
AIMS Mathematics, 8(9): 21501–21530.

DOI: 10.3934/math.20231096

Received: 03 January 2023

Revised: 14 June 2023

Accepted: 19 June 2023

Published: 06 July 2023

http://www.aimspress.com/journal/Math

Research article

A framework for establishing constraint Jacobian matrices of planar

rigid-flexible-multibody systems

Lina Zhang, Xiaoting Rui, Jianshu Zhang*, Guoping Wang, Junjie Gu and Xizhe Zhang

Institute of Launch Dynamics, Nanjing University of Science and Technology, Jiangsu, China

* Correspondence: Email: jszhang@njust.edu.cn; Tel: +8602584315901.

Abstract: Constraint violation correction is an important research topic in solving multibody system

dynamics. For a multibody system dynamics method which derives acceleration equations in a

recursive manner and avoids overall dynamics equations, a fast and accurate solution to the violation

problem is paramount. The direct correction method is favored due to its simplicity, high accuracy and

low computational cost. This method directly supplements the constraint equations and performs

corrections, making it an effective solution for addressing violation problems. However, calculating

the significant Jacobian matrices for this method using dynamics equations can be challenging,

especially for complex multibody systems. This paper presents a programmatic framework for deriving

Jacobian matrices of planar rigid-flexible-multibody systems in a simple semi-analytic form along two

paths separated by a secondary joint. The approach is verified by comparing constraint violation errors

with and without the constraint violation correction in numerical examples. Moreover, the proposed

method's computational speed is compared with that of the direct differential solution, verifying its

efficiency. The straightforward, highly programmable and universal approach provides a new idea for

programming large-scale dynamics software and extends the application of dynamics methods focused

on deriving acceleration equations.

Keywords: constraint violation correction; Jacobian matrix; semi-analysis; direct differentiation

method; numerical integration

Mathematics Subject Classification: 65D17, 65D30

21502

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

1. Introduction

Multibody system dynamics (MSD) guides practical engineering applications by studying the

movement of systems with multiple linked elements. Several main approaches for MSD have been

developed since the 1970s [1–8]. The absolute coordinate methods [9], known for their programmatic

nature and ability to handle both tree and non-tree systems, are commonly utilized. The approaches

employ global coordinates to describe the motion of the system and obtain a general form for the

dynamical equations, written as

 , (1)

where denotes the generalized coordinates, which consist of the position and orientation of each

rigid body-fixed coordinate system in the global inertial coordinate system, as well as the position and

orientation of the flexible body floating coordinate system in the global inertial coordinate system and

the flexible deformation generalized coordinates. , the second time derivative of , denotes the

generalized accelerations. represents a generalized mass matrix. represents generalized forces

on the system. consists of Lagrange multipliers. describes the constraint equations caused by the

connection relation of all joint elements in the system. denotes the partial derivative of the

constraint equations with respect to generalized coordinates.

However, when dealing with a complex multi-degree-of-freedom system, the solution of the

dynamics can be quite challenging to derive. To overcome this issue, one technique utilized in

structural dynamics is the static condensation method, which was extended by Alessandro Cammarata

and colleagues to mechanisms and structures with internal joints [10]. Alternatively, one can use

relative coordinates to establish the dynamics equations. The relative coordinate methods, developed

by Robertson and Wittenburg [3,6], reduce the number of unknown variables and are used in tree

structures with elegant types. Among the relative coordinate methods, highly programmatic and

efficient approaches are coming to the fore, including Featherstone’s algorithm [11,12], the reduced

multibody system transfer matrix method (RMSTMM) [13,14], the Brandl method [15,16], etc. The

approaches utilize hinge coordinates as generalized coordinates and avoid global dynamics equations

with a system inertia matrix. They can fully describe the configuration of tree systems [17,18] in the

form of ordinary differential equations, written as

 , (2)

where , and are the generalized coordinates, velocities and accelerations, which have analogous

meanings to those given in Eq (1) but with much lower dimensions. The focus of these methods is to

recursively derive generalized accelerations for a mechanical multibody system by utilizing its state

vectors . However, in the context of closed-loop systems, the hinge coordinates are no longer

independent [19]. To overcome this limitation, a set of differential algebraic equations (DAEs) is

established by adding a set of algebraic equations that represent the constraint of cut-joints [4,7], as

follows

()

T

,

+ =


=

q

t

Mq Φ λ f

Φ q 0

q

q q

M f

λ Φ

q
Φ

(, ,)= tq f q q

q q q

q

(),q q

21503

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

 , (3)

where is assembled by the constraint equations of all cut joints. Despite the approaches’

effectiveness, numerical solutions are prone to divergence, as indicated by the red line in Figure 1.

Ensuring the accuracy of solutions for DAEs is known to be numerically challenging. To address

this issue, various methods have been developed and broadly classified into three main categories: (i)

constraint stabilization approaches, (ii) coordinate partitioning methods and (iii) direct correction

methods [20,21]. Constraint stabilization approaches involve developing and modifying the

Baumgarte method, which introduces the control feedback theory. However, one problem with the

Baumgarte stabilization method is the ambiguity of the stabilization parameters [22]. To address this

issue, Lin and Huang [23] proposed a method that used the Runge-Kutta algorithm to determine the

stabilization parameters. Other approaches, such as those by Zhang [24] and Flores [25], assisted with

stabilization coefficient determination by combining it with Taylor expansion, but the methods lack

catholicity.

Another approach is the coordinate partitioning method, which involves dividing the generalized

coordinates into independent and dependent sets. Numerical integration is then performed for the

independent generalized coordinates, while the constraint equations are solved for the dependent

generalized coordinates [26]. However, this method is numerically inefficient, as it necessitates

frequent changes to the set of independent coordinates, limiting its effectiveness [27]. Decomposing

the Jacobi matrix, currently available as triangular decomposition [28], singular value

decomposition [29] or orthogonal trigonometric decomposition [30], is the technique used to

accomplish this method.

The direct correction method, which is popular in correcting violation errors, introduces position

and velocity corrections based on direct integration [31]. Over the years, a variety of direct correction

techniques have been developed [20,32–35]. Yoon et al. [36] established a direct correction method

that directly corrects the values of state variables, leading to a better fit with the constraint equations.

However, this method is limited to the position level. Yu and Chen [37] corrected violation errors by

implementing constraints on both position and velocity levels. The effectiveness of this approach was

demonstrated through a simple case, which was compared to the standard formulation and the

Baumgarte method. The direct correction method offers a more accurate solution compared to

stabilization methods and is less computationally costly than coordinate partitioning methods [38]. In

dealing with constraint violations arising from the DAEs, a fast and accurate solution to violation errors

is crucial. The direct correction method is favored due to its simplicity, high accuracy and low

computational cost.

For dynamics methods involving global dynamics equations, the analytic form of the constraint

Jacobian matrix can be obtained explicitly [39]. However, for methods avoiding global dynamics

equations and using hinge coordinates, the value of the constraint Jacobian matrix becomes uncertain

dealing with constraint violation problems in closed-loop systems. To address this issue, the direct

differentiation method can be used in computational programming by taking partial derivatives of each

quality encountered along the path rather than solving the Jacobian matrix in its specific form. As the

complexity of the closed-loop system increases, the constraint Jacobian matrix of the system in the

direct correction method becomes more complex. Nevertheless, this approach is computationally

intensive and time-consuming when dealing with large and complex systems, which limits the

()

(, ,)=


=

tq f q q

c q 0

c

21504

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

advantages of the direct correction method.

In this paper, semi-analytic Jacobian matrices of the direct correction method are derived to solve

the divergence of algorithms. The correction method is first introduced in Section 2. A further attempt

is to build a general framework for constraint Jacobian matrices. The form of constraint equations in

the framework is shown in Section 3. The correlated variables affected by generalized coordinates in

the constraint equations are encapsulated in the class of a secondary joint (cut-joint in a closed-loop

system [40]). In Section 4, the variables of a secondary joint can be described by primary joints (other

joints except for the secondary joint in the closed-loop system [40]) or flexible bodies. Among the

correlation variables described, the ones affected by generalized coordinates are encapsulated in the

corresponding class of the primary joint or the flexible body. The Jacobian matrices between different

classes are programmatically derived in Section 5. The quantities of the secondary joint are cycled in

the closed loop, sweeping through the classes of the primary joint or the flexible body. The solved

Jacobian matrix is then substituted back into the constraint equations. Section 6 gives the pseudo-code

for solving Jacobian matrices by direct differentiation. The corrected generalized coordinates and

velocities are obtained using the Newton-Raphson formula in Section 7. Section 8 offers numerical

examples validating the program. Finally, the concluding remarks are given in Section 9.

Figure 1. Numerical solution flow chart.

2. Constraint violation correction approach

The generalized coordinates of the closed-loop system are not independent, causing constraint

violations. Corrected generalized coordinates and velocities can be obtained by the Newton-Raphson

method. The Newton-Raphson formula of the constraint equation on position level can be written as

Start

 Initial values of generalized coordinates and

velocities

End time

No

Yes

End

Solving for generalized accelerations using

dynamics equations

 The numerical method of differential

equations to find the generalized

coordinates and velocities at next moment

21505

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

 (4)

where denotes constraints on position level and is the constraint Jacobian matrix of the

constraint equations with respect to the generalized coordinates. Here, the generalized coordinates

include the modal coordinates and the coordinates of the primary joint elements.

Upon differentiating the aforementioned equation, the correction equation for the generalized

velocity is obtained, wherein the well-known relation exists. The correction formula can be

expressed as

 (5)

If the system has m constraint equations and n generalized coordinates, the constraint Jacobian matrix

is given as

 . (6)

3. Form of constraint equations of a secondary joint

The constraint equations of a secondary joint on both position and velocity levels can be

established. The description of secondary joints, as shown in Figure 2, is based on the works of

Roberson [40]. A span system is generated by cutting the joint which is called the secondary joint. The

joints still in the span system are called primary joints. A joint connects two bodies of the system. One

of the two bodies is called the base body and the other one is the moving body of the joint. The points

 and are fixed on the secondary joint, connecting the base body and the moving body,

respectively.

M

B

joint

: Base point

:Moving

B

M

t

point

Secondary

j
L

Figure 2. The sketch of a secondary joint.

()

() ()

+

+ ,

= 

 
q

0 c q q

c q c q q

c ()q
c q

=
q q

c c

()

()

()

,

,

, .

= + 

 + 

= + 

q

q

0 c q q q

c q q c q

c q q c q

1 1 1

1 2

2 2 2

1 2

1 2

   
   
 
   

    =
 
 
 
   
    

n

n

m m m

n

c c c

q q q

c c c

q q q

c c c

q q q

c

q

B M

21506

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

For example, a planar pin joint in the th closed loop labeled is cut. The relative displacement

of the pin joint moving in the plane is restricted. The constraint equation on position level could be

expressed as

 , (7)

and the constraint equation on velocity level could be expressed as

 , (8)

where denotes the position of the base point w.r.t. the inertial frame. denotes the position of

the moving point. is the absolute velocity of the base (moving) point. Note that if the vector

in the plane is , then its cross product matrix is defined. Required variables

, , , in Eqs (7) and (8) will be encapsulated in the class of the secondary joint, as shown

in Figure 3. Function CalculateD0ConstraintEq() denotes constraints on position level. Analogically,

the function CalculateD1ConstraintEq() gathers the process of constraints on velocity level. The

Jacobian matrix, also known as the matrix of partial derivatives, is an essential tool for making accurate

corrections in the system. The process of solving the constraint Jacobian matrix is put into the function

CalculateConstraintJacobian. The process of solving the constraint Jacobian matrix is shown in the

following.

Figure 3. UML diagram of a secondary joint.

4. Intermediate variables of partial derivatives of constraints with respect to state vectors

The constraint equations established are ultimately affected since the position of the secondary

joint is affected by state vectors of a system. The effect of each state vector in the system on the

constraint equations will be considered here. For the pin secondary joint mentioned above, focusing

on a specific column in Eq (6), there is

 . (9)

j
j

L

 OM OB
= − =

j j
L L

c r r 0

 OM OB
= − =

j j
L L

c r r 0

OB
r

OM
r

()OB OM
r r

T[]= x yr  = −y xr

OM
r

OB
r

OM
r

OB
r

SecondaryHingeElement

 +R_om: Vector3d

+dR_om: Vector3d

+R_ob: Vector3d

+dR_ob: Vector3d

+CalculateD0ConstraintEq()

+CalculateD1ConstraintEq()

+CalculateConstraintJacobian()

()1  =
i

q i nc

OM OB
 

= −
  

i i i
q q q

r rc

21507

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

For convenience, two separate paths are discussed here. If element is associated with the

moving point of the pin secondary joint, variables are not related to generalized coordinate .

The partial derivative of with respect to in this path is . According to Eq (9), the partial

derivatives of the constraint equation on position level with respect to the generalized coordinates in

this path can be written as

 . (10)

Similarly, on the other path, there is

 . (11)

Intermediate variables , are collected in group I in a unified form. The generalized

coordinates of a multi-rigid-flexible body system include the joint coordinate and the modal

coordinates of flexible bodies. These are discussed below.

4.1. Jacobian intermediate for a primary joint

For elucidating the effect of generalized coordinates on constraint equations, subscript can be

replaced with base or moving point of the secondary joint. A primary joint moving in a plane

connects to bodies with a root end described as and a tip end described as . and are chosen

to represent the position level quantities considering the different types of primary joints. As shown in

Figures 4 and 5, the kinematic quantities of the node can be expressed as

 , (12)

R

T

joint

: Root point

 : Tip point

R

T

t

Pr imary

Figure 4. The sketch of a primary joint moving in a plane.

i

OB
r

i
q

OM
r

i
q OM,q

r

, OM,
 =  j iL q q

c r

, OB,
 =  j iL q q

c r

OM, iq
r

OB, iq
r

P

B M

R T r A

P

OP OR RT TP OR OR RT OR RT TP

OP OR RT TP

= + + = + +


=

r r r r r A l A A l

A A A A

21508

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

T

R

Secondary joint

Primary joint

Body element

i

O x

y

Tx

Ty
Rx

Ry

M(P) B(P)

Figure 5. The sketch of the geometrical relationship.

where subscript denotes the inertial coordinate system. Subscripts and denote the body-fixed

coordinate system with origin and , respectively. denotes the position of the point w.r.t. the

inertial frame. describes position vector from the point to the point described in the body-

fixed coordinate system with the point. Cosine matrix for the coordinate transformation from

the body-fixed coordinate system with the point to the inertial frame reads as

 (13)

Generalized coordinates in the equation only impact the parameters of the element, namely,

 and . Therefore, variables in Eq (12) varying with generalized coordinate can be expressed

as

OP, OR RT, OR RT, TP

OP, OR RT, TP

,
q q q

q q

= +


=

r A l A A l

A A A A ，
 (14)

where the partial derivatives with respect to the generalized coordinates are indicated as subscripts,

denoted as = .

Variables , changing with the generalized coordinate of a primary joint are encapsulated

in group II of the primary joint class. The unified modeling language (UML) diagram [41] of a primary

joint is provided in Figure 6. For convenience, the above derivation is loaded in the function

PreprocessConstraintJacobian of the primary joint.

O R T

R T OP
r P

RT
l R T

R OP
A

P

OP OP

OP

OP OP

cos sin
.

sin cos

 

 

− 
=  
 

A

i
q

RT
l

RT
A iH

q

OM
 

i
qr

OM,q
r

RT,q
l

RT,q
A

21509

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

Figure 6. UML diagram of primary joint.

A smooth pin joint moving in a plane is taken as an example to illustrate the main process in detail,

as shown in Figure 6. Pin joint rotates around the z-axis of the body-fixed coordinate system with

the point, which has only one generalized coordinate. The generalized coordinate can be described

as

 (15)

Variables in group Ⅱ can be described here. The pin joint is rotated around the z-axis by an angle

, and it has no relative slip along the z-axis, . is a direction cosine matrix corresponding

to a simple rotation around the z-axis in the body-fixed frame. The corresponding , can be

described as

 (16)

Variables , with respect to generalized coordinates can be read as

 (17)

The above equations are substituted into Eq (14). The kinematic quantities influenced by the

generalized coordinates become

 (18)

where . Meanwhile, the relationship can be proven.

PrimaryHingeElement

 +L_q:Vector3d

+A_q:Matrix3d

+PreprocessConstraintJacobian()

i

T

 .=
iH z

q

RT


RT
=l 0

RT
A

RT
A

RT
l

RT

RT

,

(),

=


= z z

l 0

A A

RT
l

RT
A

RT

RT

RT

,

() ,







= 


 = =

 

z

z z

z

l
0

A
A D A D

OP

TP

TOP

OT OT OP OP

,

,






= 


 = =

 

z

z

r
r

A
A DA A DA

TB OT TB
=r A l T

OT OT
=A DA D

21510

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

For further insight into partial derivatives of constraints with respect to state vectors of a primary

joint, Eq (18) is elucidated. Only intermediate variables in group Ⅱ are used for subsequent assembly

in the framework for the system Jacobian matrix.

4.2. Jacobian intermediate for a flexible body

The tip and root ends, denoted by and , describe the points on a flexible body connected to

joints, as shown in Figure 7. Under the assumption of small deformation, dynamics equations of

flexible bodies are described by the widely used floating coordinate system. The motion of the body

is regarded as a superposition of the large range motion of the floating coordinate system and the small

elastic deformation [42–45].

T

R

R: Root point

T: Tip point

point

body

f ff O OO :Floating framex y

fO

fOx

fOy

Figure 7. The sketch of a flexible body.

Using the kinematic quantities of a flexible body , the kinematic quantities of node for

position level can be described as

 (19)

where subscript denotes a floating coordinate system. denotes a deformed

displacement vector from the origin of floating frame to the end described in the floating

frame. Variables , , do not vary with the modal coordinates because they are transferred

from the element associated to the flexible body, similar to the primary joint. described in the

body-fixed frame are independent of generalized coordinates and velocities, respectively. Only

quantities , , and change with modal coordinates. Kinematic quantities for position

level affected by the modal coordinates become

 (20)

R T

i P

f f f f

f f

T

OP OR RO O T TP OR OR RO R OR RO T OT OT TP

OP OR RO O T TP

,

,

= + + + = − + +


=

r r r r r r A A ρ A A ρ A A r

A A A A A

f ()R T
ρ ρ

f
O ()R T

OR
r

OR
A

OR


T

OT TP
A r

fRO
A

R
ρ

T
ρ

fO T
A

f f f f f f f f f

f f f f f f

f f f f f f f

OP, OR RO , R OR RO R, OR RO , T OR RO T,

T T

OR RO , O T OT TP OR RO O T, OT TP

OP, OR RO , O T TP OR RO O T, TP
.

= − − + +


+ +


= +

q q q q q

q q

q q q

r A A ρ A A ρ A A ρ A A ρ

A A A A r A A A A r

A A A A A A A A A

21511

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

Observing the above equation, intermediate variables , , , are selected in

group II. The quantities , , , vary with the modal coordinates. The others vary

with the generalized velocities. The UML diagram of a flexible body is given in Figure 8. The above

derivation is loaded in the function PreprocessConstraintJacobian.

Figure 8. UML diagram of flexible body.

For flexible body , the dynamics equations are derived based on the floating frame of reference.

Component modal synthesis methods are applied to reduce the order of the dynamics equations of the

flexible bodies [42–45]. The modal coordinates of the flexible body are denoted as

 (21)

The quantities of the flexible body will be presented here, as shown in Figure 9. Radius vectors

, and angular deformation vector of the node could be described as

 (22)

where describes the attitude of the flexible body moving in the plane. represents the

original coordinate of node in the undeformed configuration. The modal analysis and synthesis

are employed to discretize deformation displacement . is a shape function, i.e.,

modal function matrix in modal analysis. Subscript denotes deformation in the displacement

(angle). The directional cosine matrix of the flexible body from the body-fixed frame to the

floating frame is represented as . Directional cosine matrix can be expressed as

 (23)

f fRO ,q
A

fR,q
ρ

f fO T,q
A

fT,q
ρ

f fRO ,q
A

fR,q
ρ

fT,q
ρ

f fO T,q
A

FlexibleBodyElement

 +
R
ρ _q:Vector3d

+
T
ρ _q:Matrix3d

+
fRO

A u _q:Vector3d

+
fTO

A u _q:Vector3d

+PreprocessConstraintJacobian()

i

 f
.=

iF
q q

R
ρ

T
ρ ,N


kL k

N

f

f

R O R ,R f

T O T ,T f

,N ,N f


 = +


= +


= k kL

u

u

ρ u Φ q

ρ u Φ q

Φ q

,N


kL ()
f fO R O T

u u

()R T

(),R f ,T fu u
Φ q Φ q Φ

()u

N N Nk k k

o x y

fO Nk
A

fO Nk
A

f

,N ,N

O N

,N ,N

cos sin
.

sin cos

 

 

− 
=  
 

k k

k

k k

L L

L L

A

21512

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

Figure 9. Deformation description of a flexible body.

Directional cosine matrix cannot be reduced using the same method as that in a primary

joint. However, the appearance of the directional cosine matrix in the equation is inevitably

multiplied by a variable independent of the modal coordinates. A mathematical relationship has been

discovered, which is

f f

f

O N O N ,N

f ,N f

O N ,N
.

k k k

k

k k

L

L





  
=

  

=
θ

A u A u

q q

DA uΦ

 (24)

The proof process is as follows. Since is an unrelated variable, can be obtained by the

direct derivative rule as follows:

 . (25)

The chain rule can be used for the same variable , giving

 . (26)

Combining Eqs (25) and (26) expressed in different forms, there is

 . (27)

Substituting Eq (27) into the original formula, the relationships between relevant variables ,

, and are

Nk

y

x

y

T
fOO

r
fOO

A

N
O

k

Nk

x

Nk

fO Nk

u

R

fO

fy

fx

O

Deformed configuration

Undeformed configuration

fO Nk
A

fO Nk
A

u
fO N

 
k

tA u

f

f

O N

O N ,N



=



k

k kL
t

A u
DA u

fO N
 

k
tA u

f f fO N O N ,N O N

,N

,N ,N




 

   
= =

   

k k k k

k

k k

L

L

L L
t t

A u A u A u

f

f

O N

O N

,N



=



k

k

kL

A u
DA u

fRO ,q
A

fO T,q
A u

f
q

21513

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

 (28)

 (29)

The intermediate variables in group II could be expressed as

f

f

f

f

R

,R

f

T

,T

f

RO

RO ,R

f

O T

O T ,T

f

,

,

,

.


=




=



 = −
 



=
 

u

u

θ

θ

ρ
Φ

q

ρ
Φ

q

A u
DA uΦ

q

A u
DA uΦ

q

 (30)

Substituting Eq (30) into Eq (20), variables , affected by state vectors of a flexible body

can be read as

()
f f f f

f f

OP

OO R OO T TP ,R OO ,R OO ,T TP ,T

f

OP

OR RP ,R OO O P ,T

f

,

.


= − − − + + 


 = − +

 

θ u u θ

θ θ

r
D A ρ A ρ r Φ A Φ A Φ Dr Φ

q

A
A DA Φ A DA Φ

q

 (31)

The existence of Eq (31) makes it possible to see the partial derivatives of the kinematic quantities

clearly and also facilitates the composition of the constraint Jacobian matrix in the following.

Nonetheless, this step does not appear in the actual programmatic implementation but only facilitates

understanding of the solution concepts.

5. Semi-analytic solution for constraint Jacobian matrix

For a system with arbitrary topologies, the Jacobian matrix is a given temporary matrix changed

with time. The calculation of the Jacobian matrix becomes very complicated, so a framework is

established to simplify computation:

5.1. Composition of the system Jacobian matrix

A programmatic derivation for the constraint Jacobian matrices is described using intermediate

variables in groups I and Ⅱ. It is known that the constraint Jacobian matrix for correcting the

f f f

f

f

O T O T ,O T

f ,O T f

O T ,T
,





  
=

  

=

L

L

θ

A u A u

q q

DA uΦ

f f f

f

f

RO RO .O R

f .O R f

RO ,R
.





  
=

  

= −

L

L

θ

A u A u

q q

DA uΦ

OP,q
r

OP,q
A

21514

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

generalized coordinates is identical to correcting generalized velocities. A closed-loop subsystem

in which the secondary pin joint is associated with a primary pin joint is taken as an example to

explain in detail. The process of assembling Jacobian matrix for generalized coordinate is

first demonstrated. Assume that pin joint is associated with the base point of the secondary joint.

Intermediate variables in group I can be expressed by variables in group Ⅱ as

 . (32)

Intermediate variables under the effect of the primary joint become

 , (33)

Constraint Jacobian matrix could be expressed as

 , (34)

Submitting Eq (17) into the above equation, we have

 . (35)

In the other path, pin joint is associated with the moving point. The position of the moving point

can be expressed as

 . (36)

Constraint Jacobian matrix in this path could be expressed as

 . (37)

Observing Eqs (35) and (37), the Jacobian matrix of the hinge can be solved by calling the

intermediate variables of the corresponding hinge element. Putting the calculated Jacobian matrix into

the corresponding position, the Jacobian matrix for the closed-loop subsystem is obtained. If the

closed-loop subsystem is without any flexible bodies, the corresponding Jacobian matrix can be

written as

 . (38)

The assembly process can be applied for flexible bodies. Jacobian matrix is derived as

follows, if flexible body element is associated with the base point of the secondary joint. According

to Eq (20), kinematic quantities of the flexible body element are used to express intermediate quantities

. Intermediate quantities can be read as

j
L

j i

,j Hi
L q

c
iH

q

i

OB,q
r

OB, OR RT, OR RT, TB
= +

q q q
r A l A A l

OB RT

OR TB
=



 

 
iH z

q

r A
A l

,j Hi
L q

c

(), OR RT TB
= −    j Hi j

L q z L
c A A l

, TB
= −

j Hi
L q

c r

i

OM, OR RT, OR RT, TM
= +

q q q
r A l A A l

,j Hi
L q

c

()  , OR RT, TM TM
 =   = j Hi j

j

L q q z LL
c A A l r

i

j
L

j
L

1
, , ,

 =
 j j H j Hn

L L q L qq
c c c

,j Fi
L q

c

i

fOB,q
r

21515

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

 . (39)

According to Eq (30), the partial derivative of with respect to the modal coordinates can be written

as

() () ()

() () ()

f f f

f f f

OB

OR RO R f OO R f OR RO T f

f

T

OO T f OR RO TB f OR RO OO TB f
.


= −   −   +  



+   +   +  

r
A A ρ q A ρ q A A ρ q

q

A ρ q A A r q A A A r q

 (40)

According to the constraint equation of the secondary pin joint shown in Eq (7), constraint Jacobian

matrix reads as

 (41)

Similarly, if flexible body is associated with the moving point of the secondary joint, point

will be replaced with in Eq (31). The partial derivative of the constraint equation on position level

with respect to modal coordinates can be written as

 (42)

The Jacobian matrix of the flexible body can be solved by calling the intermediate variables of

a flexible body. For the closed-loop subsystem , the corresponding Jacobian matrix consists of that

for each element, written as

 . (43)

The Jacobian matrix for all primary joints is described as , and the Jacobian matrix for

flexible bodies is described as . The Jacobian matrix can be composed as

 , (44)

where Jacobian matrix is composed of the Jacobian matrix for each primary joint swept through

the path, i.e., . Jacobian matrix is composed of the Jacobian

matrix for each flexible body swept through the path, i.e., .

f f f f f f f f f

f f f f f f

OB, OR RO , R OR RO R, OR RO , T OR RO T,

T T

OR RO , O T OT TB OR RO O T, OT TB

= − − + +

+ +

q q q q q

q q

r A A ρ A A ρ A A ρ A A ρ

A A A A r A A A A r

OB
r

,j Fi
L q

c

() () ()

() () ()

()

f f f

f f f

f f f f

OR RO R f OO R f OR RO T f

,
T

OO T f OR RO TB f OR RO OO TB f

OO R OO T TB ,R OO ,R OO ,T TB ,T
.

   +   −  
 =
 −   −   −  
 

 = − − − + +
 

j Fi
L q

θ u u θ

A A ρ q A ρ q A A ρ q
c

A ρ q A A r q A A A r q

D A ρ A ρ r Φ A Φ A Φ Dr Φ

i P

M

Fi
q

() () ()

() () ()

()

f f f

f f f

f f f f

OR RO R f OO R f OR RO T f

,
T

OO T f OR RO TB f OR RO OO TM f

OO R OO T TB ,R OO ,R OO ,T TM ,T
.

   +   −  
 =
 −   −   −  
 

 = − − − + +
 

j Fi
L q

θ u u θ

A A ρ q A ρ q A A ρ q
c

A ρ q A A r q A A A r q

D A ρ A ρ r Φ A Φ A Φ Dr Φ

i

j
L

1 1
, , , , ,

 =
 j j H j H j F j Fn n

L L q L q L q L qq
c c c c c

,j HL q
c

,j FL q
c

,jL q
c

, , ,
[]=

j j H j FL L Lq q q
c c c

,j HL q
c

1 2
, , , ,

 =
 j H j H j H j Hn

L L L Lq q q q
c c c c ,j FL q

c

1 2
, , , ,

 =
 j F j F j F j Fn

L L L Lq q q q
c c c c

21516

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

According to the topological structure of a multibody system, Jacobian matrix can be obtained

by assembling the Jacobian matrices of all sub-closed loops in the system, denoted as

 . (45)

Then, the system Jacobian matrix can be expressed as

 . (46)

The specific programming procedure for the system Jacobian matrix can be described below.

5.2. Assembling the system Jacobian matrix

The universalized composition process of the system Jacobian matrix based on the intermediate

variables in groups I and II can be implemented by computer, as shown in Algorithm 1. The Jacobian

matrix for the th secondary joint is solved by sweeping through the primary joint elements and

flexible body elements along the path from the base point of the th secondary joint element to the

root element. In this process, the PreprocessConstraintJacobian() function in the classes of the primary

joint element and the flexible body element is called to solve the intermediate variables in group I. The

same process takes place on the other path. Corresponding constraint Jacobian matrices and

 are obtained. According to the location of the generalized coordinates, constraint Jacobian

matrices and are composed to obtain constraint Jacobian matrix of the th secondary

joint. System Jacobian matrix is obtained ultimately by assembling constrained Jacobian matrices

 according to Eq (46). The pseudo-code of the computational process is illustrated in

Algorithm 1.

In the programmatic derivation, multiple calculations of the intermediate variables in group II are

avoided. The required variables can be obtained in the first calculation and called continuously in the

subsequent calculations.

q
c

1

2

,

,

,

 
 
 =
 
 
  n

L q

L q

q

L q

c

c
c

c

1 1 1

2 2 2

, , ,

, , ,

, , ,

   
   
   = =
   
   
      

H F

H F

n n H n F

L L L

L L L

L L L

q q q

q q q

q

q q q

c c c

c c c
c

c c c

j

j

,j Hi
L q

c

,j Fi
L q

c

,j Hi
L q

c
,j Fi

L q
c

,jL q
c j

q
c

(),
1=

jL q
j nc

21517

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

Algorithm 1. Computation of system Jacobian matrix

Function assemblingsystemJacobianmatrix (i:int, ω:double, s:int)

{Return Jacobian matrix of the system}

{ is a Jacobian matrix of the secondary joint element.}

{ SecondaryJointElement is an indicator of the secondary joint element.}

{ PrimaryJointElement is an indicator of the primary joint element.}

{ FlexibleBodyElement is an indicator of the flexible body element.}

for k=1 to the number of secondary joint elements do

for i from element connected to the BasePoint of secondary joint k to the root element in closed-

loop k do

if element i is a primary joint element then

SecondaryJointElement[k]. [i] ← SecondaryJointElement[k].Calculate

ConstraintJacobian() ← PrimaryJointElement[i].PreprocessConstraintJacobian()

end

if element i is a flexible body element then

SecondaryJointElement[k]. [i] ← SecondaryJointElement[k]. Calculate

ConstraintJacobian() ← FlexibleBodyElement[i].PreprocessConstraintJacobian()

end

end

for j from element connected to the MovingPoint of secondary joint k to the root element in

closed-loop k do

if element j is a primary joint element then

SecondaryJointElement[k]. [j] ← SecondaryJointElement[k].Calculate

ConstraintJacobian() ← PrimaryJointElement[j].PreprocessConstraintJacobian()

end

if element j is a flexible body element then

SecondaryJointElement[k]. [j] ← SecondaryJointElement[k]. Calculate

ConstraintJacobian() ← FlexibleBodyElement[j].PreprocessConstraintJacobian()

end

end

 [k]←SecondaryJointElement[k].

return

6. Direct differentiation for Jacobian matrix

The direct differentiation method obtains the Jacobian matrix by differentiating the constraint

equations with respect to state variables in accordance with the chain rule of differentiation, which

obtains an accurate calculation result.

The Jacobian matrix can be calculated row-wise. The same row is the partial derivatives of the

constraints with respect to the same generalized coordinate. The partial derivatives in the same row

are passed along the transfer path from the system root end to the position of the secondary joint

recursively.

The pin joint is still used as an example with the constraint equation shown in Eq (7). In this case,

the partial derivative of with respect to the generalized coordinates is put in the corresponding

row. To obtain the solution for , the direct differentiation method is applied. The parameters

 and of the root element of the system can be solved using initial conditions. There

exists a relationship where the parameter of the point connected to the root element is equal to the

q
c

,L q
c

,L q
c

,L q
c

,L q
c

,L q
c

q
c

,L q
c

q
c

r
j

q

OM
 

i
qr

OT
 

G i
qr

OT
 

G i
A q

21518

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

parameter of the root point of the element to which it is connected. With this information, the

quantities and of the element can be determined. The kinematic relations of

the element can be used to express , for the tip end, which can be written as

 (47)

 (48)

The process is iterated until the values of and for the tip end connected

element to point M are obtained. The geometry of the transfer is such that the parameter of the M point

is equivalent to the parameter of the tip end, leading to the determination of . This process is

then repeated cyclically to obtain for different generalized coordinates. The

solution for is obtained in a similar fashion as that of .

By analogy, the partial derivatives are calculated separately for all the generalized coordinates in

the system. The system Jacobian matrix is obtained, where the partial derivatives are placed in the

appropriate rows. The direct differentiation method for Jacobian matrices uses a for loop to achieve

recursion, and the algorithm is shown below.

j

OR
 

j i
qr

OR
 

j i
A q j

j
OT

 
j i

qr
OT

 
j i

A q

OT OR OR RT
= +r r A l

OT OR RT
=A A A

OT
 

i
qr

OT
 

i
A q

OM
 

i
qr

()OM
1  =

i
q i ar

()OB
  =

i
q i a nr ()OM

1  =
i

q i ar

21519

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

Algorithm 2. Computation of system Jacobian matrix.

Function assemblingsystemJacobianmatrix (i:int, ω:double, s:int)

{Return Jacobian matrix of the system}

{ is a Jacobian matrix of the secondary joint element.}

{ SecondaryJointElement is an indicator of the secondary joint element.}

{ PrimaryJointElement is an indicator of the primary joint element.}

{ FlexibleBodyElement is an indicator of the flexible body element.}

{ BodyElement is an indicator of the body element.}

{ Index1 (Index2) is an indicator of the generalized coordinate.}

for i from 0 to the number of generalized coordinates do

Index1 += the number of generalized coordinate of the element[i]

Ground.

.setzero().

Ground.

.setzero().

for j from 0 to the number of body elements do

Index2 += the number of generalized coordinate of the element[j]

if Index2 = Index1 then

PrimaryJointElement[j].PreprocessConstraintJacobian()

FlexibleBodyElement[j].PreprocessConstraintJacobian()

end

PrimaryJointElement[j]

 ←Ground.

.

BodyElement[j]

 ←PrimaryJointElement[j].

.

end

for k=1 to the number of secondary joint elements do

SecondaryJointElement[k]. ←SecondaryJointElement[k].

end

end

for k=1 to the number of secondary joint elements do

 [k]←SecondaryJointElement[k].

end

return

7. Constraint violation correction approach

As illustrated in Figure 10, the complete correction procedure is described as follows:

(i) Uncorrected generalized coordinates and velocities are obtained during the numerical solution.

Then, constraint equations on both position and velocity levels are established in the class of secondary

joint elements. The established constraint equations of each secondary joint are combined into the

system constraint equations.

(ii) If any values in the system constraint equations are greater than the tolerance error 10-10, the

system will be penalized to correct the generalized coordinates and velocities. Algorithm 1 or

Algorithm 2 is used to assemble the system Jacobian matrix. Using Eq (4), the corrected generalized

coordinates can be solved. The value of the constraint equation is calculated again. If any value of the

constraint violation errors is still greater than the tolerance error, continue with the correction.

Otherwise, the correction is stopped.

(iii) The system constraint equations on velocity level are obtained by assembling the constraint

equations on velocity level of each secondary joint. If the constraint violation errors on velocity level

q
c

,L q
c

 
i

r q

 
i

A q

()   
i i

r q A q ()   
i i

r q A q

()   
i i

r q A q ()   
i i

r q A q

,L q
c ()   

i i
r q A q

q
c

,L q
c

q
c

21520

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

are greater than the tolerance error, the generalized velocity of the system is corrected using Eq (5).

Then, the value of the constraint equation is calculated again. If the constraint violation errors are less

than the tolerance error, the corrected generalized coordinates and velocity are obtained.

Generalized coordinates and generalized velocities

of the system

Calculating violations of constraint equation on

position level

Whether constraint violations on position level

exceed the threshold

Calculating violations of constraint equation on

velocity level

Whether constraint violations on velocity level

exceed the threshold

Corrected generalized coordinates and

generalized velocities of the system

Assembling the constrained Jacobi matrix of system

Correction of system generalized coordinates

Recalculating violations of constraint equation on position

level

Assembling the constrained Jacobi matrix of system

Correction of system generalized velocities

Recalculating violations of constraint equation on velocity

level

Yes

No

No

Yes

Figure 10. Flow chart of the generalized coordinates and velocity correction.

8. Application example using the approach

The simplicity of engineering models, such as the four-link mechanism, can have a wide range of

practical applications, such as frames and rotating dampers [46,47]. Therefore, the ability to simulate

these models quickly and accurately is crucial for engineering. A four-link mechanism is used to

demonstrate the validity of the method. The system is depicted in Figure 11 and is subject only to

gravity. All rigid links are assumed to be identical in length (1 meter) and mass (1 kg), and the

secondary joint C is removed to create a spanning system. Element 3 is a flexible beam with two modes.

Dynamic calculations were performed using the RMSTMM method, and initial conditions were set at

, , . A fourth-order Runge-Kutta algorithm with a very small step

size (0.01 s) was employed for the numerical solution.

1 3
3= =q q

2
3= −q

4 4
0= =q q

21521

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

Figure 11. Multibody model of a planar four bar mechanism.

Table 1. Computational time of dynamics without stabilization, proposed method and

direct differentiation method for the system.

Simulation time (s)
CPU time (s)

Without stabilization Proposed approach Direct differentiation

50 19.036 19.766 24.875

100 38.017 38.531 44.547

200 79.593 80.985 87.516

Figure 12 compares the constraint violations on x-direction of secondary joint C with and without

the correction. The comparison confirms the correctness of the correction and the derived Jacobian

matrix. Figure 13 shows violations of secondary joint C on x-direction by different methods. The

results demonstrate that both the direct differential method and the proposed approach are successful

in eliminating constraint violations. However, as anticipated, the proposed method is faster in terms of

computational speed, as demonstrated by the comparison in Table 1 for a simple four-link mechanism.

Figure 12. Violation of secondary joint on x-direction.

2

A
1q

2q

3q

y

x

3

B

C

1

D

21522

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

Figure 13. Violation of secondary joint on x-direction by different methods.

In contrast to the previous example which had only a single closed loop, the upcoming example

features an increased number of elements, closed loops and flexible body elements as depicted in

Figures 14 and 15. The body elements 5, 11 and 21 are flexible and have two order modes, and the

other elements are still rigid. The system is moved by gravity only. The dynamics of the system is

simulated using the RMSTMM.

11

2

1

3

19

7

23

159

13

17

25

4

26 6

18

20

22

28

24

27

16

148

10

12

Flexible Body

Primary joint

Secondary joint

Rigid Body

Revolute joint

Prismatic joint

21

5

Figure 14. Topology figures of multi-rigid-flexible body systems.

21523

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

1

3

5 9

7

11

13 25

17

15

19

21

23

x

y

2

4

6

8

10

26

12 27 24

14

18

20

2216

Figure 15. Physical figures of multi-rigid-flexible body systems.

Table 2. Computational time of dynamics without stabilization, proposed method and

direct differentiation method for the system.

Simulation time (s)
CPU time (s)

Without stabilization Proposed approach Direct differentiation

50 73.125 73.469 88.593

100 146.969 148.625 177.89

200 296.516 311.297 371.703

The result shows a divergent trend without constraints, as shown in Figure 16. The violations

obtained by the Direct differentiation methods and proposed approach are shown in Figure 17, and

both effectively keep the violations within the tolerance error. As shown in table 2, as the system

calculation time increases, so does the CPU time used by the system. What is clear is that the longer

the system computation time is, the longer the CPU time used by the direct differentiation method

compared to the proposed method.

Figure 16. Violation of secondary joint 27 on x-direction.

21524

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

Figure 17. Violation of secondary joint 27 on x-direction by different methods.

The third numerical example is shown in Figures 18 and 19 to verify the effectiveness of the

programmatic stabilization solution. The example with rigid and flexible bodies is labeled with thick

solid arrows and circles. Joint 19 is a secondary joint affiliated with the corresponding spanning tree.

For primary joint, 1, 3, 5, 7, 9 are pin joints, and 11, 13, 15, 17 are prismatic joints. The others are

rigid body elements labeled 2, 4, 8, 10, 12, 14, 16 and 18. The quantities of the body elements are the

same as in the previous example but in the shape of rods.

Figure 18. Topology figures of multi-rigid-flexible body systems with single closed-loop.

10

8

4

18

16

14

12

23 11

13

15

179

7

5

1

19

Base body or Ground

Flexible Body

Primary joint

Secondary joint

Rigid Body

Revolute joint

Prismatic joint

6

21525

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

1

x

y

2
3

4

5

6

7

11

12

13

14

15

16

17

8

9

10 18

19

Figure 19. Topology figures of multi-rigid-flexible body systems with single closed-loop.

Table 3. Computational time of dynamics without stabilization, proposed method and

direct differentiation method for the system.

Simulation time (s)
CPU time (s)

Without stabilization Proposed approach Direct differentiation

50 34.922 35.641 42.968

100 75 78.235 96.391

200 144.75 151.297 181.25

The example uses the RMSTMM for dynamics analysis, too. If the correction is not added, the

violation error on the x-direction of secondary joint 19 shows a clear divergence trend in Figure 20.

The direct correction method is imposed while solving the Jacobian matrix using the direct

differentiation method and the proposed method, respectively. The variation of the violation error is

shown in Figure 21. Both methods are workable for correcting violation errors. An attempt is made

below to compare the computation speed.

21526

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

Figure 20. Violation of secondary joint 19 on x-direction.

Figure 21. Violation of secondary joint 19 on x-direction by different methods.

It can be found that the proposed approach is faster. The longer the system simulation time is, the

longer the CPU time used by the direct differentiation method compared to the proposed method.

For computational speed assessment, the proposed approach and the direct differentiation are

compared for a different total number of bodies in Figure 22. The abscissa represents the count of

connected bodies within a single closed-loop system. The specific configuration of this system is

illustrated in Figure 19. It is worth noting that the number of rods in the system shown in Figure 19 is

no longer limited to 7. Instead, it includes various possibilities, such as 100, 200, 300 and 500 rods,

respectively.

21527

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

Figure 22. Computational time of proposed approach compared to that of direct

differentiation method for loop system.

Upon comparing the two methods in Figure 22, it becomes evident that the proposed strategy

outperforms the direct differentiation method in terms of computational time. The results indicate that

the proposed strategy is far more efficient than the direct differentiation method.

9. Conclusions

This work proposes a framework for programmatical deriving of a system Jacobin matrix, which

has significant advantages for correcting violations in the efficient nonlinear dynamics method focused

on acceleration level. Simultaneously, Jacobian matrices in the direct correction method on both

position and velocity levels are derived simply semi-analytically. The class for the system Jacobian

matrix is designed, leading to a better-structured framework. Intermediate variables in the class of a

secondary joint described by variables in the class of primary joints or flexible body elements can be

used to assemble the Jacobian matrix. Next, the Jacobian matrix is assembled according to the

topological structure of the system. The Newton-Raphson iteration method is used to obtain the

corrected generalized coordinates and velocities. The proposed method is sufficiently accurate and

faster than the widely used direct differentiation method. Numerical examples are used to verify the

proposed approach's effectiveness by comparing the constraint violation errors of multi-rigid-flexible

body systems with different methods. Due to their simplicity, the proposed method is well suited for

rapid, draft-style modeling of multibody systems.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this

article.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No:

11902158), the Natural Science Foundation of Jiangsu Province (Grant No: BK20190438) and the

National Natural Science Foundation of China (Grant No: 92266201).

21528

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. F. M. Amirouche, Computational methods in multibody dynamics, Englewood Cliffs, NJ:

Prentice-Hall, 1992.

2. J. G. De Jalon, E. Bayo, Kinematic and dynamic simulation of multibody systems: The real-time

challenge, Springer, 2012. https://doi.org/10.1007/978-1-4612-2600-0

3. W. Jens, Dynamics of systems of rigid bodies, Berlin: Springer, 2013. https://doi.org/10.1007/978-

3-322-90942-8

4. Y. Liu, Z. Pan, X. Ge, Dynamics of multibody systems, Beijing: Higher Education Press, 2014.

5. P. E. Nikravesh, Computer-aided analysis of mechanical systems, Upper Saddle River: Prentice-

Hall, 1988.

6. R. E. Roberson, R. Schwertassek, Dynamics of multibody systems, Berlin: Springer, 2012.

https://doi.org/10.1007/978-3-642-86464-3

7. A. A. Shabana, Dynamics of multibody systems, New York: Cambridge University Press, 2020.

https://doi.org/10.1017/9781108757553

8. S. Werner, Multibody systems handbook, Berlin: Springer, 1990. https://doi.org/10.1007/978-3-

642-50995-7

9. W. M. Silver, On the equivalence of Lagrangian and Newton-Euler dynamics for manipulators,

Int. J. Rob. Res., 1 (1982), 60–70. https://doi.org/10.1177/027836498200100204

10. A. Cammarata, R. Sinatra, P. D. Maddìo, Static condensation method for the reduced dynamic

modeling of mechanisms and structures, Arch. Appl. Mech., 89 (2019), 2033–2051.

https://doi.org/10.1007/s00419-019-01560-x

11. R. Featherstone, Rigid body dynamics algorithms, Springer, 2014. https://doi.org/10.1007/978-1-

4899-7560-7

12. F. I. T. Petrescu, Advanced dynamics processes applied to an articulated robot, Processes, 10

(2022), 640. https://doi.org/10.3390/pr10040640

13. X. Rui, J. Zhang, X. Wang, B. Rong, B. He, Z. Jin, Multibody system transfer matrix method: The

past, the present, and the future, Int. J. Mech. Syst. Dyn., 2 (2022), 3–26.

https://doi.org/10.1002/msd2.12037

14. R. Xue, D. Bestle, Reduced multibody system transfer matrix method using decoupled hinge

equations, Int. J. Mech. Syst. Dyn., 1 (2021), 12. https://doi.org/10.1002/msd2.12026

15. H. Brandl, R. Johanni, M. Otter, A very efficient algorithm for the ssimulation of robots and

similar multibody systems without inversion of the mass matrix, IFAC Proc., 19 (1986), 95–100.

https://doi.org/10.1016/S1474-6670(17)59460-4

16. A. Cammarata, R. Sinatra, P. D. Maddio, Interface reduction in flexible multibody systems using

the floating frame of reference formulation, J. Sound Vib., 523 (2022).

https://doi.org/10.1016/j.jsv.2021.116720

17. K. S. Anderson, Recursive derivation of explicit equations of motion for efficient dynamic/control

simulation of large multibody systems, Stanford University, 1990.

https://doi.org/10.1007/978-1-4612-2600-0
https://doi.org/10.1007/978-3-322-90942-8
https://doi.org/10.1007/978-3-322-90942-8
https://doi.org/10.1007/978-3-642-86464-3
https://doi.org/10.1017/9781108757553
https://doi.org/10.1007/978-3-642-50995-7
https://doi.org/10.1007/978-3-642-50995-7
https://doi.org/10.1177/027836498200100204
https://doi.org/10.1007/s00419-019-01560-x
https://doi.org/10.1007/978-1-4899-7560-7
https://doi.org/10.1007/978-1-4899-7560-7
https://doi.org/10.3390/pr10040640
https://doi.org/10.1002/msd2.12037
https://doi.org/10.1002/msd2.12026
https://doi.org/10.1016/S1474-6670(17)59460-4
https://doi.org/10.1016/j.jsv.2021.116720

21529

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

18. A. Jain, G. Rodriguez, Recursive flexible multibody system dynamics using spatial operators, J.

Guid. Control Dyn., 15 (1992), 1453–1466. https://doi.org/10.2514/3.11409

19. H. Brandl, An algorithm for the simulation of multibody systems with kinematic loops, Proc.7th

World Congr. Theory Mach. Mech., 1987.

20. F. Marques, A. P. Souto, P. Flores, On the constraints violation in forward dynamics of multibody

systems, Multibody Syst. Dyn., 39 (2017), 385–419. https://doi.org/10.1007/s11044-016-9530-y

21. P. E. Nikravesh, Some methods for dynamic analysis of constrained mechanical systems: a survey,

Berlin: Springer, 1984. https://doi.org/10.1007/978-3-642-52465-3_14

22. J. Baumgarte, Stabilization of constraints and integrals of motion in dynamical systems, Comput.

Methods Appl. Mech. Eng., 1 (1972), 1–16. https://doi.org/10.1016/0045-7825(72)90018-7

23. S. T. Lin, J. N. Huang, Stabilization of baumgarte's method using the Runge-Kutta approach, J.

Mech. Design, 124 (2002). https://doi.org/10.1115/1.1519277

24. P. Zhang, A Stabilization of constraints in the numerical solution of Euler-Lagrange equation,

Chin. J. Eng. Math., 20 (2003), 13–18. https://doi.org/10.3969/j.issn.1005-3085.2003.04.003

25. P. Flores, M. Machado, E. Seabra, T. Miguel, A parametric study on the baumgarte stabilization

method for forward dynamics of constrained multibody systems, J. Comput. Nonlinear Dyn., 6

(2009), 011019. https://doi.org/10.1115/1.4002338

26. K. T. Wehage, R. A. Wehage, B. Ravani, Generalized coordinate partitioning for complex

mechanisms based on kinematic substructuring, Mech. Mach. Theory, 92 (2015), 464–483.

https://doi.org/10.1016/j.mechmachtheory.2015.06.006

27. P. Fisette, B. Vaneghem, Numerical integration of multibody system dynamic equations using the

coordinate partitioning method in an implicit Newmark scheme, Comput. Methods Appl. Mech.

Eng., 135 (1996), 85–105. https://doi.org/10.1016/0045-7825(95)00926-4

28. E. J. Haug, J. Yen, Generalized coordinate partitioning methods for numerical integration of

differential-algebraic equations of dynamics, In: Real-time integration methods for mechanical

system simulation, Springer, 1991. https://doi.org/10.1007/978-3-642-76159-1_5

29. R. Singh, P. Likins, Singular value decomposition for constrained dynamical systems, J. Appl.

Mech., 52 (1985), 943–948. https://doi.org/10.1115/1.3169173

30. S. Kim, M. Vanderploeg, QR decomposition for state space representation of constrained

mechanical dynamic systems, J. Mech. Design, 108 (1986), 183–188.

https://doi.org/10.1115/1.3260800

31. Q. Yu, J. Hong, A new violation correction method for constraint multibody systems, Chin. J.

Theor. Appl., 30 (1998), 300–306. https://doi.org/10.6052/0459-1879-1998-3-1995-130

32. G. Lyu, R. Liu, Errors control of constraint violation in dynamical simulation for constrained

mechanical systems, J. Comput. Nonlinear Dyn., 14 (2019). https://doi.org/10.1115/1.4042493

33. X. Xu, J. Luo, Z. Wu, Extending the modified inertia representation to constrained rigid multibody

systems, J. Appl. Mech., 87 (2020), 011010. https://doi.org/10.1115/1.4045001

34. J. Zhang, D. Liu, Y. Liu, A constraint violation suppressing formulation for spatial multibody

dynamics with singular mass matrix, Multibody Syst Dyn., 36 (2016), 87–110.

https://doi.org/10.1007/s11044-015-9458-7

35. L. Zhang, X. Rui, J. Zhang, J. Gu, H. Zheng, T. Li, Study on transfer matrix method for the planar

multibody system with closed-loops, J. Comput. Nonlinear Dyn., 16 (2021).

https://doi.org/10.1115/1.4052433

https://doi.org/10.2514/3.11409
https://doi.org/10.1007/s11044-016-9530-y
https://doi.org/10.1007/978-3-642-52465-3_14
https://doi.org/10.1016/0045-7825(72)90018-7
https://doi.org/10.1115/1.1519277
https://doi.org/10.3969/j.issn.1005-3085.2003.04.003
https://doi.org/10.1115/1.4002338
https://doi.org/10.1016/j.mechmachtheory.2015.06.006
https://doi.org/10.1016/0045-7825(95)00926-4
https://doi.org/10.1007/978-3-642-76159-1_5
https://doi.org/10.1115/1.3169173
https://doi.org/10.1115/1.3260800
https://doi.org/10.6052/0459-1879-1998-3-1995-130
https://doi.org/10.1115/1.4042493
https://doi.org/10.1115/1.4045001
https://doi.org/10.1007/s11044-015-9458-7
https://doi.org/10.1115/1.4052433

21530

AIMS Mathematics Volume 8, Issue 9, 21501–21530.

36. S. Yoon, R. M. Howe, D. T. Greenwood, Geometric elimination of constraint violations in

numerical simulation of lagrangian equations, J. Mech. Design, 116 (1994), 1058–1064.

https://doi.org/10.1115/1.2919487

37. Y. Q, I. M. Chen, A direct violation correction method in numerical simulation of constrained

multibody systems, Comput. Mech., 26 (2000), 52–57. https://doi.org/10.1007/s004660000149

38. J. Hong, Computational multibody system dynamics, Beijing: Higher Education Press, 1999.

39. D. Negrut, A. Dyer, Adams/solver primer, MSC Software Ann Arbor, 2004.

40. J. Wittenburg, Dynamics of mulitibody systems-a brief review, Space Humanity, 1989, 89–92.

https://doi.org/10.1016/B978-0-08-037877-0.50015-6

41. R. James, The unified modeling language reference manual, Addison-Wesley Professional, 2006.

42. F. Liu, J. Zhang, Q. Hu, A modified constraint force algorithm for flexible multibody dynamics

with loop constraints, Nonlinear Dyn., 90 (2017), 1885–1906. https://doi.org/10.1007/s11071-

017-3770-0

43. H. Lu, X. Rui, Y. Ding, Y. Chang, Y. Chen, J. Ding, X. Zhang, A hybrid numerical method for

vibration analysis of linear multibody systems with flexible components, Appl. Math. Model., 101

(2022), 748–771. https://doi.org/10.1016/j.apm.2021.09.015

44. Y. Lu, Z. Chang, Y. Lu, Y. Wang, Development and kinematics/statics analysis of rigid-flexible-

soft hybrid finger mechanism with standard force sensor, Robot. Comput. Integr. Manuf., 67

(2021), 101978. https://doi.org/10.1016/j.rcim.2020.101978

45. J. Zhang, X. Rui, F. Liu, Q. Zhou, L. Gu, Substructuring technique for dynamics analysis of

flexible beams with large deformation, J. Shanghai Jiaotong Univ., 22 (2017), 562–569.

https://doi.org/10.1007/s12204-017-1875-8

46. A. E. Nabawy, A. A. Abdelrahman, W. S. Abdalla, A. M. Abdelhaleem, S. S. Alieldin, Analysis of

the dynamic behavior of the double wishbone suspension system, Int. J. Appl. Mech., 11 (2019),

1950044. https://doi.org/10.1142/S1758825119500443

47. B. Zhang, Z. Li, Mathematical modeling and nonlinear analysis of stiffness of double wishbone

independent suspension, J. Mech. Sci. Technol., 35 (2021), 5351–5357.

https://doi.org/10.1007/s12206-021-1107-x

© 2023 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0).

https://doi.org/10.1115/1.2919487
https://doi.org/10.1007/s004660000149
https://doi.org/10.1016/B978-0-08-037877-0.50015-6
https://doi.org/10.1007/s11071-017-3770-0
https://doi.org/10.1007/s11071-017-3770-0
https://doi.org/10.1016/j.apm.2021.09.015
https://doi.org/10.1016/j.rcim.2020.101978
https://doi.org/10.1007/s12204-017-1875-8
https://doi.org/10.1142/S1758825119500443
https://doi.org/10.1007/s12206-021-1107-x

