
AIMS Mathematics, 8(9): 21501–21530. 

DOI: 10.3934/math.20231096 

Received: 03 January 2023 

Revised: 14 June 2023 

Accepted: 19 June 2023 

Published: 06 July 2023 

http://www.aimspress.com/journal/Math 

 

Research article 

A framework for establishing constraint Jacobian matrices of planar 

rigid-flexible-multibody systems 

Lina Zhang, Xiaoting Rui, Jianshu Zhang*, Guoping Wang, Junjie Gu and Xizhe Zhang 

Institute of Launch Dynamics, Nanjing University of Science and Technology, Jiangsu, China 

* Correspondence: Email: jszhang@njust.edu.cn; Tel: +8602584315901. 

Abstract: Constraint violation correction is an important research topic in solving multibody system 

dynamics. For a multibody system dynamics method which derives acceleration equations in a 

recursive manner and avoids overall dynamics equations, a fast and accurate solution to the violation 

problem is paramount. The direct correction method is favored due to its simplicity, high accuracy and 

low computational cost. This method directly supplements the constraint equations and performs 

corrections, making it an effective solution for addressing violation problems. However, calculating 

the significant Jacobian matrices for this method using dynamics equations can be challenging, 

especially for complex multibody systems. This paper presents a programmatic framework for deriving 

Jacobian matrices of planar rigid-flexible-multibody systems in a simple semi-analytic form along two 

paths separated by a secondary joint. The approach is verified by comparing constraint violation errors 

with and without the constraint violation correction in numerical examples. Moreover, the proposed 

method's computational speed is compared with that of the direct differential solution, verifying its 

efficiency. The straightforward, highly programmable and universal approach provides a new idea for 

programming large-scale dynamics software and extends the application of dynamics methods focused 

on deriving acceleration equations. 
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1. Introduction 

Multibody system dynamics (MSD) guides practical engineering applications by studying the 

movement of systems with multiple linked elements. Several main approaches for MSD have been 

developed since the 1970s [1–8]. The absolute coordinate methods [9], known for their programmatic 

nature and ability to handle both tree and non-tree systems, are commonly utilized. The approaches 

employ global coordinates to describe the motion of the system and obtain a general form for the 

dynamical equations, written as 

 , (1) 

where  denotes the generalized coordinates, which consist of the position and orientation of each 

rigid body-fixed coordinate system in the global inertial coordinate system, as well as the position and 

orientation of the flexible body floating coordinate system in the global inertial coordinate system and 

the flexible deformation generalized coordinates.  , the second time derivative of  , denotes the 

generalized accelerations.  represents a generalized mass matrix.  represents generalized forces 

on the system.  consists of Lagrange multipliers.  describes the constraint equations caused by the 

connection relation of all joint elements in the system.   denotes the partial derivative of the 

constraint equations with respect to generalized coordinates. 

However, when dealing with a complex multi-degree-of-freedom system, the solution of the 

dynamics can be quite challenging to derive. To overcome this issue, one technique utilized in 

structural dynamics is the static condensation method, which was extended by Alessandro Cammarata 

and colleagues to mechanisms and structures with internal joints [10]. Alternatively, one can use 

relative coordinates to establish the dynamics equations. The relative coordinate methods, developed 

by Robertson and Wittenburg [3,6], reduce the number of unknown variables and are used in tree 

structures with elegant types. Among the relative coordinate methods, highly programmatic and 

efficient approaches are coming to the fore, including Featherstone’s algorithm [11,12], the reduced 

multibody system transfer matrix method (RMSTMM) [13,14], the Brandl method [15,16], etc. The 

approaches utilize hinge coordinates as generalized coordinates and avoid global dynamics equations 

with a system inertia matrix. They can fully describe the configuration of tree systems [17,18] in the 

form of ordinary differential equations, written as 

 , (2) 

where ,  and  are the generalized coordinates, velocities and accelerations, which have analogous 

meanings to those given in Eq (1) but with much lower dimensions. The focus of these methods is to 

recursively derive generalized accelerations  for a mechanical multibody system by utilizing its state 

vectors . However, in the context of closed-loop systems, the hinge coordinates are no longer 

independent [19]. To overcome this limitation, a set of differential algebraic equations (DAEs) is 

established by adding a set of algebraic equations that represent the constraint of cut-joints [4,7], as 

follows 
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 , (3) 

where   is assembled by the constraint equations of all cut joints. Despite the approaches’ 

effectiveness, numerical solutions are prone to divergence, as indicated by the red line in Figure 1. 

Ensuring the accuracy of solutions for DAEs is known to be numerically challenging. To address 

this issue, various methods have been developed and broadly classified into three main categories: (i) 

constraint stabilization approaches, (ii) coordinate partitioning methods and (iii) direct correction 

methods [20,21]. Constraint stabilization approaches involve developing and modifying the 

Baumgarte method, which introduces the control feedback theory. However, one problem with the 

Baumgarte stabilization method is the ambiguity of the stabilization parameters [22]. To address this 

issue, Lin and Huang [23] proposed a method that used the Runge-Kutta algorithm to determine the 

stabilization parameters. Other approaches, such as those by Zhang [24] and Flores [25], assisted with 

stabilization coefficient determination by combining it with Taylor expansion, but the methods lack 

catholicity. 

Another approach is the coordinate partitioning method, which involves dividing the generalized 

coordinates into independent and dependent sets. Numerical integration is then performed for the 

independent generalized coordinates, while the constraint equations are solved for the dependent 

generalized coordinates [26]. However, this method is numerically inefficient, as it necessitates 

frequent changes to the set of independent coordinates, limiting its effectiveness [27]. Decomposing 

the Jacobi matrix, currently available as triangular decomposition [28], singular value 

decomposition [29] or orthogonal trigonometric decomposition [30], is the technique used to 

accomplish this method. 

The direct correction method, which is popular in correcting violation errors, introduces position 

and velocity corrections based on direct integration [31]. Over the years, a variety of direct correction 

techniques have been developed [20,32–35]. Yoon et al. [36] established a direct correction method 

that directly corrects the values of state variables, leading to a better fit with the constraint equations. 

However, this method is limited to the position level. Yu and Chen [37] corrected violation errors by 

implementing constraints on both position and velocity levels. The effectiveness of this approach was 

demonstrated through a simple case, which was compared to the standard formulation and the 

Baumgarte method. The direct correction method offers a more accurate solution compared to 

stabilization methods and is less computationally costly than coordinate partitioning methods [38]. In 

dealing with constraint violations arising from the DAEs, a fast and accurate solution to violation errors 

is crucial. The direct correction method is favored due to its simplicity, high accuracy and low 

computational cost. 

For dynamics methods involving global dynamics equations, the analytic form of the constraint 

Jacobian matrix can be obtained explicitly [39]. However, for methods avoiding global dynamics 

equations and using hinge coordinates, the value of the constraint Jacobian matrix becomes uncertain 

dealing with constraint violation problems in closed-loop systems. To address this issue, the direct 

differentiation method can be used in computational programming by taking partial derivatives of each 

quality encountered along the path rather than solving the Jacobian matrix in its specific form. As the 

complexity of the closed-loop system increases, the constraint Jacobian matrix of the system in the 

direct correction method becomes more complex. Nevertheless, this approach is computationally 

intensive and time-consuming when dealing with large and complex systems, which limits the 
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advantages of the direct correction method. 

In this paper, semi-analytic Jacobian matrices of the direct correction method are derived to solve 

the divergence of algorithms. The correction method is first introduced in Section 2. A further attempt 

is to build a general framework for constraint Jacobian matrices. The form of constraint equations in 

the framework is shown in Section 3. The correlated variables affected by generalized coordinates in 

the constraint equations are encapsulated in the class of a secondary joint (cut-joint in a closed-loop 

system [40]). In Section 4, the variables of a secondary joint can be described by primary joints (other 

joints except for the secondary joint in the closed-loop system [40]) or flexible bodies. Among the 

correlation variables described, the ones affected by generalized coordinates are encapsulated in the 

corresponding class of the primary joint or the flexible body. The Jacobian matrices between different 

classes are programmatically derived in Section 5. The quantities of the secondary joint are cycled in 

the closed loop, sweeping through the classes of the primary joint or the flexible body. The solved 

Jacobian matrix is then substituted back into the constraint equations. Section 6 gives the pseudo-code 

for solving Jacobian matrices by direct differentiation. The corrected generalized coordinates and 

velocities are obtained using the Newton-Raphson formula in Section 7. Section 8 offers numerical 

examples validating the program. Finally, the concluding remarks are given in Section 9. 

 

Figure 1. Numerical solution flow chart. 

2. Constraint violation correction approach 

The generalized coordinates of the closed-loop system are not independent, causing constraint 

violations. Corrected generalized coordinates and velocities can be obtained by the Newton-Raphson 

method. The Newton-Raphson formula of the constraint equation on position level can be written as 
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  (4) 

where   denotes constraints on position level and   is the constraint Jacobian matrix of the 

constraint equations with respect to the generalized coordinates. Here, the generalized coordinates 

include the modal coordinates and the coordinates of the primary joint elements. 

Upon differentiating the aforementioned equation, the correction equation for the generalized 

velocity is obtained, wherein the well-known relation  exists. The correction formula can be 

expressed as 

   (5) 

If the system has m constraint equations and n generalized coordinates, the constraint Jacobian matrix 

is given as 

  . (6) 

3. Form of constraint equations of a secondary joint 

The constraint equations of a secondary joint on both position and velocity levels can be 

established. The description of secondary joints, as shown in Figure 2, is based on the works of 

Roberson [40]. A span system is generated by cutting the joint which is called the secondary joint. The 

joints still in the span system are called primary joints. A joint connects two bodies of the system. One 

of the two bodies is called the base body and the other one is the moving body of the joint. The points 

  and   are fixed on the secondary joint, connecting the base body and the moving body, 

respectively. 
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Figure 2. The sketch of a secondary joint. 
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For example, a planar pin joint in the th closed loop labeled  is cut. The relative displacement 

of the pin joint moving in the plane is restricted. The constraint equation on position level could be 

expressed as 

 , (7) 

and the constraint equation on velocity level could be expressed as 

 , (8) 

where  denotes the position of the base point w.r.t. the inertial frame.  denotes the position of 

the moving point.  is the absolute velocity of the base (moving) point. Note that if the vector 

in the plane is , then its cross product matrix  is defined. Required variables 

, , ,  in Eqs (7) and (8) will be encapsulated in the class of the secondary joint, as shown 

in Figure 3. Function CalculateD0ConstraintEq() denotes constraints on position level. Analogically, 

the function CalculateD1ConstraintEq() gathers the process of constraints on velocity level. The 

Jacobian matrix, also known as the matrix of partial derivatives, is an essential tool for making accurate 

corrections in the system. The process of solving the constraint Jacobian matrix is put into the function 

CalculateConstraintJacobian. The process of solving the constraint Jacobian matrix is shown in the 

following. 

 

Figure 3. UML diagram of a secondary joint. 

4. Intermediate variables of partial derivatives of constraints with respect to state vectors 

The constraint equations established are ultimately affected since the position of the secondary 

joint is affected by state vectors of a system. The effect of each state vector in the system on the 

constraint equations will be considered here. For the pin secondary joint mentioned above, focusing 

on a specific column  in Eq (6), there is 
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For convenience, two separate paths are discussed here. If element   is associated with the 

moving point of the pin secondary joint, variables  are not related to generalized coordinate .  

The partial derivative of  with respect to  in this path is . According to Eq (9), the partial 

derivatives of the constraint equation on position level with respect to the generalized coordinates in 

this path can be written as 

 . (10) 

Similarly, on the other path, there is 

 . (11) 

Intermediate variables  ,   are collected in group I in a unified form. The generalized 

coordinates of a multi-rigid-flexible body system include the joint coordinate and the modal 

coordinates of flexible bodies. These are discussed below. 

4.1. Jacobian intermediate for a primary joint 

For elucidating the effect of generalized coordinates on constraint equations, subscript  can be 

replaced with base  or moving  point of the secondary joint. A primary joint moving in a plane 

connects to bodies with a root end described as  and a tip end described as .  and  are chosen 

to represent the position level quantities considering the different types of primary joints. As shown in 

Figures 4 and 5, the kinematic quantities of the  node can be expressed as 

 , (12) 
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Figure 4. The sketch of a primary joint moving in a plane. 
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Figure 5. The sketch of the geometrical relationship. 

where subscript  denotes the inertial coordinate system. Subscripts  and  denote the body-fixed 

coordinate system with origin  and , respectively.  denotes the position of the  point w.r.t. the 

inertial frame.  describes position vector from the  point to the  point described in the body-

fixed coordinate system with the  point. Cosine matrix  for the coordinate transformation from 

the body-fixed coordinate system with the  point to the inertial frame reads as 

  (13) 

Generalized coordinates  in the equation only impact the parameters of the element, namely, 

 and . Therefore, variables in Eq (12) varying with generalized coordinate  can be expressed 

as 
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where the partial derivatives with respect to the generalized coordinates are indicated as subscripts, 

denoted as = . 

Variables ,  changing with the generalized coordinate of a primary joint are encapsulated 

in group II of the primary joint class. The unified modeling language (UML) diagram [41] of a primary 

joint is provided in Figure 6. For convenience, the above derivation is loaded in the function 

PreprocessConstraintJacobian of the primary joint. 
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Figure 6. UML diagram of primary joint. 

A smooth pin joint moving in a plane is taken as an example to illustrate the main process in detail, 

as shown in Figure 6. Pin joint  rotates around the z-axis of the body-fixed coordinate system with 

the  point, which has only one generalized coordinate. The generalized coordinate can be described 

as 

  (15) 

 

Variables in group Ⅱ can be described here. The pin joint is rotated around the z-axis by an angle 

, and it has no relative slip along the z-axis, .  is a direction cosine matrix corresponding 

to a simple rotation around the z-axis in the body-fixed frame. The corresponding  ,  can be 

described as 

  (16) 

Variables ,  with respect to generalized coordinates can be read as 

  (17) 

The above equations are substituted into Eq (14). The kinematic quantities influenced by the 

generalized coordinates become 

  (18) 
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For further insight into partial derivatives of constraints with respect to state vectors of a primary 

joint, Eq (18) is elucidated. Only intermediate variables in group Ⅱ are used for subsequent assembly 

in the framework for the system Jacobian matrix. 

4.2. Jacobian intermediate for a flexible body 

The tip and root ends, denoted by  and , describe the points on a flexible body connected to 

joints, as shown in Figure 7. Under the assumption of small deformation, dynamics equations of 

flexible bodies are described by the widely used floating coordinate system. The motion of the body 

is regarded as a superposition of the large range motion of the floating coordinate system and the small 

elastic deformation [42–45]. 
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Figure 7. The sketch of a flexible body. 

Using the kinematic quantities of a flexible body  , the kinematic quantities of node   for 

position level can be described as 
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Observing the above equation, intermediate variables , , ,  are selected in 

group II. The quantities , , ,  vary with the modal coordinates. The others vary 

with the generalized velocities. The UML diagram of a flexible body is given in Figure 8. The above 

derivation is loaded in the function PreprocessConstraintJacobian. 

 

Figure 8. UML diagram of flexible body. 

For flexible body , the dynamics equations are derived based on the floating frame of reference. 

Component modal synthesis methods are applied to reduce the order of the dynamics equations of the 
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Figure 9. Deformation description of a flexible body. 
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  (28) 

  (29) 

The intermediate variables in group II could be expressed as 
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Substituting Eq (30) into Eq (20), variables ,  affected by state vectors of a flexible body 

can be read as 
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The existence of Eq (31) makes it possible to see the partial derivatives of the kinematic quantities 

clearly and also facilitates the composition of the constraint Jacobian matrix in the following. 

Nonetheless, this step does not appear in the actual programmatic implementation but only facilitates 

understanding of the solution concepts. 

5. Semi-analytic solution for constraint Jacobian matrix 

For a system with arbitrary topologies, the Jacobian matrix is a given temporary matrix changed 

with time. The calculation of the Jacobian matrix becomes very complicated, so a framework is 

established to simplify computation: 

5.1. Composition of the system Jacobian matrix 

A programmatic derivation for the constraint Jacobian matrices is described using intermediate 
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generalized coordinates is identical to correcting generalized velocities. A closed-loop subsystem  

in which the secondary pin joint  is associated with a primary pin joint  is taken as an example to 

explain in detail. The process of assembling Jacobian matrix  for generalized coordinate  is 

first demonstrated. Assume that pin joint  is associated with the base point of the secondary joint. 

Intermediate variables  in group I can be expressed by variables in group Ⅱ as 

 . (32) 

Intermediate variables under the effect of the primary joint become 

 , (33) 

Constraint Jacobian matrix  could be expressed as 

 , (34) 

Submitting Eq (17) into the above equation, we have 

 . (35) 

In the other path, pin joint  is associated with the moving point. The position of the moving point 

can be expressed as 

  . (36) 

Constraint Jacobian matrix  in this path could be expressed as 

 . (37) 

Observing Eqs (35) and (37), the Jacobian matrix of the hinge  can be solved by calling the 

intermediate variables of the corresponding hinge element. Putting the calculated Jacobian matrix into 

the corresponding position, the Jacobian matrix for the closed-loop subsystem  is obtained. If the 

closed-loop subsystem  is without any flexible bodies, the corresponding Jacobian matrix can be 

written as 

 . (38) 

The assembly process can be applied for flexible bodies. Jacobian matrix   is derived as 

follows, if flexible body element  is associated with the base point of the secondary joint. According 

to Eq (20), kinematic quantities of the flexible body element are used to express intermediate quantities 
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 . (39) 

According to Eq (30), the partial derivative of  with respect to the modal coordinates can be written 

as 

 
( ) ( ) ( )

( ) ( ) ( )

f f f

f f f

OB

OR RO R f OO R f OR RO T f

f

T

OO T f OR RO TB f OR RO OO TB f
.


= −   −   +  



+   +   +  

r
A A ρ q A ρ q A A ρ q

q

A ρ q A A r q A A A r q

 (40) 

According to the constraint equation of the secondary pin joint shown in Eq (7), constraint Jacobian 

matrix  reads as 

  (41) 

Similarly, if flexible body  is associated with the moving point of the secondary joint, point  

will be replaced with  in Eq (31). The partial derivative of the constraint equation on position level 

with respect to modal coordinates can be written as 
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The Jacobian matrix of the flexible body  can be solved by calling the intermediate variables of 

a flexible body. For the closed-loop subsystem , the corresponding Jacobian matrix consists of that 
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According to the topological structure of a multibody system, Jacobian matrix  can be obtained 

by assembling the Jacobian matrices of all sub-closed loops in the system, denoted as 

 . (45) 

Then, the system Jacobian matrix can be expressed as 

 . (46) 

The specific programming procedure for the system Jacobian matrix can be described below. 

5.2. Assembling the system Jacobian matrix 

The universalized composition process of the system Jacobian matrix based on the intermediate 

variables in groups I and II can be implemented by computer, as shown in Algorithm 1. The Jacobian 

matrix for the  th secondary joint is solved by sweeping through the primary joint elements and 

flexible body elements along the path from the base point of the th secondary joint element to the 

root element. In this process, the PreprocessConstraintJacobian() function in the classes of the primary 

joint element and the flexible body element is called to solve the intermediate variables in group I. The 

same process takes place on the other path. Corresponding constraint Jacobian matrices   and 

  are obtained. According to the location of the generalized coordinates, constraint Jacobian 

matrices  and  are composed to obtain constraint Jacobian matrix  of the th secondary 

joint. System Jacobian matrix  is obtained ultimately by assembling constrained Jacobian matrices 

 according to Eq (46). The pseudo-code of the computational process is illustrated in 

Algorithm 1. 

In the programmatic derivation, multiple calculations of the intermediate variables in group II are 

avoided. The required variables can be obtained in the first calculation and called continuously in the 

subsequent calculations. 
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Algorithm 1. Computation of system Jacobian matrix 

Function assemblingsystemJacobianmatrix (i:int, ω:double, s:int) 

{Return Jacobian matrix  of the system} 

{  is a Jacobian matrix of the secondary joint element.} 

{ SecondaryJointElement is an indicator of the secondary joint element.}  

{ PrimaryJointElement is an indicator of the primary joint element.} 

{ FlexibleBodyElement is an indicator of the flexible body element.} 

for k=1 to the number of secondary joint elements do 

for i from element connected to the BasePoint of secondary joint k to the root element in closed-

loop k do 

if element i is a primary joint element then 

SecondaryJointElement[k].  [i] ← SecondaryJointElement[k].Calculate 

ConstraintJacobian() ← PrimaryJointElement[i].PreprocessConstraintJacobian()  

end 

if element i is a flexible body element then 

SecondaryJointElement[k].  [i] ← SecondaryJointElement[k]. Calculate 

ConstraintJacobian() ← FlexibleBodyElement[i].PreprocessConstraintJacobian()  

end 

end 

for j from element connected to the MovingPoint of secondary joint k to the root element in 

closed-loop k do 

if element j is a primary joint element then 

SecondaryJointElement[k].  [j] ← SecondaryJointElement[k].Calculate 

ConstraintJacobian() ← PrimaryJointElement[j].PreprocessConstraintJacobian()  

end 

if element j is a flexible body element then 

SecondaryJointElement[k].  [j] ← SecondaryJointElement[k]. Calculate 

ConstraintJacobian() ← FlexibleBodyElement[j].PreprocessConstraintJacobian()  

end 

end 

 [k]←SecondaryJointElement[k].   

return   

6. Direct differentiation for Jacobian matrix 

The direct differentiation method obtains the Jacobian matrix by differentiating the constraint 

equations with respect to state variables in accordance with the chain rule of differentiation, which 

obtains an accurate calculation result. 

The Jacobian matrix can be calculated row-wise. The same row is the partial derivatives of the 

constraints with respect to the same generalized coordinate. The partial derivatives in the same row 

are passed along the transfer path from the system root end to the position of the secondary joint 

recursively. 

The pin joint is still used as an example with the constraint equation shown in Eq (7). In this case, 

the partial derivative of  with respect to the generalized coordinates  is put in the corresponding 

row. To obtain the solution for , the direct differentiation method is applied. The parameters 

 and  of the root element of the system can be solved using initial conditions. There 

exists a relationship where the parameter of the point connected to the root element is equal to the 
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parameter of the root point of the element   to which it is connected. With this information, the 

quantities  and  of the element  can be determined. The kinematic relations of 

the element  can be used to express ,  for the tip end, which can be written as 

  (47) 

  (48) 

The process is iterated until the values of   and   for the tip end connected 

element to point M are obtained. The geometry of the transfer is such that the parameter of the M point 

is equivalent to the parameter of the tip end, leading to the determination of . This process is 

then repeated cyclically to obtain   for different generalized coordinates. The 

solution for  is obtained in a similar fashion as that of . 

By analogy, the partial derivatives are calculated separately for all the generalized coordinates in 

the system. The system Jacobian matrix is obtained, where the partial derivatives are placed in the 

appropriate rows. The direct differentiation method for Jacobian matrices uses a for loop to achieve 

recursion, and the algorithm is shown below. 
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Algorithm 2. Computation of system Jacobian matrix. 

Function assemblingsystemJacobianmatrix (i:int, ω:double, s:int) 

{Return Jacobian matrix  of the system} 

{  is a Jacobian matrix of the secondary joint element.} 

{ SecondaryJointElement is an indicator of the secondary joint element.}  

{ PrimaryJointElement is an indicator of the primary joint element.} 

{ FlexibleBodyElement is an indicator of the flexible body element.} 

{ BodyElement is an indicator of the body element.} 

{ Index1 (Index2) is an indicator of the generalized coordinate.} 

for i from 0 to the number of generalized coordinates do 

Index1 += the number of generalized coordinate of the element[i] 

Ground.
 

.setzero(). 

Ground.
 

.setzero(). 

for j from 0 to the number of body elements do 

Index2 += the number of generalized coordinate of the element[j] 

if Index2 = Index1 then 

PrimaryJointElement[j].PreprocessConstraintJacobian() 

FlexibleBodyElement[j].PreprocessConstraintJacobian() 

end 

PrimaryJointElement[j]
 

 ←Ground.
 

. 

BodyElement[j]
 

 ←PrimaryJointElement[j].
 

. 

end 

for k=1 to the number of secondary joint elements do 

SecondaryJointElement[k].  ←SecondaryJointElement[k].
 

 

end 

end 

for k=1 to the number of secondary joint elements do 

 [k]←SecondaryJointElement[k].   

end 

return   

7. Constraint violation correction approach 

As illustrated in Figure 10, the complete correction procedure is described as follows: 

(i) Uncorrected generalized coordinates and velocities are obtained during the numerical solution. 

Then, constraint equations on both position and velocity levels are established in the class of secondary 

joint elements. The established constraint equations of each secondary joint are combined into the 

system constraint equations. 

(ii) If any values in the system constraint equations are greater than the tolerance error 10-10, the 

system will be penalized to correct the generalized coordinates and velocities. Algorithm 1 or 

Algorithm 2 is used to assemble the system Jacobian matrix. Using Eq (4), the corrected generalized 

coordinates can be solved. The value of the constraint equation is calculated again. If any value of the 

constraint violation errors is still greater than the tolerance error, continue with the correction. 

Otherwise, the correction is stopped. 

(iii) The system constraint equations on velocity level are obtained by assembling the constraint 

equations on velocity level of each secondary joint. If the constraint violation errors on velocity level 
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are greater than the tolerance error, the generalized velocity of the system is corrected using Eq (5). 

Then, the value of the constraint equation is calculated again. If the constraint violation errors are less 

than the tolerance error, the corrected generalized coordinates and velocity are obtained. 

Generalized coordinates and generalized velocities 

of the system

Calculating violations of constraint equation on 

position level  

Whether constraint violations on position level 

exceed the threshold

Calculating violations of constraint equation on 

velocity level  

Whether constraint violations on velocity level 

exceed the threshold

Corrected generalized coordinates and 

generalized velocities of the system

Assembling the constrained Jacobi matrix of system

Correction of system generalized coordinates

Recalculating violations of constraint equation on position 

level  

Assembling the constrained Jacobi matrix of system

Correction of system generalized velocities

Recalculating violations of constraint equation on velocity 

level  

Yes

No

No

Yes

 

Figure 10. Flow chart of the generalized coordinates and velocity correction. 

8. Application example using the approach 

The simplicity of engineering models, such as the four-link mechanism, can have a wide range of 

practical applications, such as frames and rotating dampers [46,47]. Therefore, the ability to simulate 

these models quickly and accurately is crucial for engineering. A four-link mechanism is used to 

demonstrate the validity of the method. The system is depicted in Figure 11 and is subject only to 

gravity. All rigid links are assumed to be identical in length (1 meter) and mass (1 kg), and the 

secondary joint C is removed to create a spanning system. Element 3 is a flexible beam with two modes. 

Dynamic calculations were performed using the RMSTMM method, and initial conditions were set at 

, , . A fourth-order Runge-Kutta algorithm with a very small step 

size (0.01 s) was employed for the numerical solution. 
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Figure 11. Multibody model of a planar four bar mechanism. 

Table 1. Computational time of dynamics without stabilization, proposed method and 

direct differentiation method for the system. 

Simulation time (s) 
CPU time (s) 

Without stabilization Proposed approach Direct differentiation 

50 19.036 19.766 24.875 

100 38.017 38.531 44.547 

200 79.593 80.985 87.516 

Figure 12 compares the constraint violations on x-direction of secondary joint C with and without 

the correction. The comparison confirms the correctness of the correction and the derived Jacobian 

matrix. Figure 13 shows violations of secondary joint C on x-direction by different methods. The 

results demonstrate that both the direct differential method and the proposed approach are successful 

in eliminating constraint violations. However, as anticipated, the proposed method is faster in terms of 

computational speed, as demonstrated by the comparison in Table 1 for a simple four-link mechanism. 

 

Figure 12. Violation of secondary joint on x-direction. 
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Figure 13. Violation of secondary joint on x-direction by different methods. 

In contrast to the previous example which had only a single closed loop, the upcoming example 

features an increased number of elements, closed loops and flexible body elements as depicted in 

Figures 14 and 15. The body elements 5, 11 and 21 are flexible and have two order modes, and the 

other elements are still rigid. The system is moved by gravity only. The dynamics of the system is 

simulated using the RMSTMM. 
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Figure 14. Topology figures of multi-rigid-flexible body systems. 
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Figure 15. Physical figures of multi-rigid-flexible body systems. 

Table 2. Computational time of dynamics without stabilization, proposed method and 

direct differentiation method for the system. 

Simulation time (s) 
CPU time (s) 

Without stabilization Proposed approach Direct differentiation 

50 73.125 73.469 88.593 

100 146.969 148.625 177.89 

200 296.516 311.297 371.703 

The result shows a divergent trend without constraints, as shown in Figure 16. The violations 

obtained by the Direct differentiation methods and proposed approach are shown in Figure 17, and 

both effectively keep the violations within the tolerance error. As shown in table 2, as the system 

calculation time increases, so does the CPU time used by the system. What is clear is that the longer 

the system computation time is, the longer the CPU time used by the direct differentiation method 

compared to the proposed method. 

 

Figure 16. Violation of secondary joint 27 on x-direction. 
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Figure 17. Violation of secondary joint 27 on x-direction by different methods. 

The third numerical example is shown in Figures 18 and 19 to verify the effectiveness of the 

programmatic stabilization solution. The example with rigid and flexible bodies is labeled with thick 

solid arrows and circles. Joint 19 is a secondary joint affiliated with the corresponding spanning tree. 

For primary joint, 1, 3, 5, 7, 9 are pin joints, and 11, 13, 15, 17 are prismatic joints.  The others are 

rigid body elements labeled 2, 4, 8, 10, 12, 14, 16 and 18. The quantities of the body elements are the 

same as in the previous example but in the shape of rods. 

 

Figure 18. Topology figures of multi-rigid-flexible body systems with single closed-loop. 
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Figure 19. Topology figures of multi-rigid-flexible body systems with single closed-loop. 

Table 3. Computational time of dynamics without stabilization, proposed method and 

direct differentiation method for the system. 

Simulation time (s) 
CPU time (s) 

Without stabilization Proposed approach Direct differentiation 

50 34.922 35.641 42.968 

100 75 78.235 96.391 

200 144.75 151.297 181.25 

The example uses the RMSTMM for dynamics analysis, too. If the correction is not added, the 

violation error on the x-direction of secondary joint 19 shows a clear divergence trend in Figure 20. 

The direct correction method is imposed while solving the Jacobian matrix using the direct 

differentiation method and the proposed method, respectively. The variation of the violation error is 

shown in Figure 21. Both methods are workable for correcting violation errors. An attempt is made 

below to compare the computation speed. 
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Figure 20. Violation of secondary joint 19 on x-direction. 

 

Figure 21. Violation of secondary joint 19 on x-direction by different methods. 

It can be found that the proposed approach is faster. The longer the system simulation time is, the 

longer the CPU time used by the direct differentiation method compared to the proposed method. 

For computational speed assessment, the proposed approach and the direct differentiation are 

compared for a different total number of bodies in Figure 22. The abscissa represents the count of 

connected bodies within a single closed-loop system. The specific configuration of this system is 

illustrated in Figure 19. It is worth noting that the number of rods in the system shown in Figure 19 is 

no longer limited to 7. Instead, it includes various possibilities, such as 100, 200, 300 and 500 rods, 

respectively. 
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Figure 22. Computational time of proposed approach compared to that of direct 

differentiation method for loop system. 

Upon comparing the two methods in Figure 22, it becomes evident that the proposed strategy 

outperforms the direct differentiation method in terms of computational time. The results indicate that 

the proposed strategy is far more efficient than the direct differentiation method. 

9. Conclusions 

This work proposes a framework for programmatical deriving of a system Jacobin matrix, which 

has significant advantages for correcting violations in the efficient nonlinear dynamics method focused 

on acceleration level. Simultaneously, Jacobian matrices in the direct correction method on both 

position and velocity levels are derived simply semi-analytically. The class for the system Jacobian 

matrix is designed, leading to a better-structured framework. Intermediate variables in the class of a 

secondary joint described by variables in the class of primary joints or flexible body elements can be 

used to assemble the Jacobian matrix. Next, the Jacobian matrix is assembled according to the 

topological structure of the system. The Newton-Raphson iteration method is used to obtain the 

corrected generalized coordinates and velocities. The proposed method is sufficiently accurate and 

faster than the widely used direct differentiation method. Numerical examples are used to verify the 

proposed approach's effectiveness by comparing the constraint violation errors of multi-rigid-flexible 

body systems with different methods. Due to their simplicity, the proposed method is well suited for 

rapid, draft-style modeling of multibody systems. 
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