Research article

Some sufficient conditions for a tree to have its weak Roman domination number be equal to its domination number plus 1

  • Received: 16 January 2023 Revised: 06 April 2023 Accepted: 02 May 2023 Published: 24 May 2023
  • MSC : 05C50

  • Let $ G = (V, E) $ be a simple graph with vertex set $ V $ and edge set $ E $, and let $ f $ be a function $ f:V\mapsto \{0, 1, 2\} $. A vertex $ u $ with $ f(u) = 0 $ is said to be undefended with respect to $ f $ if it is not adjacent to a vertex with positive weight. The function $ f $ is a weak Roman dominating function (WRDF) if each vertex $ u $ with $ f(u) = 0 $ is adjacent to a vertex $ v $ with $ f(v) > 0 $ such that the function $ f_{u}:V\mapsto \{0, 1, 2\} $, defined by $ f_{u}(u) = 1 $, $ f_{u}(v) = f(v)-1 $ and $ f_{u}(w) = f(w) $ if $ w\in V-\{u, v\} $, has no undefended vertex. The weight of $ f $ is $ w(f) = \sum_{v\in V}f(v) $. The weak Roman domination number, denoted $ \gamma_{r}(G) $, is the minimum weight of a WRDF in G. The domination number, denoted $ \gamma(G) $, is the minimum cardinality of a dominating set in $ G $. In this paper, we give some sufficient conditions for a tree to have its weak Roman domination number be equal to its domination number plus 1 ($ \gamma_{r}(T) = \gamma(T)+1 $) by recursion and construction.

    Citation: Jian Yang, Yuefen Chen, Zhiqiang Li. Some sufficient conditions for a tree to have its weak Roman domination number be equal to its domination number plus 1[J]. AIMS Mathematics, 2023, 8(8): 17702-17718. doi: 10.3934/math.2023904

    Related Papers:

  • Let $ G = (V, E) $ be a simple graph with vertex set $ V $ and edge set $ E $, and let $ f $ be a function $ f:V\mapsto \{0, 1, 2\} $. A vertex $ u $ with $ f(u) = 0 $ is said to be undefended with respect to $ f $ if it is not adjacent to a vertex with positive weight. The function $ f $ is a weak Roman dominating function (WRDF) if each vertex $ u $ with $ f(u) = 0 $ is adjacent to a vertex $ v $ with $ f(v) > 0 $ such that the function $ f_{u}:V\mapsto \{0, 1, 2\} $, defined by $ f_{u}(u) = 1 $, $ f_{u}(v) = f(v)-1 $ and $ f_{u}(w) = f(w) $ if $ w\in V-\{u, v\} $, has no undefended vertex. The weight of $ f $ is $ w(f) = \sum_{v\in V}f(v) $. The weak Roman domination number, denoted $ \gamma_{r}(G) $, is the minimum weight of a WRDF in G. The domination number, denoted $ \gamma(G) $, is the minimum cardinality of a dominating set in $ G $. In this paper, we give some sufficient conditions for a tree to have its weak Roman domination number be equal to its domination number plus 1 ($ \gamma_{r}(T) = \gamma(T)+1 $) by recursion and construction.



    加载中


    [1] I. Stewart, Defend the Roman Empire, Sci. Am., 281 (1999), 136–138. https://doi.org/10.1038/scientificamerican1299-136 doi: 10.1038/scientificamerican1299-136
    [2] E. J. Cockayne, P. A. Jr. Dreyer, S. M. Hedetniemi, S. T. Hedetniemi, Roman domination in graphs, Disc. Math., 278 (2004), 11–22. https://doi.org/10.1016/j.disc.2003.06.004 doi: 10.1016/j.disc.2003.06.004
    [3] A. Klobučar, I. Puljić, Roman domination number on cardinal product of paths and cycles, Croat. Oper. Res. Rev., 6 (2015), 71–78. https://doi.org/10.17535/crorr.2015.0006 doi: 10.17535/crorr.2015.0006
    [4] M. A. Henning, S. T. Hedetniemi, Defending the Roman Empire-A new strategy, Discrete Math., 266 (2003), 239–251. https://doi.org/10.1016/S0012-365X(02)00811-7 doi: 10.1016/S0012-365X(02)00811-7
    [5] R. Hernández-Ortiz, L. P. Montejano, J. A. Rodríguez-Velázquez, Weak Roman domination in rooted product graphs, AIMS Math., 6 (2021), 3641–3653. https://doi.org/10.3934/math.2021217 doi: 10.3934/math.2021217
    [6] J. Yang, J. L. Song, Trees T with weak Roman domination number being equal to domination number, Mathematics in Practice and Theory (in Chinese), 43 (2013), 134–140.
    [7] J. Yang, Z. Q. Li, Some properties of weak Roman graph and weak Roman domination in graphs, Chin. J. of Eng. Math. (in Chinese), 39 (2022), 621–630.
    [8] F. N. Pour, H. A. Ahangar, M. Chellali, S. M. Sheikholeslami, Global triple Roman dominating function, Discrete Appl. Math., 314 (2022), 228–237. https://doi.org/10.1016/j.dam.2022.02.015 doi: 10.1016/j.dam.2022.02.015
    [9] Z. Li, A note on the bounds of Roman domination numbers, AIMS Math., 6 (2021), 3940–3946. https://doi.org/10.3934/math.2021234 doi: 10.3934/math.2021234
    [10] M. Chellali, T. W. Haynes, S. T. Hedetniemi, Roman and total domination, Quaest. Math., 38 (2015), 749–757. https://doi.org/10.2989/16073606.2015.1015647 doi: 10.2989/16073606.2015.1015647
    [11] Z. Du, A. A. S. A. Jamri, R. Hasni, D. A. Mojdeh, Maximal first Zagreb index of trees with given Roman domination number, AIMS Math., 7 (2022), 11801–11812. https://doi.org/10.3934/math.2022658 doi: 10.3934/math.2022658
    [12] S. C. García, A. C. Martínez, I. G. Yero, Quasi-total Roman domination in graphs, Results Math., 74 (2019), 173. https://doi.org/10.1007/s00025-019-1097-5 doi: 10.1007/s00025-019-1097-5
    [13] P. R. L. Pushpam, S. Padmapriea, Global Roman domination in graphs, Discrete Appl. Math., 200 (2016), 176–185. https://doi.org/10.1016/j.dam.2015.07.014 doi: 10.1016/j.dam.2015.07.014
    [14] H. A. Ahangar, M. A. Henning, V. Samodivkin, I. G. Yero, Total Roman domination in graphs, Appl. Anal. Discr. Math., 10 (2016), 501–517. https://doi.org/10.2298/AADM160802017A doi: 10.2298/AADM160802017A
    [15] J. Amjadi, S. M. Sheikholeslami, M. Soroudi, Nordhaus-Gaddum bounds for total Roman domination, J. Comb. Optim., 35 (2018), 126–133. https://doi.org/10.1007/s10878-017-0158-5 doi: 10.1007/s10878-017-0158-5
    [16] G. Gunther, B. L. Hartnell, L. Markus, D. Rall, Graphs with unique minimum domination sets, Congressus Numerantium, 101 (1994), 55–63.
    [17] Z. Gu, J. X. Meng, Z. Zhang, J. E. Wan, Some upper bounds related with domination number, J. Oper. Res. Soc. China, 1 (2013), 217–225. https://doi.org/10.1007/s40305-013-0012-0 doi: 10.1007/s40305-013-0012-0
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(878) PDF downloads(51) Cited by(1)

Article outline

Figures and Tables

Figures(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog