Research article

A note on the hybrid power mean involving the cubic Gauss sums and Kloosterman sums

  • Received: 17 March 2022 Revised: 19 June 2022 Accepted: 22 June 2022 Published: 01 July 2022
  • MSC : 11L03, 11L05

  • The main purpose of this paper is to study the calculating problem of one kind hybrid power mean involving the cubic Gauss sums and Kloosterman sums, and using the elementary methods, analytic methods and the properties of the classical Gauss sums to give some interesting calculating formula for them. At the same time, the paper also provides an effective calculating method for the study of the hybrid power mean involving the $ k $-th Gauss sums and Kloosterman sums.

    Citation: Xiaoxue Li, Wenpeng Zhang. A note on the hybrid power mean involving the cubic Gauss sums and Kloosterman sums[J]. AIMS Mathematics, 2022, 7(9): 16102-16111. doi: 10.3934/math.2022881

    Related Papers:

  • The main purpose of this paper is to study the calculating problem of one kind hybrid power mean involving the cubic Gauss sums and Kloosterman sums, and using the elementary methods, analytic methods and the properties of the classical Gauss sums to give some interesting calculating formula for them. At the same time, the paper also provides an effective calculating method for the study of the hybrid power mean involving the $ k $-th Gauss sums and Kloosterman sums.



    加载中


    [1] T. M. Apostol, Introduction to analytic number theory, New York: Springer-Verlag, 1976. https://doi.org/10.1007/978-1-4757-5579-4
    [2] K. Ireland, M. Rosen, A classical introduction to modern number theory, New York: Springer-Verlag, 1990. https://doi.org/10.1007/978-1-4757-2103-4
    [3] H. D. Kloosterman, On the representation of numbers in the form $ax^2 + by^2 + cz^2 + dt^2$, Acta Math., 49 (1927), 407–464. https://doi.org/10.1007/BF02564120 doi: 10.1007/BF02564120
    [4] T. Estermann, On Kloosterman's sum, Mathematica, 8 (1961), 83–86.
    [5] W. P. Zhang, On the general Kloosterman sums and its fourth power mean, J. Number Theory, 104 (2004), 156–161. http://dx.doi.org/10.1016/S0022-314X(03)00154-9 doi: 10.1016/S0022-314X(03)00154-9
    [6] L. Chen, J. Y. Hu, A linear recurrence formula involving cubic Gauss sums and Kloosterman sums, Acta Math. Sin. Chin. Ser., 61 (2018), 67–72.
    [7] W. P. Zhang, On the fourth power mean of the general Kloosterman sums, J. Number Theory, 169 (2016), 315–326. https://doi.org/10.1016/j.jnt.2016.05.018 doi: 10.1016/j.jnt.2016.05.018
    [8] S. F. Cao, T. T. Wang, On the hybrid power mean of two-term exponential sums and cubic Gauss sums, J. Math., 2021 (2021), 6638156. http://dx.doi.org/10.1155/2021/6638156 doi: 10.1155/2021/6638156
    [9] W. P. Zhang, D. Han, On the sixth power mean of the two-term exponential sums, J. Number Theory, 136 (2014), 403–413. http://dx.doi.org/10.1016/j.jnt.2013.10.022 doi: 10.1016/j.jnt.2013.10.022
    [10] W. P. Zhang, Y. Y. Meng, On the sixth power mean of the two-term exponential sums, Acta. Math. Sin.-English Ser., 38 (2022), 510–518. http://dx.doi.org/10.1007/s10114-022-0541-8 doi: 10.1007/s10114-022-0541-8
    [11] X. X. Lv, On the hybrid power mean of three-th Gauss sums and two-term exponential sums, Acta Math. Sin. Chin. Ser., 62 (2019), 225–231.
    [12] S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502–506.
    [13] Z. Y. Chen, W. P. Zhang, On the fourth-order linear recurrence formula related to classical Gauss sums, Open Math., 15 (2017), 1251–1255. https://doi.org/10.1515/math-2017-0104 doi: 10.1515/math-2017-0104
    [14] L. Chen, On the classical Gauss sums and their some properties, Symmetry, 10 (2018), 625. https://doi.org/10.3390/sym10110625 doi: 10.3390/sym10110625
    [15] T. T. Wang, G. H. Chen, A note on the classical Gauss sums, Mathematics, 6 (2018), 313. https://doi.org/10.3390/math6120313 doi: 10.3390/math6120313
    [16] W. P. Zhang, X. D. Yuan, On the classical Gauss sums and their some new identities, AIMS Math., 7 (2022), 5860–5870. http://dx.doi.org/10.3934/math.2022325 doi: 10.3934/math.2022325
    [17] W. P. Zhang, J. Y. Hu, The number of solutions of the diagonal cubic congruence equation $\bmod p$, Math. Reports, 20 (2018), 73–80.
    [18] B. C. Berndt, R. J. Evans, The determination of Gauss sums, Bull. Amer. Math. Soc., 5 (1981), 107–128. http://dx.doi.org/10.1090/S0273-0979-1981-14930-2 doi: 10.1090/S0273-0979-1981-14930-2
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1264) PDF downloads(86) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog