Research article

On the $ k $-th power mean of one kind generalized cubic Gauss sums

  • Received: 21 February 2023 Revised: 26 June 2023 Accepted: 28 June 2023 Published: 05 July 2023
  • MSC : 11L03, 11L05

  • The main purpose of this paper is using the elementary methods and properties of the recurrence sequence to study the calculating problem of the $ k $-th power mean of one kind generalized cubic Gauss sums, and give an exact calculating formula for it.

    Citation: Xiaoge Liu, Yuanyuan Meng. On the $ k $-th power mean of one kind generalized cubic Gauss sums[J]. AIMS Mathematics, 2023, 8(9): 21463-21471. doi: 10.3934/math.20231093

    Related Papers:

  • The main purpose of this paper is using the elementary methods and properties of the recurrence sequence to study the calculating problem of the $ k $-th power mean of one kind generalized cubic Gauss sums, and give an exact calculating formula for it.



    加载中


    [1] R. Duan, W. P. Zhang, On the fourth power mean of the generalized two-term exponential sums, Math. Rep., 22 (2020), 205–212.
    [2] L. Chen, X. Wang, A new fourth power mean of two-term exponential sums, Open Math., 17 (2019), 407–414. https://doi.org/10.1515/math-2019-0034 doi: 10.1515/math-2019-0034
    [3] W. P. Zhang, H. L. Li, Elementary number theory, (Chinese), Xi'an: Shaanxi Normal University Press, 2013.
    [4] W. P. Zhang, Y. Y. Meng, On the sixth power mean of the two-term exponential sums, Acta Math. Sin., 38 (2022), 510–518. https://doi.org/10.1007/s10114-022-0541-8 doi: 10.1007/s10114-022-0541-8
    [5] X. Y. Liu, W. P. Zhang, On the high-power mean of the generalized Gauss sums and Kloosterman sums, Mathematics, 7 (2019), 907. https://doi.org/10.3390/math7100907 doi: 10.3390/math7100907
    [6] W. P. Zhang, H. N. Liu, On the general Gauss sums and their fourth power mean, Osaka J. Math., 42 (2005), 189–199.
    [7] H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application, Math. Rep., 19 (2017), 75–81.
    [8] W. P. Zhang, D. Han, On the sixth power mean of the two-term exponential sums, J. Number Theory, 136 (2014), 403–413. https://doi.org/10.1016/j.jnt.2013.10.022 doi: 10.1016/j.jnt.2013.10.022
    [9] H. N. Liu, W. M. Li, On the fourth power mean of the three-term exponential sums, Adv. Math., 46 (2017), 529–547.
    [10] Y. H. Yu, W. P. Zhang, On the sixth power mean value of the generalized three-term exponential sums, Abstr. Appl. Anal., 2014 (2014), 474726. https://doi.org/10.1155/2014/474726 doi: 10.1155/2014/474726
    [11] X. C. Du, X. X. Li, On the fourth power mean of generalized three-term exponential sums, J. Math. Res. Appl., 35 (2015), 92–96.
    [12] X. Y. Wang, X. X. Li, One kind sixth power mean of the three-term exponential sums, Open Math., 15 (2017), 705–710. https://doi.org/10.1515/math-2017-0060 doi: 10.1515/math-2017-0060
    [13] T. M. Apostol, Introduction to analytic number theory, New York: Springer-Verlag, 1976.
    [14] K. Ireland, M. A. Rosen, Classical introduction to modern number theory, New York: Springer-Verlag, 1982.
    [15] W. P. Zhang, J. Y. Hu, The number of solutions of the diagonal cubic congruence equation $\bmod p$, Math. Rep., 20 (2018), 70–76.
    [16] B. C. Berndt, R. J. Evans, The determination of Gauss sums, B. Am. Math. Soc., 5 (1981), 107–128. https://doi.org/10.1090/S0273-0979-1981-14930-2 doi: 10.1090/S0273-0979-1981-14930-2
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1111) PDF downloads(66) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog