The main purpose of this paper is using the elementary methods and properties of the recurrence sequence to study the calculating problem of the $ k $-th power mean of one kind generalized cubic Gauss sums, and give an exact calculating formula for it.
Citation: Xiaoge Liu, Yuanyuan Meng. On the $ k $-th power mean of one kind generalized cubic Gauss sums[J]. AIMS Mathematics, 2023, 8(9): 21463-21471. doi: 10.3934/math.20231093
The main purpose of this paper is using the elementary methods and properties of the recurrence sequence to study the calculating problem of the $ k $-th power mean of one kind generalized cubic Gauss sums, and give an exact calculating formula for it.
[1] | R. Duan, W. P. Zhang, On the fourth power mean of the generalized two-term exponential sums, Math. Rep., 22 (2020), 205–212. |
[2] | L. Chen, X. Wang, A new fourth power mean of two-term exponential sums, Open Math., 17 (2019), 407–414. https://doi.org/10.1515/math-2019-0034 doi: 10.1515/math-2019-0034 |
[3] | W. P. Zhang, H. L. Li, Elementary number theory, (Chinese), Xi'an: Shaanxi Normal University Press, 2013. |
[4] | W. P. Zhang, Y. Y. Meng, On the sixth power mean of the two-term exponential sums, Acta Math. Sin., 38 (2022), 510–518. https://doi.org/10.1007/s10114-022-0541-8 doi: 10.1007/s10114-022-0541-8 |
[5] | X. Y. Liu, W. P. Zhang, On the high-power mean of the generalized Gauss sums and Kloosterman sums, Mathematics, 7 (2019), 907. https://doi.org/10.3390/math7100907 doi: 10.3390/math7100907 |
[6] | W. P. Zhang, H. N. Liu, On the general Gauss sums and their fourth power mean, Osaka J. Math., 42 (2005), 189–199. |
[7] | H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application, Math. Rep., 19 (2017), 75–81. |
[8] | W. P. Zhang, D. Han, On the sixth power mean of the two-term exponential sums, J. Number Theory, 136 (2014), 403–413. https://doi.org/10.1016/j.jnt.2013.10.022 doi: 10.1016/j.jnt.2013.10.022 |
[9] | H. N. Liu, W. M. Li, On the fourth power mean of the three-term exponential sums, Adv. Math., 46 (2017), 529–547. |
[10] | Y. H. Yu, W. P. Zhang, On the sixth power mean value of the generalized three-term exponential sums, Abstr. Appl. Anal., 2014 (2014), 474726. https://doi.org/10.1155/2014/474726 doi: 10.1155/2014/474726 |
[11] | X. C. Du, X. X. Li, On the fourth power mean of generalized three-term exponential sums, J. Math. Res. Appl., 35 (2015), 92–96. |
[12] | X. Y. Wang, X. X. Li, One kind sixth power mean of the three-term exponential sums, Open Math., 15 (2017), 705–710. https://doi.org/10.1515/math-2017-0060 doi: 10.1515/math-2017-0060 |
[13] | T. M. Apostol, Introduction to analytic number theory, New York: Springer-Verlag, 1976. |
[14] | K. Ireland, M. A. Rosen, Classical introduction to modern number theory, New York: Springer-Verlag, 1982. |
[15] | W. P. Zhang, J. Y. Hu, The number of solutions of the diagonal cubic congruence equation $\bmod p$, Math. Rep., 20 (2018), 70–76. |
[16] | B. C. Berndt, R. J. Evans, The determination of Gauss sums, B. Am. Math. Soc., 5 (1981), 107–128. https://doi.org/10.1090/S0273-0979-1981-14930-2 doi: 10.1090/S0273-0979-1981-14930-2 |