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1. Introduction

Let p be an odd prime, χ denotes a Dirichlet character modulo p. For any integers k > h ≥ 1 and
integers m and n, the generalized two-term exponential sums S (m, n, k, h, χ; p) is defined as follows:

S (m, n, k, h, χ; p) =

p−1∑
a=1

χ(a)e
(
mak + nah

p

)
,

where e(y) = e2πiy and i is the imaginary unit, i.e., i2 = −1.
This sum plays a very important role in the study of analytic number theory and additive number

theory, many important problems in number theory are closely related to it, such as prime distribution
and Waring’s problems. And because of that, many number theorists and scholars had studied the
various properties of S (m, n, k, h, χ; p), and obtained a series of meaningful research results. For
example, R. Duan and W. P. Zhang [1] proved that for any prime p with 3 - (p − 1), and any Dirichlet
character λ mod p, one has the identity

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=1

λ(a)e
(
ma3 + na

p

)∣∣∣∣∣∣∣
4

=


3p3 − 8p2 if λ =

(
∗

p

)
,

2p3 − 7p2 if λ , χ0,
(
∗

p

)
,

2p3 − 3p2 − 3p − 1 if λ = χ0,
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where
(
∗

p

)
denotes the Legendre symbol, χ0 is the principal character modulo p.

L. Chen and X. Wang [2] studied the fourth power mean of S (m, 1, 4, 1, χ0; p), and proved the
identities

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma4 + a

p

)∣∣∣∣∣∣∣
4

=



2p2(p − 2) if p ≡ 7 mod 12,
2p3 if p ≡ 11 mod 12,
2p(p2 − 10p − 2α2) if p ≡ 1 mod 24,
2p(p2 − 4p − 2α2) if p ≡ 5 mod 24,
2p(p2 − 6p − 2α2) if p ≡ 13 mod 24,
2p(p2 − 8p − 2α2) if p ≡ 17 mod 24,

where α = α(p) =

p−1
2∑

a=1

(
a + a

p

)
is an integer, a · a ≡ 1 mod p, α satisfies the following identity (see

Theorems 4–11 in [3]):

p = α2 + β2 =


p−1

2∑
a=1

(
a + a

p

)
2

+


p−1

2∑
a=1

(
a + ra

p

)
2

,

and r is any quadratic non-residue modulo p. That is,
(

r
p

)
= −1.

Recently, W. P. Zhang and Y. Y. Meng [4] studied the sixth power mean of S (m, n, 3, 1, χ0; p), and
proved that for any odd prime p and integer n with (n, p) = 1, we have the identities

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma3 + na

p

)∣∣∣∣∣∣∣
6

=

 5p3 · (p − 1) if p ≡ 5 mod 6;
p2 ·

(
5p2 − 23p − d2

)
if p ≡ 1 mod 6,

where 4p = d2 + 27 · b2, b is an integer and d is uniquely determined by d ≡ 1 mod 3.
X. Y. Liu and W. P. Zhang [5] proved the following conclusion: For any odd prime p with 3 - (p−1),

one has the identity

∑
χ mod p

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=1

χ(a)e
(
ma3 + a

p

)∣∣∣∣∣∣∣
6

= p(p − 1)
(
6p3 − 28p2 + 39p + 5

)
.

On the other hand, if p | n, then S (m, n, k, h, χ; p) becomes the generalized k-th Gauss sums. W. P.
Zhang and H. N. Liu [6] proved that for any prime p with 3 | (p − 1), one has the identity

∑
χ mod p

∣∣∣∣∣∣∣
p−1∑
a=1

χ(a)e
(
a3

p

)∣∣∣∣∣∣∣
4

= 5p3 − 18p2 + 20p + 1 +
U5

p
+ 5pU − 5U3 − 4U2 + 4U,

where U is the cubic Gauss sums. That is, U =

p−1∑
a=0

e
(
a3

p

)
.

For more works towards this direction, see references [7–12], to save space, we will not list them
all here.
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In this paper, we use the elementary methods and the properties of the recurrence sequence to study
the calculating problem of the k-th power mean

∑
χ mod p

p−1∑
m=0

 p−1∑
a=1

χ(a)e
(
ma3

p

)
k

, (1.1)

and give an exact calculating formula for (1.1) with the restrictive condition p ≡ 1 mod 3 and k -
(p − 1). In fact, when k is relatively large, the problem of calculating (1.1) is very difficult. However,
we find that as long as (k, p−1) = 1, we can transform the studied problem into an interesting recursion
relation. Thus, we have completely solved the problem of calculating the k-th power mean (1.1). That
is, we will prove the following two conclusions:
Theorem 1.1. Let p be a prime with p ≡ 1 mod 3, and

S k(p) =

p−1∑
m=1

(A(m) − 1)k e
(
m
p

)
.

Then for any positive integer k ≥ 3, we have the recurrence formula

S k(p) = −3S k−1(p) + 3(p − 1)S k−2(p) + (dp + 3p − 1)S k−3(p),

where the initial values S 0(p) = −1, S 1(p) = 2p + 1 and S 2(p) = dp − 6p − 1, A(m) =

p−1∑
a=0

e
(
ma3

p

)
is

the cubic Gauss sums, 4p = d2 + 27 · b2, and d is uniquely determined by d ≡ 1 mod 3.
As an application of Theorem 1.1, we immediately give an efficient method for calculating (1.1).

That is, we have the following:
Theorem 1.2. Let p be a prime with p ≡ 1 mod 3. Then for any positive integer k with (k, p − 1) = 1,
we have the identity

∑
χ mod p

p−1∑
m=0

 p−1∑
a=1

χ(a)e
(
ma3

p

)
k

= (p − 1)k + (p − 1)
p−1∑
m=1

(A(m) − 1)k−1 e
(
m
p

)
.

It is clear that combining Theorem 1.1 and Theorem 1.2 we immediately solved the problem of
calculating k-th power mean (1.1). Especially take k = 5, 7 and 11, we can deduce the following three
corollaries:
Corollary 1.1. Let p be a prime with p ≡ 1 mod 3. If 5 - (p − 1), then we have the identity

1
p(p − 1)

∑
χ mod p

p−1∑
m=0

 p−1∑
a=1

χ(a)e
(
ma3

p

)
5

= p3 − 4p2 − 24p − 24 + 5dp + 10d.

Corollary 1.2. Let p be a prime with p ≡ 1 mod 3. If 7 - (p − 1), then we have the identity

1
p(p − 1)

∑
χ mod p

p−1∑
m=0

 p−1∑
a=1

χ(a)e
(
ma3

p

)
7
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= p5 − 6p4 + 15p3 − 146p2 − 195p − 48 + 21dp2 + 105dp − 7d2 p + 35d.

Corollary 1.3. Let p be a prime with p ≡ 1 mod 3. If 11 - (p − 1), then we have the identity

1
p(p − 1)

∑
χ mod p

p−1∑
m=0

 p−1∑
a=1

χ(a)e
(
ma3

p

)
11

= p9 − 10p8 + 45p7 − 120p6 + 210p5

−2034p4 − 8700p3 − 8436p2 − 1935p − 120 + 11d3 p3 + 55d3 p2 − 495d2 p3

−1320d2 p2 − 462d2 p + 297dp4 + 4455dp3 + 6930dp2 + 2310dp + 165d.

Remarks: Firstly in Theorem 1.2, we only considered the case p ≡ 1 mod 3. In fact, if 3 - (p − 1),
then for any non-principal character χ modulo p and any integer m with (m, p) = 1, we have∣∣∣∣∣∣∣

p−1∑
a=1

χ(a)e
(
ma3

p

)∣∣∣∣∣∣∣ =
√

p.

So in this time, for any real number k ≥ 0, we have the identity

∑
χ mod p

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=1

χ(a)e
(
ma3

p

)∣∣∣∣∣∣∣
2k

= (p − 1)2k + (p − 1) + (p − 2)(p − 1) · pk.

Secondly, there is no restriction for positive integer k in Theorem 1.1. So for any positive integer
k with (k, p − 1) = 1, combining Theorems 1.1 and 1.2 we can get the exact values of the k-th power
mean (1.1).

Thirdly, with the mathematical software such as Matlab (See Appendix program A), we can use
computers to calculate the exact value of Theorem 1.2. Thus, computers can be truly realized in
solving theoretical mathematical problems.

Finally, if k ≥ 5 and (k, p − 1) > 1, whether there exists an exact calculating formula for (1.1) is an
open problem. This will be further studied by us.

2. The direct proofs of the theorems

To complete the proof of Theorem 1.1, we need following simple lemma. Of course, the proof of
this lemma need some knowledge of elementary or analytic number theory, all them can be found in
references [13, 14] or [3], we will not repeat them here. First we have the following:
Lemma 2.1. Let p be a prime with p ≡ 1 mod 3. Then for any third-order primitive character λ
modulo p, we have the identity

τ3(λ) + τ3
(
λ
)

= dp,

where τ(χ) =

p−1∑
a=1

χ(a)e
(

a
p

)
denotes the classical Gauss sums, 4p = d2 + 27 · b2, b is an integer and d

is uniquely determined by d ≡ 1 mod 3.
Proof. See [15] or [16].
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Now we using this Lemma 2.1 to complete the proof of our Theorem 1.1. Let λ be any third-order
primitive character modulo p. For any integer m, let

A(m) =

p−1∑
a=0

e
(
ma3

p

)
.

Then for integer m with (m, p) = 1, from Lemma 2.1, the properties of the third-order character modulo
p and Gauss sums we have

A(m) = 1 +

p−1∑
a=1

e
(
ma3

p

)
= 1 +

p−1∑
a=1

(
1 + λ(a) + λ(a)

)
e
(
ma
p

)
= λ(m)τ

(
λ
)

+ λ(m)τ (λ) .

Note that τ(λ) · τ
(
λ
)

= p, λ2 = λ and λ3(m) = 1 we also have

A3(m) = τ3(λ) + τ3
(
λ
)

+ 3p · A(m) = dp + 3p + 3p · (A(m) − 1) . (2.1)

It is clear that

S 0(p) =

p−1∑
m=1

(A(m) − 1)0 e
(
m
p

)
=

p−1∑
m=1

e
(
m
p

)
= −1. (2.2)

S 1(p) =

p−1∑
m=1

(A(m) − 1) e
(
m
p

)
=

p−1∑
m=1

(
λ(m)τ

(
λ
)

+ λ(m)τ (λ) − 1
)

e
(
m
p

)
= τ(λ)τ

(
λ
)

+ τ
(
λ
)
τ(λ) + 1 = 2p + 1. (2.3)

S 2(p) =

p−1∑
m=1

(A(m) − 1)2 e
(
m
p

)
=

p−1∑
m=1

(
λ(m)τ2 (λ) + λ(m)τ2

(
λ
))

e
(
m
p

)

−2
p−1∑
m=1

(
λ(m)τ

(
λ
)

+ λ(m)τ (λ)
)

e
(
m
p

)
+ (2p + 1)

p−1∑
m=1

e
(
m
p

)
= τ3(λ) + τ3

(
λ
)
− 4p − (2p + 1) = dp − 6p − 1. (2.4)

From (2.1) we also have

(A(m) − 1)3 = A3(m) − 3 (A(m) − 1)2
− 3 (A(m) − 1) − 1

= pd + 3p − 1 − 3 (A(m) − 1)2 + 3(p − 1) (A(m) − 1) . (2.5)

If k ≥ 3, then from (2.5) we have the recursive formula

S k(p) =

p−1∑
m=1

(A(m) − 1)k e
(
m
p

)
=

p−1∑
m=1

(A(m) − 1)k−3 (A(m) − 1)3 e
(
m
p

)
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=

p−1∑
m=1

(A(m) − 1)k−2 (3(p − 1) − 3 (A(m) − 1)) e
(
m
p

)

+ (pd + 3p − 1)
p−1∑
m=1

(A(m) − 1)k−3 e
(
m
p

)
= −3S k−1(p) + 3(p − 1)S k−2(p) + (dp + 3p − 1)S k−3(p). (2.6)

Now Theorem 1.1 follows from (2.2)–(2.4) and (2.6).
Now we prove Theorem 1.2. From the properties of the reduced residue system, the orthogonality

of the characters modulo p and the trigonometrical identity
p−1∑
a=0

e
(
na
p

)
=

{
p if p | n;
0 if p - n

we have

1
p(p − 1)

∑
χ mod p

p−1∑
m=0

 p−1∑
a=1

χ(a)e
(
ma3

p

)
k

=

p−1∑
a1=1

p−1∑
a2=1

· · ·

p−1∑
ak=1

a3
1+a3

2+···+a3
k≡0 mod p

a1a2···ak≡1 mod p

1

=

p−1∑
a1=1

p−1∑
a2=1

· · ·

p−1∑
ak=1

a3
1+a3

2+···+a3
k−1+1≡0 mod p

a1a2···ak−1ak
k≡1 mod p

1 =

p−1∑
a1=1

p−1∑
a2=1

· · ·

p−1∑
ak=1

a3
1+a3

2+···+a3
k−1+1≡0 mod p

a1a2···ak−1≡ak
k mod p

1. (2.7)

Since (k, p − 1) = 1, when ak passes through a reduced residue system modulo p, then ak
k also passes

through a reduced residue system modulo p. From (2.7) we have

1
p(p − 1)

∑
χ mod p

p−1∑
m=0

 p−1∑
a=1

χ(a)e
(
ma3

p

)
k

=

p−1∑
a1=1

p−1∑
a2=1

· · ·

p−1∑
ak=1

a3
1+a3

2+···+a3
k−1+1≡0 mod p

a1a2···ak−1≡ak mod p

1

=

p−1∑
a1=1

p−1∑
a2=1

· · ·

p−1∑
ak−1=1

a3
1+a3

2+···+a3
k−1+1≡0 mod p

1 =
1
p

p−1∑
m=0

 p−1∑
a=1

e
(
ma3

p

)
k−1

e
(
m
p

)

=
(p − 1)k−1

p
+

1
p

p−1∑
m=1

(A(m) − 1)k−1 e
(
m
p

)
.

This completes the proof of Theorem 1.2.

3. Conclusions

The main results of this paper is to give two theorems. Theorem 1.1 proved that one kind exponential
sums related to cubic Gauss sums satisfies a third-order linear recursion property. Theorem 1.2 gave
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the transformation form of k-th power mean of the generalized cubic Gauss sums, which is closely
related to Theorem 1.1. Finally, the calculation of Theorem 1.2 can be achieved by Theorem 1.1 and
computer programs such as Matlab.

Of course, our results also provides some new and effective methods for the calculating problem of
the k-th power mean of the generalized cubic Gauss sums. We have reason to believe that these works
will play a positive role in promoting the study of relevant problems.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The authors would like to thank the referees for their very helpful and detailed comments, which
have significantly improved the presentation of this paper.

This work is supported by the N. S. F. (12126357) of China and Shaanxi Fundamental Science
Research Project for Mathematics and Physics (Grant No.22JSY007).

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

1. R. Duan, W. P. Zhang, On the fourth power mean of the generalized two-term exponential sums,
Math. Rep., 22 (2020), 205–212.

2. L. Chen, X. Wang, A new fourth power mean of two-term exponential sums, Open Math., 17
(2019), 407–414. https://doi.org/10.1515/math-2019-0034

3. W. P. Zhang, H. L. Li, Elementary number theory, (Chinese), Xi’an: Shaanxi Normal University
Press, 2013.

4. W. P. Zhang, Y. Y. Meng, On the sixth power mean of the two-term exponential sums, Acta Math.
Sin., 38 (2022), 510–518. https://doi.org/10.1007/s10114-022-0541-8

5. X. Y. Liu, W. P. Zhang, On the high-power mean of the generalized Gauss sums and Kloosterman
sums, Mathematics, 7 (2019), 907. https://doi.org/10.3390/math7100907

6. W. P. Zhang, H. N. Liu, On the general Gauss sums and their fourth power mean, Osaka J. Math.,
42 (2005), 189–199.

7. H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application,
Math. Rep., 19 (2017), 75–81.

8. W. P. Zhang, D. Han, On the sixth power mean of the two-term exponential sums, J. Number
Theory, 136 (2014), 403–413. https://doi.org/10.1016/j.jnt.2013.10.022

9. H. N. Liu, W. M. Li, On the fourth power mean of the three-term exponential sums, Adv. Math., 46
(2017), 529–547.

AIMS Mathematics Volume 8, Issue 9, 21463–21471.

http://dx.doi.org/https://doi.org/10.1515/math-2019-0034
http://dx.doi.org/https://doi.org/10.1007/s10114-022-0541-8
http://dx.doi.org/https://doi.org/10.3390/math7100907
http://dx.doi.org/https://doi.org/10.1016/j.jnt.2013.10.022


21470

10. Y. H. Yu, W. P. Zhang, On the sixth power mean value of the generalized three-term exponential
sums, Abstr. Appl. Anal., 2014 (2014), 474726. https://doi.org/10.1155/2014/474726

11. X. C. Du, X. X. Li, On the fourth power mean of generalized three-term exponential sums, J. Math.
Res. Appl., 35 (2015), 92–96.

12. X. Y. Wang, X. X. Li, One kind sixth power mean of the three-term exponential sums, Open Math.,
15 (2017), 705–710. https://doi.org/10.1515/math-2017-0060

13. T. M. Apostol, Introduction to analytic number theory, New York: Springer-Verlag, 1976.

14. K. Ireland, M. A. Rosen, Classical introduction to modern number theory, New York: Springer-
Verlag, 1982.

15. W. P. Zhang, J. Y. Hu, The number of solutions of the diagonal cubic congruence equation mod p,
Math. Rep., 20 (2018), 70–76.

16. B. C. Berndt, R. J. Evans, The determination of Gauss sums, B. Am. Math. Soc., 5 (1981), 107–128.
https://doi.org/10.1090/S0273-0979-1981-14930-2

Appendix program A

Program 1:
function[sn] = RECURRENCE(d, p, sn1, sn2, sn3)
sn = −3 ∗ sn1 + 3 ∗ (p − 1) ∗ sn2 + (d ∗ p + 3 ∗ p − 1) ∗ sn3;
Program 2 :
clc
clear all
syms p;
syms d;
syms s0;
syms s1;
syms s2;
syms s3;
syms sn3;
syms sn2;
syms sn1;
syms sn;
s0 = −1
s1 = 2 ∗ p + 1
s2 = d ∗ p − 6 ∗ p − 1
sn1 = s2;
sn2 = s1;
sn3 = s0;
for n = 1 : 8
n + 2
sn = RECURRENCE(d, p, sn1, sn2, sn3);
expand(sn)
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sn3 = sn2;
sn2 = sn1;
sn1 = sn;
end
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