, a is real number E is energy constant and r is the distance between the nucleus and the electron.
The hydrogen atom is a two–particle system and it composes of an electron and a proton. Interior motion of two particles around the center of mass corresponds to the movement of a single particle by a reduced mass. The distance between the proton and the electron is identified r and r is given by the orientation of the vector pointing from the proton to the electron. Hydrogen atom equation is defined as Schrödinger equation in spherical coordinates and in consequence of some transformations, this equation is defined as
y′′+(λ−l(l+1)x2+2x−q(x))y=0. |
Spectral theory of hydrogen atom equation is studied by [39,40,41]. Besides that, we can observe that hydrogen atom differential equation has series solution as follows ([39], p.268)
y(x)=a0xl+1{1−k−l−11!(2l+2).2xk+(k−l−1)(k−l−2)2!(2l+2)(2l+3)(2xk)2+…+(−1)n(k−l−1)(k−l−2)…3.2.1(k−1)!(2l+2)(2l+3)…(2l+n)(2xk)n},k=1,2,… | (1.1) |
Recently, Bohner and Cuchta [36,37] studied some special integer order discrete functions, like Laguerre, Hermite, Bessel and especially Cuchta mentioned the difficulty in obtaining series solution of discrete special functions in his dissertation ([38], p.100). In this regard, finding series solution of DFHA equations is an open problem and has some difficulties in the current situation. For this reason, we study to obtain solutions of DFHA eq.s in a different way with representation of solutions.
In this study, we investigate DFHA equation in Riemann–Liouville and Grü nwald–Letnikov sense. The aim of this study is to contribute to the spectral theory of DFHA operator and behaviors of eigenfunctions and also to obtain the solution of DFHA equation.
We investigate DFHA equation in three different ways;
i) (nabla left and right) Riemann–Liouville (R–L)sense,
L1x(t)=∇μa(b∇μx(t))+(l(l+1)t2−2t+q(t))x(t)=λx(t), 0<μ<1, |
ii) (delta left and right) Grünwald–Letnikov (G–L) sense,
L2x(t)=Δμ−(Δμ+x(t))+(l(l+1)t2−2t+q(t))x(t)=λx(t), 0<μ<1, |
iii) (nabla left) Riemann–Liouville (R–L)sense,
L3x(t)=∇μa(∇μax(t))+(l(l+1)t2−2t+q(t))x(t)=λx(t), 0<μ<1. |
Definition 2.1. [42] Falling and rising factorial functions are defined as follows respectively
tα_=Γ(t+1)Γ(t−α+1), | (2.1) |
t¯α=Γ(t+α)Γ(t), | (2.2) |
where Γ is the gamma function, α∈R.
Remark 2.1. Delta and nabla operators hold the following properties
Δtα_=αtα−1_,∇t¯α=αt¯α−1. | (2.3) |
Definition 2.2. [2,8,11] Nabla fractional sum operators are given as below,
(i) The left fractional sum of order μ>0 is defined by
∇−μax(t)=1Γ(μ)t∑s=a+1(t−ρ(s))¯μ−1x(s), t∈Na+1, | (2.4) |
(ii) The right fractional sum of order μ>0 is defined by
b∇−μx(t)=1Γ(μ)b−1∑s=t(s−ρ(t))¯μ−1x(s), t∈ b−1N, | (2.5) |
where ρ(t)=t−1 is called backward jump operators, Na={a,a+1,...}, bN={b,b−1,...}.
Definition 2.3. [12,14] Nabla fractional difference operators are as follows,
(i) The left fractional difference of order μ>0 is defined by
∇μax(t)=∇n∇−(n−μ)ax(t)=∇nΓ(n−μ)t∑s=a+1(t−ρ(s))¯n−μ−1x(s), t∈Na+1, | (2.6) |
(ii) The right fractional difference of order μ>0 is defined by
b∇μx(t)=(−1)n∇n∇−(n−μ)ax(t)=(−1)nΔnΓ(n−μ)b−1∑s=t(s−ρ(t))¯n−μ−1x(s), t∈ b−1N. | (2.7) |
Fractional differences in (2.6−2.7) are called the Riemann–Liouville (R–L) definition of the μ-th order nabla fractional difference.
Definition 2.4. [1,18] Fractional difference operators are given as follows
(i) The delta left fractional difference of order μ, 0<μ≤1, is defined by
Δμ−x(t)=1hμt∑s=0(−1)sμ(μ−1)...(μ−s+1)s!x(t−s), t=1,...,N. | (2.8) |
(ii) The delta right fractional difference of order μ, 0<μ≤1, is defined by
Δμ+x(t)=1hμN−t∑s=0(−1)sμ(μ−1)...(μ−s+1)s!x(t+s), t=0,..,N−1, | (2.9) |
fractional differences in (2.8−2.9) are called the Grünwald–Letnikov (G–L) definition of the μ-th order delta fractional difference.
Definition 2.5 [14] Integration by parts formula for R–L nabla fractional difference operator is defined by, u is defined on bN and v is defined on Na,
b−1∑s=a+1u(s)∇μav(s)=b−1∑s=a+1v(s)b∇μu(s). | (2.10) |
Definition 2.6. [34] Integration by parts formula for G–L delta fractional difference operator is defined by, u, v is defined on {0,1,...,n}, then
n∑s=0u(s)Δμ−v(s)=n∑s=0v(s)Δμ+u(s). | (2.11) |
Definition 2.7. [17] f:Na→R, s∈ℜ, Laplace transform is defined as follows,
La{f}(s)=∞∑k=1(1−s)k−1f(a+k), |
where ℜ=C∖{1} and ℜ is called the set of regressive (complex) functions.
Definition 2.8. [17] Let f,g:Na→R, all t∈Na+1, convolution of f and g is defined as follows
(f∗g)(t)=t∑s=a+1f(t−ρ(s)+a)g(s), |
where ρ(s) is the backward jump function defined in [42] as
ρ(s)=s−1. |
Theorem 2.1. [17] f,g:Na→R, convolution theorem is expressed as follows,
La{f∗g}(s)=La{f}La{g}(s). |
Lemma 2.1. [17] f:Na→R, the following property is valid,
La+1{f}(s)=11−sLa{f}(s)−11−sf(a+1). |
Theorem 2.2. [17] f:Na→R, 0<μ<1, Laplace transform of nabla fractional difference
La+1{∇μaf}(s)=sμLa+1{f}(s)−1−sμ1−sf(a+1),t∈Na+1. |
Definition 2.9. [17] For |p|<1, α>0, β∈R and t∈Na, Mittag–Leffler function is defined by
Ep,α,β(t,a)=∞∑k=0pk(t−a)¯αk+βΓ(αk+β+1). |
Theorem 2.3. [17] For |p|<1, α>0, β∈R, |1−s|<1 and |s|α>p, Laplace transform of Mittag–Leffler function is as follows,
La+1{Ep,α,β(.,a)}(s)=sα−β−1sα−p. |
Let us consider equations in three different forms;
i) L1 DFHA operator L1 is defined in (nabla left and right) R–L sense,
L1x(t)=∇μa(p(t)b∇μx(t))+(l(l+1)t2−2t+q(t))x(t)=λx(t), 0<μ<1, | (3.1) |
where l is a positive integer or zero, q(t)+2t−l(l+1)t2 are named potential function., λ is the spectral parameter, t∈[a+1,b−1], x(t)∈l2[a+1,b−1], a>0.
ii) L2 DFHA operator L2 is defined in (delta left and right) G–L sense,
L2x(t)=Δμ−(p(t)Δμ+x(t))+(l(l+1)t2−2t+q(t))x(t)=λx(t), 0<μ<1, | (3.2) |
where p,q,l,λ is as defined above, t∈[1,n], x(t)∈l2[0,n].
iii) L3 DFHA operator L3 is defined in (nabla left) R–L sense,
L3x(t)=∇μa(∇μax(t))+(l(l+1)t2−2t+q(t))x(t)=λx(t), 0<μ<1, | (3.3) |
p,q,l,λ is as defined above, t∈[a+1,b−1], a>0.
Theorem 3.1. DFHA operator L1 is self–adjoint.
Proof.
u(t)L1v(t)=u(t)∇μa(p(t)b∇μv(t))+u(t)(l(l+1)t2−2t+q(t))v(t), | (3.4) |
v(t)L1u(t)=v(t)∇μa(p(t)b∇μu(t))+v(t)(l(l+1)t2−2t+q(t))u(t). | (3.5) |
Subtracting (16−17) from each other
u(t)L1v(t)−v(t)L1u(t)=u(t)∇μa(p(t)b∇μv(t))−v(t)∇μa(p(t)b∇μu(t)) |
and applying definite sum operator to both side of the last equality, we have
b−1∑s=a+1(u(s)L1v(s)−v(s)L1u(s))=b−1∑s=a+1u(s)∇μa(p(s)b∇μv(s))−b−1∑s=a+1v(s)∇μa(p(s)b∇μu(s)). | (3.6) |
Applying the integration by parts formula (2.10) to right hand side of (18), we have
b−1∑s=a+1(u(s)L1v(s)−v(s)L1u(s))=b−1∑s=a+1p(s)b∇μv(s)b∇μu(s)−b−1∑s=a+1p(s)b∇μu(s)b∇μv(s)=0, |
⟨L1u,v⟩=⟨u,L1v⟩. |
The proof completes.
Theorem 3.2. Eigenfunctions, corresponding to distinct eigenvalues, of the equation (3.2) are orthogonal.
Proof. Assume that λα and λβ are two different eigenvalues corresponds to eigenfunctions u(n) and v(n) respectively for the equation (3.1),
∇μa(p(t)b∇μu(t))+(l(l+1)t2−2t+q(t))u(t)−λαu(t)=0,∇μa(p(t)b∇μv(t))+(l(l+1)t2−2t+q(t))v(t)−λβv(t)=0, |
Multiplying last two equations to v(n) and u(n) respectively, subtracting from each other and applying sum operator, since the self–adjointness of the operator L1, we get
(λα−λβ)b−1∑s=a+1r(s)u(s)v(s)=0, |
since λα≠λβ,
b−1∑s=a+1r(s)u(s)v(s)=0,⟨u(t),v(t)⟩=0, |
and the proof completes.
Theorem 3.3. All eigenvalues of the equation (3.1) are real.
Proof. Assume λ=α+iβ, since the self–adjointness of the operator L1, we have
⟨L1u,u⟩=⟨u,L1u⟩,⟨λu,u⟩=⟨u,λu⟩, |
(λ−¯λ)⟨u,u⟩=0 |
Since ⟨u,u⟩r≠0,
λ=¯λ |
and hence β=0. So, the proof is completed.
Self–adjointness of L2 DFHA operator G–L sense, reality of eigenvalues and orthogonality of eigenfunctions of the equation 3.2 can be proven in a similar way to the Theorem 3.1–3.2–3.3 by means of Definition 2.5.
Theorem 3.4.
L3x(t)=∇μa(∇μax(t))+(l(l+1)t2−2t+q(t))x(t)=λx(t),0<μ<1, | (3.7) |
x(a+1)=c1,∇μax(a+1)=c2, | (3.8) |
where p(t)>0, r(t)>0, q(t) is defined and real valued, λ is the spectral parameter. The sum representation of solution of the problem (3.7)−(3.8) is given as follows,
x(t)=c1((1+l(l+1)(a+1)2−2a+1+q(a+1))Eλ,2μ,μ−1(t,a)−λEλ,2μ,2μ−1(t,a))+c2(Eλ,2μ,2μ−1(t,a)−Eλ,2μ,μ−1(t,a))−t∑s=a+1Eλ,2μ,2μ−1(t−ρ(s)+a)(l(l+1)s2−2s+q(s))x(s). | (3.9) |
Proof. Taking Laplace transform of the equation (3.7) by Theorem 2.2 and take (l(l+1)t2−2t+q(t))x(t)=g(t),
La+1{∇μa(∇μax)}(s)+La+1{g}(s)=λLa+1{x}(s),=sμLa+1{∇μax}(s)−1−sμ1−sc2=λLa+1{x}(s)−La+1{g}(s),=sμ(sμLa+1{x}(s)−1−sμ1−sc1)−1−sμ1−sc2=λLa+1{x}(s)−La+1{g}(s), |
=La+1{x}(s)=1−sμ1−s1s2μ−λ(sμc1+c2)−1s2μ−λLa+1{g}(s). |
Using Lemma 2.1, we have
La{x}(s)=c1(sμ−λs2μ−λ)−1−ss2μ−λ(11−sLa{g}(s)−11−sg(a+1))+c2(1−sμs2μ−λ). | (3.10) |
Now, taking inverse Laplace transform of the equation (3.10) and applying convolution theorem, then we have the representation of solution of the problem (3.7)−(3.8), |λ|<1, |1−s|<1 and |s|α>λ from Theorem 2.3., i.e.
L−1a{sμs2μ−λ}=Eλ,2μ,μ−1(t,a),L−1a{1s2μ−λ}=Eλ,2μ,2μ−1(t,a), |
L−1a{1s2μ−λLa{q(s)x(s)}}=t∑s=a+1Eλ,2μ,2μ−1(t−ρ(s)+a)q(s)x(s). |
Consequently, we have sum representation of solution for DFHA problem 3.7–3.8
x(t)=c1((1+l(l+1)(a+1)2−2a+1+q(a+1))Eλ,2μ,μ−1(t,a)−λEλ,2μ,2μ−1(t,a))+c2(Eλ,2μ,2μ−1(t,a)−Eλ,2μ,μ−1(t,a))−t∑s=a+1Eλ,2μ,2μ−1(t−ρ(s)+a)(l(l+1)s2−2s+q(s))x(s). |
Presume that c1=1,c2=0,a=0 in the representation of solution (3.9) and hence we may observe the behaviors of solutions in following figures (Figures 1–7) and tables (Tables 1–3);
x(t) | μ=0.3 | μ=0.35 | μ=0.4 | μ=0.45 | μ=0.5 |
x(1) | 1 | 1 | 1 | 1 | 1 |
x(2) | 0.612 | 0.714 | 1.123 | 0.918 | 1.020 |
x(3) | 0.700 | 0.900 | 1.515 | 1.370 | 1.641 |
x(5) | 0.881 | 1.336 | 2.402 | 2.747 | 3.773 |
x(7) | 1.009 | 1.740 | 3.352 | 4.566 | 7.031 |
x(9) | 1.099 | 2.100 | 4.332 | 6.749 | 11.461 |
x(12) | 1.190 | 2.570 | 5.745 | 10.623 | 20.450 |
x(15) | 1.249 | 2.975 | 6.739 | 15.149 | 32.472 |
x(16) | 1.264 | 3.098 | 7.235 | 16.793 | 37.198 |
x(18) | 1.289 | 3.330 | 8.233 | 20.279 | 47.789 |
x(20) | 1.309 | 3.544 | 9.229 | 24.021 | 59.967 |
x(t) | q(t)=1 | q(t)=t | q(t)=√t |
x(1) | 1 | 1 | 1 |
x(2) | 7.37∗10−17 | 4.41∗10−17 | 5.77∗10−17 |
x(3) | −0.131 | −0.057 | −0.088 |
x(5) | −0.123 | −0.018 | −0.049 |
x(7) | −0.080 | −0.006 | −0.021 |
x(9) | −0.050 | −0.003 | −0.011 |
x(12) | −0.028 | −0.001 | −0.005 |
x(15) | −0.017 | −0.0008 | −0.003 |
x(16) | −0.015 | −0.0006 | −0.0006 |
x(18) | −0.012 | −0.0005 | −0.002 |
x(20) | −0.010 | −0.0003 | −0.001 |
x(t) | λ=0.1 | λ=0.11 | λ=0.12 |
x(1) | 1 | 1 | 1 |
x(2) | 1 | 1.025 | 1.052 |
x(3) | 1.668 | 1.751 | 1.841 |
x(5) | 3.876 | 4.216 | 4.595 |
x(7) | 7.243 | 8.107 | 9.095 |
x(9) | 11.941 | 13.707 | 12.130 |
x(12) | 22.045 | 26.197 | 25.237 |
x(15) | 36.831 | 45.198 | 46.330 |
x(16) | 43.042 | 53.369 | 55.687 |
x(18) | 57.766 | 73.092 | 78.795 |
x(20) | 76.055 | 98.154 | 127.306 |
We have analyzed DFHA equation in Riemann–Liouville and Grü nwald–Letnikov sense. Self–adjointness of the DFHA operator is presented and also, we have proved some significant spectral properties for instance, orthogonality of distinct eigenfunctions, reality of eigenvalues. Moreover, we give sum representation of the solutions for DFHA problem and find the solutions of the problem. We have carried out simulation analysis with graphics and tables. The aim of this paper is to contribute to the theory of hydrogen atom fractional difference operator.
We observe the behaviors of solutions by changing the order of the derivative μ in Figure 1 and Figure 5, by changing the potential function q(t) in Figure 2, we compare solutions under different λ eigenvalues in Figure 3, and Figure 7, also we observe the solutions by changing μ with a specific eigenvalue in Figure 4 and by changing l values in Figure 6.
We have shown the solutions by changing the order of the derivative μ in Table 1, by changing the potential function q(t) and λ eigenvalues in Table 2, Table 3.
The authors would like to thank the editor and anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.
The authors declare no conflict of interest.
[1] | F. M. Amirouche, Computational methods in multibody dynamics, Englewood Cliffs, NJ: Prentice-Hall, 1992. |
[2] | J. G. De Jalon, E. Bayo, Kinematic and dynamic simulation of multibody systems: The real-time challenge, Springer, 2012. https://doi.org/10.1007/978-1-4612-2600-0 |
[3] | W. Jens, Dynamics of systems of rigid bodies, Berlin: Springer, 2013. https://doi.org/10.1007/978-3-322-90942-8 |
[4] | Y. Liu, Z. Pan, X. Ge, Dynamics of multibody systems, Beijing: Higher Education Press, 2014. |
[5] | P. E. Nikravesh, Computer-aided analysis of mechanical systems, Upper Saddle River: Prentice-Hall, 1988. |
[6] | R. E. Roberson, R. Schwertassek, Dynamics of multibody systems, Berlin: Springer, 2012. https://doi.org/10.1007/978-3-642-86464-3 |
[7] | A. A. Shabana, Dynamics of multibody systems, New York: Cambridge University Press, 2020. https://doi.org/10.1017/9781108757553 |
[8] | S. Werner, Multibody systems handbook, Berlin: Springer, 1990. https://doi.org/10.1007/978-3-642-50995-7 |
[9] |
W. M. Silver, On the equivalence of Lagrangian and Newton-Euler dynamics for manipulators, Int. J. Rob. Res., 1 (1982), 60–70. https://doi.org/10.1177/027836498200100204 doi: 10.1177/027836498200100204
![]() |
[10] |
A. Cammarata, R. Sinatra, P. D. Maddìo, Static condensation method for the reduced dynamic modeling of mechanisms and structures, Arch. Appl. Mech., 89 (2019), 2033–2051. https://doi.org/10.1007/s00419-019-01560-x doi: 10.1007/s00419-019-01560-x
![]() |
[11] | R. Featherstone, Rigid body dynamics algorithms, Springer, 2014. https://doi.org/10.1007/978-1-4899-7560-7 |
[12] |
F. I. T. Petrescu, Advanced dynamics processes applied to an articulated robot, Processes, 10 (2022), 640. https://doi.org/10.3390/pr10040640 doi: 10.3390/pr10040640
![]() |
[13] |
X. Rui, J. Zhang, X. Wang, B. Rong, B. He, Z. Jin, Multibody system transfer matrix method: The past, the present, and the future, Int. J. Mech. Syst. Dyn., 2 (2022), 3–26. https://doi.org/10.1002/msd2.12037 doi: 10.1002/msd2.12037
![]() |
[14] |
R. Xue, D. Bestle, Reduced multibody system transfer matrix method using decoupled hinge equations, Int. J. Mech. Syst. Dyn., 1 (2021), 12. https://doi.org/10.1002/msd2.12026 doi: 10.1002/msd2.12026
![]() |
[15] |
H. Brandl, R. Johanni, M. Otter, A very efficient algorithm for the ssimulation of robots and similar multibody systems without inversion of the mass matrix, IFAC Proc., 19 (1986), 95–100. https://doi.org/10.1016/S1474-6670(17)59460-4 doi: 10.1016/S1474-6670(17)59460-4
![]() |
[16] |
A. Cammarata, R. Sinatra, P. D. Maddio, Interface reduction in flexible multibody systems using the floating frame of reference formulation, J. Sound Vib., 523 (2022). https://doi.org/10.1016/j.jsv.2021.116720 doi: 10.1016/j.jsv.2021.116720
![]() |
[17] | K. S. Anderson, Recursive derivation of explicit equations of motion for efficient dynamic/control simulation of large multibody systems, Stanford University, 1990. |
[18] |
A. Jain, G. Rodriguez, Recursive flexible multibody system dynamics using spatial operators, J. Guid. Control Dyn., 15 (1992), 1453–1466. https://doi.org/10.2514/3.11409 doi: 10.2514/3.11409
![]() |
[19] | H. Brandl, An algorithm for the simulation of multibody systems with kinematic loops, Proc.7th World Congr. Theory Mach. Mech., 1987. |
[20] |
F. Marques, A. P. Souto, P. Flores, On the constraints violation in forward dynamics of multibody systems, Multibody Syst. Dyn., 39 (2017), 385–419. https://doi.org/10.1007/s11044-016-9530-y doi: 10.1007/s11044-016-9530-y
![]() |
[21] | P. E. Nikravesh, Some methods for dynamic analysis of constrained mechanical systems: a survey, Berlin: Springer, 1984. https://doi.org/10.1007/978-3-642-52465-3_14 |
[22] |
J. Baumgarte, Stabilization of constraints and integrals of motion in dynamical systems, Comput. Methods Appl. Mech. Eng., 1 (1972), 1–16. https://doi.org/10.1016/0045-7825(72)90018-7 doi: 10.1016/0045-7825(72)90018-7
![]() |
[23] |
S. T. Lin, J. N. Huang, Stabilization of baumgarte's method using the Runge-Kutta approach, J. Mech. Design, 124 (2002). https://doi.org/10.1115/1.1519277 doi: 10.1115/1.1519277
![]() |
[24] |
P. Zhang, A Stabilization of constraints in the numerical solution of Euler-Lagrange equation, Chin. J. Eng. Math., 20 (2003), 13–18. https://doi.org/10.3969/j.issn.1005-3085.2003.04.003 doi: 10.3969/j.issn.1005-3085.2003.04.003
![]() |
[25] |
P. Flores, M. Machado, E. Seabra, T. Miguel, A parametric study on the baumgarte stabilization method for forward dynamics of constrained multibody systems, J. Comput. Nonlinear Dyn., 6 (2009), 011019. https://doi.org/10.1115/1.4002338 doi: 10.1115/1.4002338
![]() |
[26] |
K. T. Wehage, R. A. Wehage, B. Ravani, Generalized coordinate partitioning for complex mechanisms based on kinematic substructuring, Mech. Mach. Theory, 92 (2015), 464–483. https://doi.org/10.1016/j.mechmachtheory.2015.06.006 doi: 10.1016/j.mechmachtheory.2015.06.006
![]() |
[27] |
P. Fisette, B. Vaneghem, Numerical integration of multibody system dynamic equations using the coordinate partitioning method in an implicit Newmark scheme, Comput. Methods Appl. Mech. Eng., 135 (1996), 85–105. https://doi.org/10.1016/0045-7825(95)00926-4 doi: 10.1016/0045-7825(95)00926-4
![]() |
[28] | E. J. Haug, J. Yen, Generalized coordinate partitioning methods for numerical integration of differential-algebraic equations of dynamics, In: Real-time integration methods for mechanical system simulation, Springer, 1991. https://doi.org/10.1007/978-3-642-76159-1_5 |
[29] |
R. Singh, P. Likins, Singular value decomposition for constrained dynamical systems, J. Appl. Mech., 52 (1985), 943–948. https://doi.org/10.1115/1.3169173 doi: 10.1115/1.3169173
![]() |
[30] |
S. Kim, M. Vanderploeg, QR decomposition for state space representation of constrained mechanical dynamic systems, J. Mech. Design, 108 (1986), 183–188. https://doi.org/10.1115/1.3260800 doi: 10.1115/1.3260800
![]() |
[31] |
Q. Yu, J. Hong, A new violation correction method for constraint multibody systems, Chin. J. Theor. Appl., 30 (1998), 300–306. https://doi.org/10.6052/0459-1879-1998-3-1995-130 doi: 10.6052/0459-1879-1998-3-1995-130
![]() |
[32] |
G. Lyu, R. Liu, Errors control of constraint violation in dynamical simulation for constrained mechanical systems, J. Comput. Nonlinear Dyn., 14 (2019). https://doi.org/10.1115/1.4042493 doi: 10.1115/1.4042493
![]() |
[33] |
X. Xu, J. Luo, Z. Wu, Extending the modified inertia representation to constrained rigid multibody systems, J. Appl. Mech., 87 (2020), 011010. https://doi.org/10.1115/1.4045001 doi: 10.1115/1.4045001
![]() |
[34] |
J. Zhang, D. Liu, Y. Liu, A constraint violation suppressing formulation for spatial multibody dynamics with singular mass matrix, Multibody Syst Dyn., 36 (2016), 87–110. https://doi.org/10.1007/s11044-015-9458-7 doi: 10.1007/s11044-015-9458-7
![]() |
[35] |
L. Zhang, X. Rui, J. Zhang, J. Gu, H. Zheng, T. Li, Study on transfer matrix method for the planar multibody system with closed-loops, J. Comput. Nonlinear Dyn., 16 (2021). https://doi.org/10.1115/1.4052433 doi: 10.1115/1.4052433
![]() |
[36] |
S. Yoon, R. M. Howe, D. T. Greenwood, Geometric elimination of constraint violations in numerical simulation of lagrangian equations, J. Mech. Design, 116 (1994), 1058–1064. https://doi.org/10.1115/1.2919487 doi: 10.1115/1.2919487
![]() |
[37] |
Y. Q, I. M. Chen, A direct violation correction method in numerical simulation of constrained multibody systems, Comput. Mech., 26 (2000), 52–57. https://doi.org/10.1007/s004660000149 doi: 10.1007/s004660000149
![]() |
[38] | J. Hong, Computational multibody system dynamics, Beijing: Higher Education Press, 1999. |
[39] | D. Negrut, A. Dyer, Adams/solver primer, MSC Software Ann Arbor, 2004. |
[40] |
J. Wittenburg, Dynamics of mulitibody systems-a brief review, Space Humanity, 1989, 89–92. https://doi.org/10.1016/B978-0-08-037877-0.50015-6 doi: 10.1016/B978-0-08-037877-0.50015-6
![]() |
[41] | R. James, The unified modeling language reference manual, Addison-Wesley Professional, 2006. |
[42] |
F. Liu, J. Zhang, Q. Hu, A modified constraint force algorithm for flexible multibody dynamics with loop constraints, Nonlinear Dyn., 90 (2017), 1885–1906. https://doi.org/10.1007/s11071-017-3770-0 doi: 10.1007/s11071-017-3770-0
![]() |
[43] |
H. Lu, X. Rui, Y. Ding, Y. Chang, Y. Chen, J. Ding, X. Zhang, A hybrid numerical method for vibration analysis of linear multibody systems with flexible components, Appl. Math. Model., 101 (2022), 748–771. https://doi.org/10.1016/j.apm.2021.09.015 doi: 10.1016/j.apm.2021.09.015
![]() |
[44] |
Y. Lu, Z. Chang, Y. Lu, Y. Wang, Development and kinematics/statics analysis of rigid-flexible-soft hybrid finger mechanism with standard force sensor, Robot. Comput. Integr. Manuf., 67 (2021), 101978. https://doi.org/10.1016/j.rcim.2020.101978 doi: 10.1016/j.rcim.2020.101978
![]() |
[45] |
J. Zhang, X. Rui, F. Liu, Q. Zhou, L. Gu, Substructuring technique for dynamics analysis of flexible beams with large deformation, J. Shanghai Jiaotong Univ., 22 (2017), 562–569. https://doi.org/10.1007/s12204-017-1875-8 doi: 10.1007/s12204-017-1875-8
![]() |
[46] |
A. E. Nabawy, A. A. Abdelrahman, W. S. Abdalla, A. M. Abdelhaleem, S. S. Alieldin, Analysis of the dynamic behavior of the double wishbone suspension system, Int. J. Appl. Mech., 11 (2019), 1950044. https://doi.org/10.1142/S1758825119500443 doi: 10.1142/S1758825119500443
![]() |
[47] |
B. Zhang, Z. Li, Mathematical modeling and nonlinear analysis of stiffness of double wishbone independent suspension, J. Mech. Sci. Technol., 35 (2021), 5351–5357. https://doi.org/10.1007/s12206-021-1107-x doi: 10.1007/s12206-021-1107-x
![]() |
1. | Erdal Bas, Funda Metin Turk, Ramazan Ozarslan, Ahu Ercan, Spectral data of conformable Sturm–Liouville direct problems, 2021, 11, 1664-2368, 10.1007/s13324-020-00428-6 | |
2. | Tom Cuchta, Dallas Freeman, Discrete Polylogarithm Functions, 2023, 84, 1338-9750, 19, 10.2478/tmmp-2023-0012 | |
3. | B. Shiri, Y. Guang, D. Baleanu, Inverse problems for discrete Hermite nabla difference equation, 2025, 33, 2769-0911, 10.1080/27690911.2024.2431000 | |
4. | Muhammad Sulthan Zacky, Heru Sukamto, Lila Yuwana, Agus Purwanto, Eny Latifah, The performance of space-fractional quantum carnot engine, 2025, 100, 0031-8949, 025306, 10.1088/1402-4896/ada9de |
x(t) | μ=0.3 | μ=0.35 | μ=0.4 | μ=0.45 | μ=0.5 |
x(1) | 1 | 1 | 1 | 1 | 1 |
x(2) | 0.612 | 0.714 | 1.123 | 0.918 | 1.020 |
x(3) | 0.700 | 0.900 | 1.515 | 1.370 | 1.641 |
x(5) | 0.881 | 1.336 | 2.402 | 2.747 | 3.773 |
x(7) | 1.009 | 1.740 | 3.352 | 4.566 | 7.031 |
x(9) | 1.099 | 2.100 | 4.332 | 6.749 | 11.461 |
x(12) | 1.190 | 2.570 | 5.745 | 10.623 | 20.450 |
x(15) | 1.249 | 2.975 | 6.739 | 15.149 | 32.472 |
x(16) | 1.264 | 3.098 | 7.235 | 16.793 | 37.198 |
x(18) | 1.289 | 3.330 | 8.233 | 20.279 | 47.789 |
x(20) | 1.309 | 3.544 | 9.229 | 24.021 | 59.967 |
x(t) | q(t)=1 | q(t)=t | q(t)=√t |
x(1) | 1 | 1 | 1 |
x(2) | 7.37∗10−17 | 4.41∗10−17 | 5.77∗10−17 |
x(3) | −0.131 | −0.057 | −0.088 |
x(5) | −0.123 | −0.018 | −0.049 |
x(7) | −0.080 | −0.006 | −0.021 |
x(9) | −0.050 | −0.003 | −0.011 |
x(12) | −0.028 | −0.001 | −0.005 |
x(15) | −0.017 | −0.0008 | −0.003 |
x(16) | −0.015 | −0.0006 | −0.0006 |
x(18) | −0.012 | −0.0005 | −0.002 |
x(20) | −0.010 | −0.0003 | −0.001 |
x(t) | λ=0.1 | λ=0.11 | λ=0.12 |
x(1) | 1 | 1 | 1 |
x(2) | 1 | 1.025 | 1.052 |
x(3) | 1.668 | 1.751 | 1.841 |
x(5) | 3.876 | 4.216 | 4.595 |
x(7) | 7.243 | 8.107 | 9.095 |
x(9) | 11.941 | 13.707 | 12.130 |
x(12) | 22.045 | 26.197 | 25.237 |
x(15) | 36.831 | 45.198 | 46.330 |
x(16) | 43.042 | 53.369 | 55.687 |
x(18) | 57.766 | 73.092 | 78.795 |
x(20) | 76.055 | 98.154 | 127.306 |
x(t) | μ=0.3 | μ=0.35 | μ=0.4 | μ=0.45 | μ=0.5 |
x(1) | 1 | 1 | 1 | 1 | 1 |
x(2) | 0.612 | 0.714 | 1.123 | 0.918 | 1.020 |
x(3) | 0.700 | 0.900 | 1.515 | 1.370 | 1.641 |
x(5) | 0.881 | 1.336 | 2.402 | 2.747 | 3.773 |
x(7) | 1.009 | 1.740 | 3.352 | 4.566 | 7.031 |
x(9) | 1.099 | 2.100 | 4.332 | 6.749 | 11.461 |
x(12) | 1.190 | 2.570 | 5.745 | 10.623 | 20.450 |
x(15) | 1.249 | 2.975 | 6.739 | 15.149 | 32.472 |
x(16) | 1.264 | 3.098 | 7.235 | 16.793 | 37.198 |
x(18) | 1.289 | 3.330 | 8.233 | 20.279 | 47.789 |
x(20) | 1.309 | 3.544 | 9.229 | 24.021 | 59.967 |
x(t) | q(t)=1 | q(t)=t | q(t)=√t |
x(1) | 1 | 1 | 1 |
x(2) | 7.37∗10−17 | 4.41∗10−17 | 5.77∗10−17 |
x(3) | −0.131 | −0.057 | −0.088 |
x(5) | −0.123 | −0.018 | −0.049 |
x(7) | −0.080 | −0.006 | −0.021 |
x(9) | −0.050 | −0.003 | −0.011 |
x(12) | −0.028 | −0.001 | −0.005 |
x(15) | −0.017 | −0.0008 | −0.003 |
x(16) | −0.015 | −0.0006 | −0.0006 |
x(18) | −0.012 | −0.0005 | −0.002 |
x(20) | −0.010 | −0.0003 | −0.001 |
x(t) | λ=0.1 | λ=0.11 | λ=0.12 |
x(1) | 1 | 1 | 1 |
x(2) | 1 | 1.025 | 1.052 |
x(3) | 1.668 | 1.751 | 1.841 |
x(5) | 3.876 | 4.216 | 4.595 |
x(7) | 7.243 | 8.107 | 9.095 |
x(9) | 11.941 | 13.707 | 12.130 |
x(12) | 22.045 | 26.197 | 25.237 |
x(15) | 36.831 | 45.198 | 46.330 |
x(16) | 43.042 | 53.369 | 55.687 |
x(18) | 57.766 | 73.092 | 78.795 |
x(20) | 76.055 | 98.154 | 127.306 |