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Abstract: Let G = (V, E) be a simple graph with vertex set V and edge set E, and let f be a function
f : V 7→ {0, 1, 2}. A vertex u with f (u) = 0 is said to be undefended with respect to f if it is not adjacent
to a vertex with positive weight. The function f is a weak Roman dominating function (WRDF) if each
vertex u with f (u) = 0 is adjacent to a vertex v with f (v) > 0 such that the function fu : V 7→ {0, 1, 2},
defined by fu(u) = 1, fu(v) = f (v) − 1 and fu(w) = f (w) if w ∈ V − {u, v}, has no undefended vertex.
The weight of f is w( f ) =

∑
v∈V f (v). The weak Roman domination number, denoted γr(G), is the

minimum weight of a WRDF in G. The domination number, denoted γ(G), is the minimum cardinality
of a dominating set in G. In this paper, we give some sufficient conditions for a tree to have its weak
Roman domination number be equal to its domination number plus 1 (γr(T ) = γ(T ) + 1) by recursion
and construction.
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1. Introduction

For a graph G = (V, E), let f : V 7→ {0, 1, 2}, and let (V0, V1, V2) be the ordered partition of V
induced by f , where Vi = { v ∈ V | f (v) = i } and |Vi| = ni, for i = 0, 1, 2. Note that there exists a 1 − 1
correspondence between the functions f : V 7→ {0, 1, 2} and the ordered partitions (V0, V1, V2) of V .
Thus, we will write f = (V0,V1,V2).

Motivated by an article in Scientific American by I. Stewart [1] entitled “Defend the Roman
Empire!”, E. J. Cockayne et al. [2] defined a Roman dominating function (RDF) on a graph
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G = (V, E) to be a function f : V 7→ {0, 1, 2} satisfying the condition that every vertex u for which
f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. For a real-valued function f : V 7→ R,
the weight of f is w( f ) =

∑
v∈V f (v) = |V1| + 2|V2|, and for S ⊆ V we define f (S ) =

∑
v∈S f (v), so

w( f ) = f (V). The Roman domination number, denoted γR(G), is the minimum weight of a RDF in G;
that is, γR(G) = min{w( f ) | f is a RDF in G}. For example, the Roman domination number of the 2× 5
grid graph G2,5 is 6 (Figure 1(a)). A RDF of weight γR(G) we call a γR(G)-function. Roman
domination in graphs has been studied, for example, in [2,3].

Figure 1. The constructions for grid graph G2,5. Filled-in circles denote vertices in V2, and
empty circles denote vertices in V1.

This definition of a Roman dominating function is motivated as follows. Each vertex in our graph
represents a location in the Roman Empire. A location (vertex v) is considered unsecured if no legions
are stationed there (i.e., f (v) = 0) and secured otherwise (i.e., if f (v) ∈ {1, 2}). An unsecured
location (vertex v) can be secured by sending a legion to v from an adjacent location (an adjacent
vertex u). However, Emperor Constantine the Great, in the fourth century A.D., decreed that a legion
cannot be sent from a secured location to an unsecured location if doing so leaves that location
unsecured (i.e., if f (v) = 1). Thus, two legions must be stationed at a location ( f (v) = 2) before one of
the legions can be sent to an adjacent location. In this way, Emperor Constantine the Great can defend
the Roman Empire. Since it is expensive to maintain a legion at a location, the Emperor would like to
station as few legions as possible, while still defending the Roman Empire. A Roman dominating
function of weight γR(G) corresponds to such an optimal assignment of legions to locations.

M. A. Henning and S. T. Hedetniemi [4] explored a new strategy of defending the Roman Empire
that has the potential of saving the Emperor Constantine the Great substantial costs of maintaining
legions, while still defending the Roman Empire (from a single attack) . Let G = (V, E) be a graph and
f be a function f = (V0,V1,V2). A vertex u ∈ V0 is undefended with respect to f , or simply undefended
if the function f is clear from the context, if it is not adjacent to a vertex in V1 or V2. The function f is
a weak Roman dominating function (WRDF) if each vertex u ∈ V0 is adjacent to a vertex v ∈ V1 ∪ V2

such that the function fu : V 7→ {0, 1, 2}, defined by fu(u) = 1, fu(v) = f (v) − 1 and fu(w) = f (w) if
w ∈ V − {u, v}, has no undefended vertex. The weak Roman domination number, denoted by γr(G), is
the minimum weight of a WRDF in G, that is, γr(G) =min{w( f ) | f is a WRDF in G}. For example, the
weak Roman domination number of the 2 × 5 grid graph G2,5 is 4 (Figure 1(b)). A WRDF of weight
γr(G) we call a γr(G)-function. Weak Roman domination in graphs has been studied, for example,
in [4–7].

This definition of a WRDF is motivated as follows. Using notation introduced earlier, we define a
location to be undefended if the location and every location adjacent to it are unsecured (i.e., have no
legion stationed there). Since an undefended location is vulnerable to an attack, we require that every
unsecure location be adjacent to a secure location in such a way that the movement of a legion from the
secure location to the unsecure location does not create an undefended location. Hence, every unsecure
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location can be defended without creating an undefended location. In this way Emperor Constantine
the Great can still defend the Roman Empire. Such a placement of legions corresponds to a WRDF,
and a minimum such placement of legions corresponds to a minimum WRDF.

Roman domination is a typical control problem with rich historical background and mathematical
background [2,4,8–15]. E. J. Cockayne et al. [2] studied the Roman domination of graphs, including
determining the Roman domination numbers of the paths, cycles, complete n-partite graphs and 2 × n
grid graphs; giving some upper and lower bounds of the Roman domination number; and characterizing
the graphs with γR(G) = γ(G), γR(G) = γ(G) + 1, γR(G) = γ(G) + 2 and the trees with γR(T ) =
γ(T ) + 1, γR(T ) = γ(T ) + 2, etc. M. A. Henning and S. T. Hedetniemi [4] studied the weak Roman
domination of graphs, including determining the weak Roman domination numbers of paths and cycles
and characterizing the graphs with γr(G) = γ(G), etc. Authors of this paper have also studied the
weak Roman domination of graphs, including characterizing the trees with γr(T ) = γ(T ) in [6] and
determining that the path P3, stars K1,t(t ≥ 2) and trees T which consist of the center vertices of stars
K1,t1 , K1,t2 , · · · , K1,tn(ti ≥ 3, i = 1, 2, · · · , n) to form a path are weak Roman graphs in [7]. In this paper,
we give some sufficient conditions for a tree to have its weak Roman domination number be equal to
its domination number plus 1 (γr(T ) = γ(T )+1) by recursion and construction. The graphs considered
in this paper are finite non-trivial simple graphs.

2. Notation and known conclusions

Let G = (V, E) be a graph with vertex set V of order n and edge set E, and let v be a vertex in V . The
degree of the vertex v is denoted as d(v). A graph is called complete if every pair of different vertices is
connected by exactly one edge, denoted by Kn. (where, K1 represents a complete graph with vertex set
V of order 1 and K2 represents a complete graph with vertex set V of order 2.) A nonempty sequence of
alternating vertices and edges W = v0e1v1e2v2 · · · ekvk (where v0, v1, · · · , vk are different) in a graph G
is called a path, denoted by Pn. The open neighborhood of v is N(v) = { u ∈ V |uv ∈ E }, and the closed
neighborhood of v is N[v] = { v }∪N(v). For a set S ⊆ V , its open neighborhood N(S ) = ∪v∈S N(v)−S ,
and its closed neighborhood N[S ] = N(S ) ∪ S .

Let G = (V, E) be a graph, and let S ⊆ V . A set S dominates a set U, denoted S ≻ U, if every
vertex in U is adjacent to a vertex of S . If S ≻ V − S , then S is called a dominating set of G [16].
The domination number γ(G) is the minimum cardinality of a dominating set of G, namely, γ(G) =
min{ |S ||S ≻ V − S }. A dominating set of cardinality γ(G) we call a γ(G)-set.

Let T = (V, E) be a tree with vertex set V of order n and edge set E. A leaf of T is a vertex of
degree 1, while a support vertex of T is a vertex adjacent to a leaf. A strong support vertex is adjacent
to at least two leaves. In this paper, we denote the set of all support vertices of T by S (T ), the set of all
strong support vertices by S S (T ) and the set of leaves by L(T ). If S ⊆ V , and for all vertices in S , as
long as there is an edge in the tree T , this edge appears in the subtree T [S ], then T [S ] is said to be the
subtree of tree T induced by S , denoted as T [S ]. For a positive integer t, the complete bipartite graph
K1,t is called a star, the vertex whose degree is t (t ≥ 2) is the center vertex, and a vertex whose degree
is 1 is an outer vertex.

Previously known results on domination number and weak Roman domination number are the
following.
Lemma 1. [4] For any graph G, γ(G) ≤ γr(G) ≤ γR(G) ≤ 2γ(G).
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Lemma 2. [4] For any n ≥ 1, γr(Pn) = ⌈ 3n
7 ⌉. For any n ≥ 4, γr(Cn) = ⌈3n

7 ⌉.
Lemma 3. [6] For any tree T with γr(T ) = γ(T ), tree T does not contain any strong support vertex,
that is, ∀v ∈ V, v < S S (T ).
Lemma 4. [17] For any n ≥ 1, γ(Pn) = ⌈ n

3⌉.
Lemma 5. [6] Let T = (V, E) be a tree with vertex set V of order n and edge set E. Then, γr(T ) = γ(T )
if and only if one of the following is true:

Case 1. m (m is a positive integer) is even, the tree T contains
m
2

K2 (let ui, vi ∈ V , uivi ∈ E, i =

1, 2, · · · ,
m
2

), and the following conditions are satisfied:

(a) Each K2 has a vertex ui ∈ S (T ) and another vertex vi ∈ L(T ), S (T ) = {u1, u2, · · · , u m
2
}, and

L(T ) = {v1, v2, · · · , v m
2
}.

(b) ∀u ∈ S (T ), except for its leaf, u is adjacent to other vertices in S (T ).
Case 2. The tree T does not contain any strong support vertex and contains m (m is a positive integer)

K2 (let ui, vi ∈ V , uivi ∈ E, i = 1, 2, · · · ,m) and n (n is a positive integer) stars K1,t1 ,K1,t2 , · · · ,K1,tn
(ti ≥ 2, i = 1, 2, · · · , n) (the set formed by their center vertices is C, and the set formed by their outer
vertices is W), and the following conditions are satisfied:

(a) Each K2 has a vertex ui ∈ S (T ) and another vertex vi ∈ L(T ), S (T ) = {u1, u2, · · · , um}, and
L(T ) = {v1, v2, · · · , vm}.

(b) ∀w ∈ W, there is a unique support vertex u ∈ S (T ), such that wu ∈ E(T ), and ∀v ∈ C, v is at
least 2 away from every vertex in S (T ).

(c) ∀u ∈ S (T ), except for its leaf, either u is adjacent to an outer vertex w ∈ W, or u is adjacent to
other vertices in S (T ).

3. Some necessary and some sufficient conditions for trees T to have γr(T ) = γ(T ) + 1

3.1. Results on dominating sets and weak Roman dominating sets in trees

Theorem 1. For any tree T , let the set S be any γ(T )-set of the tree T . Then, S S (T ) ⊆ S .
Proof . Suppose the contrary, that is, there is v ∈ S S (T ) \ S , and let u1, u2, · · · , ul (l ≥ 2) be the leaves
of v. Because v < S , u1, u2, · · · , ul ∈ S (l ≥ 2). Let S 1 = S ∪ {v} \ {u1, u2, · · · , ul (l ≥ 2)}. Then,
obviously, S 1 is a dominating set of the tree T , and |S 1| = |S ∪ {v} \ {u1, u2, · · · , ul (l ≥ 2)}| ≤ |S | − 1.
This contradicts S being the γ(T )-set of the tree T . Therefore, S S (T ) ⊆ S .
Theorem 2. For any tree T , there is a γ(T )-set S such that S (T ) ⊆ S .
Proof . From Theorem 1 we know S S (T ) ⊆ S . Let S 0 be a γ(T )-set of the tree T = (V, E). Then,
S S (T ) ⊆ S 0. If S (T ) \ S S (T ) ⊆ S 0, then the conclusion is true.

Otherwise, let v ∈ S (T ) \ S 0, and v < S S (T ). Then, let u be the only leaf of v, that is, uv ∈ E, and
d(u) = 1. Thus, N(u) = {v}, but v < S 0, so u ∈ S 0. Let S 1 = S 0 ∪ { v } \ { u }. Then, obviously, S 1 is a
dominating set of the tree T . Also, |S 1| = |S 0| = γ(T ), so S 1 is also a γ(T )-set of the tree T , and the
number of support vertices in S 1 is 1 more than that in S 0.

If S (T ) \ S S (T ) ⊆ S 1, then the conclusion is true. Otherwise, ∃v1 ∈ S (T ) \ S 1, and v1 < S S (T ).
Similar to the above, find S 2 such that S 2 is also a γ(T )-set of the tree T , and the number of support
vertices in S 2 is 1 more than that in S 1.

· · · · · ·
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Repeat the above operation. Since the tree T is finite, the number of support vertices must also be
finite. Each repetition will increase the number of support vertices by 1, so a γ(T )-set S k must exist
after a finite number of repetitions such that S (T ) \ S S (T ) ⊆ S k. Hence, the conclusion follows.
Theorem 3. For any tree T = (V, E), there is a γr(T )-function f = (V0,V1,V2), such that S S (T ) ⊆ V2.
Proof . Suppose there is v ∈ S S (T ) \ V2, and then v ∈ V0 ∪ V1. Because v ∈ S S (T ), v has at least
two leaves, denoted u1, u2, · · · , ul (l ≥ 2). If v ∈ V0, since u1, u2, · · · , ul (l ≥ 2) are only adjacent to v,
u1, u2, · · · , ul ∈ V1. Let fv = (V∗0 ,V

∗
1 ,V

∗
2) = (V0 ∪ {u1, u2, · · · , ul} \ {v},V1 \ {u1, u2, · · · , ul},V2 ∪ {v}).

Then, fv has no undefended vertex, and w( fv) = |V1 \ {u1, u2, · · · , ul}|+2|V2∪{v}| = |V1| − l+2|V2|+2 =
|V1| + 2|V2| + 2 − l ≤ |V1| + 2|V2| = w( f ). So, fv is also a γr(T )-function, and v ∈ V∗2 .

If v ∈ V1, at most one of u1, u2, · · · , ul (l ≥ 2) belongs to V0 (otherwise, if u1, u2 ∈ V0, send
a legion from v to u1 for security defense, such that u2 is an undefended vertex, a contradiction),
denoted by u1 ∈ V0. Then, u2, u3, · · · , ul ∈ V1. Let fv = (V∗0 ,V

∗
1 ,V

∗
2) = (V0 ∪ {u2, u3, · · · , ul},V1 \

{v, u2, u3, · · · , ul},V2 ∪ {v}). Then, fv has no undefended vertex, and w( fv) = |V1 \ {v, u2, u3, · · · , ul}| +

2|V2∪{v}| = |V1| − l+2|V2|+2 = |V1|+2|V2|+2− l ≤ |V1|+2|V2| = w( f ). So, fv is also a γr(T )-function,
and v ∈ V∗2 . Hence, there is a γr(T )-function f = (V0,V1,V2), such that S S (T ) ⊆ V2.

3.2. A necessary condition for trees T to have γr(T ) = γ(T ) + 1

Theorem 4. For any tree T with γr(T ) = γ(T ) + 1, tree T contains at most 1 strong support vertex.
Proof . Let T = (V, E) be a tree with γr(T ) = γ(T ) + 1, and let f = (V0,V1,V2) be a γr(T )-function
of the tree T . V1 ∪ V2 ≻ V0, so γ(T ) ≤ |V1| + |V2|, and then |V2| ≤ 1 (otherwise, if |V2| ≥ 2, then
γr(T ) = |V1| + 2|V2| = |V1| + |V2| + |V2| ≥ |V1| + |V2| + 2 ≥ γ(T ) + 2 > γ(T ) + 1, which contradicts the
assumptions).

Suppose the contrary, that is, T has at least two strong support vertices, say, v1, v2 ∈ S S (T ). By
Theorem 3, there is a γr(T )-function f = (V0,V1,V2) such that S S (T ) ⊆ V2, and then v1, v2 ∈ V2.
Therefore, |V2| ≥ 2, a contradiction. So, tree T contains at most 1 strong support vertex.

3.3. Sufficient conditions for trees T to have γr(T ) = γ(T ) + 1

Theorem 5. If the tree T = (V, E) has one and only one strong support vertex, and there is a γ(T )-
set S such that every vertex in S is a support vertex, and G[S ] is a tree, as shown in Figure 2, then,
γr(T ) = γ(T ) + 1.

Figure 2. The constructions for the tree T . The large filled-in circles denote vertices in V2,
the small filled-in circles denote vertices in V1, and the empty circles denote vertices in V0.
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Proof . By Theorem 2, there is a γ(T )-set S 1 such that S (T ) ⊆ S 1. There is also a γ(T )-set S such that
every vertex in S is a support vertex, and then S ⊆ S (T ) ⊆ S 1. Since, |S | = |S 1|, S = S (T ) = S 1, and
γ(T ) = |S (T )|.

The tree T = (V, E) has one and only one strong support vertex, say, v∗ ∈ S S (T ), and set l1, l2, · · · , lt

(t ≥ 2) for its leaves. Let f = (V0,V1,V2) = (V − S (T ), S (T ) \ {v∗}, {v∗}). Then, it has no undefended
vertex, as shown in Figure 2. Since G[S (T )] is a tree, ∀u, v ∈ S (T ), there is no u − v path that
contains a vertex in V − S (T ) as the inner vertex. (Otherwise, if there is such a road P1, since G[S (T )]
is the tree, the u − v path P2 exists in G[S (T )]. Obviously, P1 , P2, so T must contain cycles,
which is a contradiction.) Since S (T ) is a dominating set, the tree T has one and only one strong
support vertex. Then, ∀ u ∈ V − S (T ) ∪ {l1, l2, · · · , lt}, u can only be adjacent to the only vertex v
in S (T ) \ {v∗}, and d(u) = 1. (Otherwise, if d(u) ≥ 2, let wu ∈ E(T ). However, w < S (T ), and
w < N[S (T )]. This contradicts S (T ) being a dominating set.) So, ∀ u ∈ V − S (T ) ∪ {l1, l2, · · · , lt}, let
fu = (V∗0 ,V

∗
1 ,V

∗
2) = (V − S (T ) ∪ {u} \ {v}, S (T ) ∪ {u} \ {v, v∗}, {v∗}). Obviously, no undefended vertices

will be created. l1, l2, · · · , lt (t ≥ 2) can be v∗ security defense, so f is a WRDF of the tree T . Therefore,
γr(T ) ≤ w( f ) = |S (T ) \ {v∗}| + 2|{v∗}| = |S (T )| − 1 + 2 = |S (T )| + 1 = γ(T ) + 1.

From Lemma 3 and the fact that T has a strong support vertex, γ(T ) , γr(T ). Again, by Lemma 1,
know γ(T ) ≤ γr(T ), and then γr(T ) > γ(T ), or γr(T ) ≥ γ(T ) + 1. Hence, γr(T ) = γ(T ) + 1.
Theorem 6. Suppose the tree T = (V, E) has only one strong support vertex (say, v∗ ∈ S S (T ), and
set l1, l2, · · · , ls (s ≥ 2) for its leaves) and contains m (m is a positive integer) K2 (let ui, vi ∈ V ,
uivi ∈ E, i = 1, 2, · · · ,m) and n (n is a positive integer) stars K1,t1 ,K1,t2 , · · · ,K1,tn(ti ≥ 2, i = 1, 2, · · · , n)
(the set formed by their center vertices is C, and the set formed by their outer vertices is W) and the
following conditions are satisfied:

(a) Each K2 has a vertex ui ∈ S (T ) and another vertex vi ∈ L(T ), S (T ) = {u1, u2, · · · , um, v∗}, and
L(T ) = {v1, v2, · · · , vm} ∪ {l1, l2, · · · , ls}.

(b) ∀w ∈ W, there is a unique support vertex u ∈ S (T ), such that wu ∈ E(T ), and ∀v ∈ C, v is at
least 2 away from every vertex in S (T ).

(c) ∀u ∈ S (T ), except for its leaf, either u is adjacent to an outer vertex w ∈ W, or u is adjacent to
other vertices in S (T ).

As shown in Figure 3, then, γr(T ) = γ(T ) + 1.

Figure 3. The constructions for the tree T . The large filled-in circles denote vertices in V2,
the small filled-in circles denote vertices in V1, and the empty circles denote vertices in V0.

Proof . By Theorem 2, there is a γ(T )-set S such that S (T ) ⊆ S . Based on assumptions, the set
formed by the center vertices of stars K1,t1 ,K1,t2 , · · · ,K1,tn(ti ≥ 2, i = 1, 2, · · · , n) is C. Then, obviously,
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S (T ) ∪ C is a dominating set of the tree T , and S (T ) ∩ C = ∅, so γ(T ) ≤ |S (T ) ∪ C| = |S (T )| + |C|.
Based on assumptions, ∀v ∈ C, v is at least 2 away from every vertex in S (T ), so γ(T ) ≥ |S (T )| + |C|.
Hence, γ(T ) = |S (T )| + |C|, and thus S (T ) ∪C is a γ(T )-set of the tree T .

The tree T = (V, E) has one and only one strong support vertex, say, v∗ ∈ S S (T ), and set l1, l2, · · · , ls

(s ≥ 2) for its leaves. Let f = (V0,V1,V2) = (V − S (T ) ∪ C, S (T ) ∪ C \ {v∗}, {v∗}), and then it has no
undefended vertex, as shown in Figure 3. It is clear that the vertices in V−S (T )∪C consist of the set of
all leaves L(T ) and the set of outer vertices W of the stars K1,t1 ,K1,t2 , · · · ,K1,tn(ti ≥ 2, i = 1, 2, · · · , n),
that is, V − S (T ) ∪ C = L(T ) ∪ W, and L(T ) ∩ W = ∅. ∀ v ∈ V − S (T ) ∪ C = L(T ) ∪ W, if
v ∈ L(T )\{l1, l2, · · · , ls}, let uv ∈ E, and u ∈ S (T ). Then, obviously, fv = (V∗0 ,V

∗
1 ,V

∗
2) = (L(T )∪W∪{u}\

{v}, S (T )∪C∪{v}\{u, v∗}, {v∗}) has no undefended vertex. If v ∈ {l1, l2, · · · , ls}, since f (v∗) = 2, then send
a legion from v∗ to v for security defense without creating undefended vertices. If v ∈ W, let uv ∈ E,
and u ∈ C. Then, obviously, fv = (V∗0 ,V

∗
1 ,V

∗
2) = (L(T )∪W∪{u}\{v}, S (T )∪C∪{v}\{u, v∗}, {v∗}) has no

undefended vertex. So, f is a WRDF of the tree T . Therefore, γr(T ) ≤ w( f ) = |S (T )∪C\{v∗}|+2|{v∗}| =
|S (T ) ∪C| − 1 + 2 = |S (T )| + |C| + 1 = γ(T ) + 1.

From Lemma 3 and the fact that T has a strong support vertex, γ(T ) , γr(T ). Again, by Lemma 1,
know γ(T ) ≤ γr(T ), and then γr(T ) > γ(T ), or γr(T ) ≥ γ(T ) + 1. Hence, γr(T ) = γ(T ) + 1.
Theorem 7. Suppose the tree T = (V, E) contains a star K∗1,t (t ≥ 3) (its center vertex is denoted as v∗; its
outer vertex is denoted as w1,w2, · · · ,wt (t ≥ 3), among them, there is at least one vertex that is a leaf of
the tree T , denoted w1,w2, · · · ,ws; and at least two outer vertices are adjacent to the support vertex of
the tree T , denoted ws+1,ws+2, · · · ,wt (t ≥ 3)) and contains m (m is a positive integer) K2 (let ui, vi ∈ V ,
uivi ∈ E, i = 1, 2, · · · ,m) and n (n is a positive integer) stars K1,t1 ,K1,t2 , · · · ,K1,tn(ti ≥ 2, i = 1, 2, · · · , n)
(the set formed by their center vertices is C, and the set formed by their outer vertices is W), the subtree
T − K∗1,t does not contain any strong support vertices, and the following conditions are satisfied:

(a) Each K2 has a vertex ui ∈ S (T ) and another vertex vi ∈ L(T ), S (T ) = {u1, u2, · · · , um, v∗}, and
L(T ) = {v1, v2, · · · , vm} ∪ {w1,w2, · · · ,ws}.

(b) ∀w ∈ W ∪ {ws+1,ws+2, · · · ,wt}, there is a unique support vertex u ∈ S (T ), such that wu ∈ E(T ),
and ∀v ∈ C, v is at least 2 away from every vertex in S (T ).

(c) ∀u ∈ S (T )\{v∗}, except for its leaf, either u is adjacent to an outer vertex
w ∈ W ∪ {ws+1,ws+2, · · · ,wt}, or u is adjacent to other vertices in S (T )\{v∗}.

As shown in Figure 4, then, γr(T ) = γ(T ) + 1.

Figure 4. The constructions for the tree T . The large filled-in circles denote vertices in V2,
the small filled-in circles denote vertices in V1, and the empty circles denote vertices in V0.
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Proof . By Theorem 2, there is a γ(T )-set S such that S (T ) ⊆ S . Based on assumptions, the set formed
by the center vertices of the stars K1,t1 ,K1,t2 , · · · ,K1,tn(ti ≥ 2, i = 1, 2, · · · , n) is C. Then, obviously,
S (T ) ∪ C is a dominating set of the tree T , and S (T ) ∩ C = ∅, so γ(T ) ≤ |S (T ) ∪ C| = |S (T )| + |C|.
Based on assumptions, ∀v ∈ C, v is at least 2 away from every vertex in S (T ), so γ(T ) ≥ |S (T )| + |C|.
Hence, γ(T ) = |S (T )| + |C|, and thus S (T ) ∪C is a γ(T )-set of the tree T .

Let f = (V0,V1,V2) = (V − S (T ) ∪ C, S (T ) ∪ C \ {v∗}, {v∗}). Then, it has no undefended vertex, as
shown in Figure 4. Obviously, the vertices in V−S (T )∪C consist of three parts: (i) the set of all leaves
L(T ) (where w1,w2, · · · ,ws ∈ L(T )); (ii) the set of outer vertices W of the stars K1,t1 ,K1,t2 , · · · ,K1,tn
(ti ≥ 2, i = 1, 2, · · · , n); (iii) the set of outer vertices {ws+1,ws+2, · · · ,wt} of the star K∗1,t (t ≥ 3), that is,
V − S (T ) ∪ C = L(T ) ∪ W ∪ {ws+1,ws+2, · · · ,wt}, and L(T ) ∩ W = ∅, L(T ) ∩ {ws+1,ws+2, · · · ,wt} =

∅, W ∩ {ws+1,ws+2,· · · ,wt} = ∅. ∀ v ∈ V − S (T ) ∪ C = L(T ) ∪ W ∪ {ws+1,ws+2, · · · ,wt}, if v ∈
L(T ) \ {w1,w2, · · · ,ws}, let uv ∈ E, and u ∈ S (T ). Then, obviously, fv = (V∗0 ,V

∗
1 ,V

∗
2) = (L(T ) ∪

W ∪ {ws+1,ws+2, · · · ,wt} ∪ {u} \ {v}, S (T ) ∪ C ∪ {v} \ {u, v∗}, {v∗}) has no undefended vertex. If v ∈
{w1,w2, · · · ,wt}, since f (v∗) = 2, then send a legion from v∗ to v for security defense without creating
undefended vertices. If v ∈ W, let uv ∈ E, and u ∈ C. Then, obviously, fv = (V∗0 ,V

∗
1 ,V

∗
2) = (L(T ) ∪

W ∪ {ws+1,ws+2, · · · ,wt} ∪ {u} \ {v}, S (T ) ∪ C ∪ {v} \ {u, v∗}, {v∗}) has no undefended vertex. So, f is
a WRDF of the tree T . Therefore, γr(T ) ≤ w( f ) = |S (T ) ∪ C \ {v∗}| + 2|{v∗}| = |S (T ) ∪ C| − 1 + 2 =
|S (T )| + |C| + 1 = γ(T ) + 1.

Since at least one outer vertex of the star K∗1,t (t ≥ 3) is a leaf of the tree T , then for any weak Roman
dominating function f = (V0,V1,V2) of the tree T , f (N[v∗]) ≥ 2. (Otherwise, if f (N[v∗]) ≤ 1, then
f (v∗) = 1, and f (w1) = 0. Also, since the outer vertex ws+1 is adjacent to the support vertex of the tree
T , send a legion from v∗ to ws+1 for security defense, such that w1 is an undefended vertex, which is a
contradiction.) On the other hand, {v∗} ≻ N(v∗), so γr(T ) ≥ γ(T ) + 1. Hence, γ(T ) = γr(T ) + 1.
Theorem 8. Suppose the tree T = (V, E) does not contain any strong support vertices, contains m (m is
a positive integer) K2 (let ui, li ∈ V , uili ∈ E, i = 1, 2, · · · ,m) and has and only has one of the following
seven cases: (1) K1; (2) P2; (3) P4; (4) P5; (5) P6; (6) P7; (7) P9. Further, suppose the following
conditions are satisfied:

(a) Each K2 has a vertex ui ∈ S (T ) and another vertex li ∈ L(T ), S (T ) = {u1, u2, · · · , um}, and
L(T ) = {l1, l2, · · · , lm}.

(b) Both ends of the seven cases: (1) K1; (2) P2; (3) P4; (4) P5; (5) P6; (6) P7; (7) P9 are adjacent to
a unique support vertex u ∈ S (T ).

(c) ∀u ∈ S (T ), except for its leaf, either u is adjacent to one of the endpoints of the seven cases: (1)
K1; (2) P2; (3) P4; (4) P5; (5) P6; (6) P7; (7) P9, or u is adjacent to other vertices in S (T ).

As shown in Figure 5, then, γr(T ) = γ(T ) + 1.
Proof . By Theorem 2, there is a γ(T )-set S such that S (T ) ⊆ S . Then, divided into seven cases, the
proof is as follows:

(1) If the tree T has and only has the K1, as shown in Figure 5(T1), based on assumptions, obviously,
S (T1) can dominate the tree T1, then S ⊆ S (T1). Also, S (T1) ⊆ S , so S = S (T1), and γ(T1) = |S (T1)|.

Let f = (V0,V1,V2) = (V−S (T1)∪{v1}, S (T1)∪{v1}, ∅). Then, it has no undefended vertex. Since the
tree T1 does not contain any strong support vertices, both ends of K1 are adjacent to a unique support
vertex, and S (T1) is a dominating set of T1, ∀u ∈ V − S (T1) ∪ {v1} = L(T1), u can only be adjacent to
the only vertex v in S (T1), and d(u) = 1. Let fu = (V∗0 ,V

∗
1 ,V

∗
2) = (V − S (T1) ∪ {v1, u} \ {v}, S (T1) ∪

{v1, u}\{v}, ∅). Then, obviously, fu has no undefended vertex, so f is a WRDF of the tree T1. Therefore,
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γr(T1) ≤ w( f ) = |S (T1) ∪ {v1}| = |S (T1)| + 1 = γ(T1) + 1.
Since the leaves of T1 one-to-one correspond to their support vertices, and each leaf requires at

least one legion for security defense or security defense by its support vertex, and if the vertex v1

for security defense, either f (v1) = 1, or f (u1) = 2, or f (u2) = 2, as shown in Figure 5(T1). So,
γr(T1) ≥ |S (T1)| + 1 = γ(T1) + 1. Therefore, γr(T1) = γ(T1) + 1.

(2) If the tree T has and only has the path P2, as shown in Figure 5(T2), the proof of (1) is the same.
(3) If the tree T has and only has the path P6, as shown in Figure 5(T5), based on assumptions,

S (T5)∪ {v2, v5} can dominate the tree T5, so γ(T5) ≤ |S (T5)∪ {v2, v5}| = |S (T5)|+ 2. v1 is adjacent to u1,
and v6 is adjacent to u2. u1, u2 ∈ S (T5), and from Lemma 4, γ(P4) = ⌈ 4

3⌉ = 2. So, γ(T5) ≥ |S (T5)| + 2.
Therefore, γ(T5) = |S (T5)| + 2.

Figure 5. The constructions for the tree T . The filled-in circles denote vertices in V1, and the
empty circles denote vertices in V0.

Let f = (V0,V1,V2) = (V − S (T5) ∪ {v2, v4, v5}, S (T5) ∪ {v2, v4, v5}, ∅). Then, it has no undefended
vertex. The tree T5 does not contain any strong support vertices, both ends of P6 are adjacent to a unique
support vertex, and S (T5) ∪ {v2, v5} is a dominating set of T5. Then, ∀u ∈ V − S (T5) ∪ {v2, v4, v5} =

L(T5) ∪ {v1, v3, v6}, if u ∈ L(T5), u can only be adjacent to the only vertex v in S (T5) and d(u) = 1. Let
fu = (V∗0 ,V

∗
1 ,V

∗
2) = (V −S (T5)∪{v2, v4, v5, u}\ {v}, S (T5)∪{v2, v4, v5, u}\ {v}, ∅). Then, obviously, fu has

no undefended vertex. If u = v1, let fu = (V∗0 ,V
∗
1 ,V

∗
2) = (V − S (T5) ∪ {v1, v4, v5}, S (T5) ∪ {v1, v4, v5}, ∅),

and then, obviously, fu has no undefended vertex. If u = v3, let fu = (V∗0 ,V
∗
1 ,V

∗
2) = (V − S (T5) ∪
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{v2, v3, v5}, S (T5) ∪ {v2, v3, v5}, ∅). Then, obviously, fu has no undefended vertex. If u = v6, let fu =

(V∗0 ,V
∗
1 ,V

∗
2) = (V −S (T5)∪{v2, v4, v6}, S (T5)∪{v2, v4, v6}, ∅), and then, obviously, fu has no undefended

vertex. So, f is a WRDF of the tree T5. Therefore, γr(T5) ≤ w( f ) = |S (T5)∪{v2, v4, v5}| = |S (T5)|+3 =
γ(T5) + 1.

Since the leaves of T5 one-to-one correspond to their support vertices, and each leaf requires at least
one legion for security defense or security defense by its support vertex, and if the vertex v1 for security
defense, either f (v1) = 1, or f (v2) = 1, or f (u1) = 2. The same if the vertex v6 for security defense,
either f (v6) = 1, or f (v5) = 1, or f (u2) = 2, as shown in Figure 5(T5). That is, the vertex v1 cannot
be securely defended by u1, and the vertex v6 cannot be securely defended by u2, unless u1 or u2 are
stationed in two legions. From Lemma 2, γr(P6) = ⌈ 3×6

7 ⌉ = 3, so γr(T5) ≥ |S (T5)| + 3 = γ(T5) + 1.
Therefore, γr(T5) = γ(T5) + 1.

(4) If the tree T has and only has the path P4, P5, P7, P9, as shown in Figure 5(T3, T4, T6, T7), the
proof of (3) is the same.
Note 1. Suppose the tree T = (V, E) does not contain any strong support vertices, contains m (m is a
positive integer) K2 (let ui, li ∈ V , uili ∈ E, i = 1, 2, · · · ,m) and has only one of the following three
cases: (1) P3; (2) P8; (3) Pn (n ≥ 10). Suppose also that the following conditions are satisfied: (a)
Each K2 has a vertex ui ∈ S (T ) and another vertex li ∈ L(T ), S (T ) = {u1, u2, · · · , um}, and L(T ) =
{l1, l2, · · · , lm}. (b) Both ends of P3, P8, Pn (n ≥ 10) are adjacent to a unique support vertex u ∈ S (T ).
(c) ∀u ∈ S (T ), except for its leaf, either u is adjacent to one of the endpoints of P3, P8, Pn (n ≥ 10), or
u is adjacent to other vertices in S (T ). Then, γr(T ) , γ(T ) + 1.

In fact, if the tree T has and only has the path P3, then P3 is also star K1,2. According to Lemma 5,
γr(T ) = γ(T ) , γ(T ) + 1. If the tree T has and only has the path P8, as shown in Figure 6, based
on assumptions, S (T ) ∪ {v3, v6} can dominate the tree T , so γ(T ) ≤ |S (T ) ∪ {v3, v6}| = |S (T )| + 2.
v1 is adjacent to u1, v8 is adjacent to u2, and u1, u2 ∈ S (T ). From Lemma 4, γ(P6) = ⌈ 6

3⌉ = 2.
So, γ(T ) ≥ |S (T )| + 2. Therefore, γ(T ) = |S (T )| + 2. Since the leaves of T one-to-one correspond
to their support vertices, and each leaf requires at least one legion for security defense or security
defense by its support vertex, and if the vertex v1 for security defense, either f (v1) = 1, or f (v2) = 1,
or f (u1) = 2. The same if the vertex v8 for security defense, either f (v8) = 1, or f (v7) = 1, or
f (u2) = 2. That is, the vertex v1 cannot be securely defended by u1, and the vertex v8 cannot be securely
defended by u2, unless u1 or u2 are stationed in two legions. From Lemma 2, γr(P8) = ⌈3×8

7 ⌉ = 4, so
γr(T ) ≥ |S (T )|+ 4 = γ(T )+ 2 > γ(T )+ 1. If the tree T has and only has the path Pn (n ≥ 10), the same
is true for the path P8 above. γ(T ) = |S (T )| + ⌈ n−2

3 ⌉, and from Lemma 2, γr(Pn) = ⌈ 3n
7 ⌉. Then, when

n ≥ 10, γr(T ) ≥ |S (T )| + ⌈ 3n
7 ⌉ = γ(T ) + ⌈ 3n

7 ⌉ − ⌈
n−2

3 ⌉ ≥ γ(T ) + 2 > γ(T ) + 1.

Figure 6. The constructions for the tree T . The filled-in circles denote vertices in V1, and the
empty circles denote vertices in V0.
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Theorem 9. Suppose the tree T = (V, E) does not contain any strong support vertices, contains m (m
is a positive integer) K2 (let ui, li ∈ V , uili ∈ E, i = 1, 2, · · · ,m) and n (n is a positive integer) stars
K1,t1 ,K1,t2 , · · · ,K1,tn(ti ≥ 2, i = 1, 2, · · · , n) (the set formed by their center vertices is C, and the set
formed by their outer vertices is W) and has only one of the following seven cases: (1) K1; (2) P2; (3)
P4; (4) P5; (5) P6; (6) P7; (7) P9. Further, also suppose the following conditions are satisfied:

(a) Each K2 has a vertex ui ∈ S (T ) and another vertex li ∈ L(T ), S (T ) = {u1, u2, · · · , um}, and
L(T ) = {l1, l2, · · · , lm}.

(b) ∀w ∈ W, there is a unique support vertex u ∈ S (T ), such that wu ∈ E(T ), and ∀v ∈ C, v is at
least 2 away from every vertex in S (T ).

(c) Both ends of K1, P2, P4, P5, P6, P7, P9 are adjacent to a unique support vertex u ∈ S (T ).
(d) ∀u ∈ S (T ), except for its leaf, either u is adjacent to an outer vertex w ∈ W, or u is adjacent to

one of the endpoints of K1, P2, P4, P5, P6, P7, P9, or u is adjacent to other vertices in S (T ).
As shown in Figure 7, then, γr(T ) = γ(T ) + 1.

Proof . By Theorem 2, there is a γ(T )-set S such that S (T ) ⊆ S . Then, divided into seven cases, the
proof is as follows:

(1) If the tree T has only the K1, as shown in Figure 7(T1), then, obviously, S (T1) ∪ C(T1) is a
dominating set of tree T1, and S (T1)∩C(T1) = ∅, so γ(T1) ≤ |S (T1)∪C(T1)| = |S (T1)|+ |C(T1)|. Based
on assumptions, ∀ v ∈ C(T1), v is at least 2 away from every vertex in S (T1), so γ(T1) ≥ |S (T1)|+|C(T1)|.
Hence, γ(T1) = |S (T1)| + |C(T1)|, and thus S (T1) ∪C(T1) is a γ(T1)-set of the tree T1.

Let f = (V0,V1,V2) = (V − S (T1) ∪ C(T1) ∪ {v1}, S (T1) ∪ C(T1) ∪ {v1}, ∅), and then it has no
undefended vertex. It is clear that the vertices in V −S (T1)∪C(T1)∪{v1} consist of the set of all leaves
L(T1) and the set of outer vertices W(T1) of the stars K1,t1 ,K1,t2 , · · · ,K1,tn(ti ≥ 2, i = 1, 2, · · · , n), that is,
V − S (T1) ∪ C(T1) ∪ {v1} = L(T1) ∪W(T1), and L(T1) ∩W(T1) = ∅. ∀u ∈ V − S (T1) ∪ C(T1) ∪ {v1} =

L(T1)∪W(T1), if u ∈ L(T1), since the tree T1 does not contain any strong support vertices, let uv ∈ E(T1)
and v ∈ S (T1), and let fu = (V∗0 ,V

∗
1 ,V

∗
2) = (L(T1) ∪W(T1) ∪ {v} \ {u}, S (T1) ∪ C(T1) ∪ {v1, u} \ {v}, ∅).

Then, obviously, fu has no undefended vertex. If u ∈ W(T1), let uv ∈ E(T1) and v ∈ C(T1), and let
fu = (V∗0 ,V

∗
1 ,V

∗
2) = (L(T1)∪W(T1)∪{v}\ {u}, S (T1)∪C(T1)∪{v1, u}\ {v}, ∅). Then, obviously, fu has no

undefended vertex. So, f is a WRDF of the tree T1. Therefore, γr(T1) ≤ w( f ) = |S (T1)∪C(T1)∪{v1}| =

|S (T1) ∪C(T1)| + 1 = |S (T1)| + |C(T1)| + 1 = γ(T1) + 1.
The leaves of T1 one-to-one correspond to their support vertices, and each leaf requires at least one

legion for security defense or security defense by its support vertex. ∀v ∈ C(T1), v is at least 2 away
from every vertex in S (T1), so the vertex v requires at least one legion for security defense, and if the
vertex v1 for security defense, either f (v1) = 1, or f (u1) = 2, or f (u2) = 2, as shown in Figure 7(T1).
So, γr(T1) ≥ |S (T1) ∪C(T1)| + 1 = |S (T1)| + |C(T1)| + 1 = γ(T1) + 1. Therefore, γr(T1) = γ(T1) + 1.

(2) If the tree T has only the path P2, as shown in Figure 7(T2), the proof of (1) is the same.
(3) If the tree T has only the path P4, as shown in Figure 7(T3), based on assumptions, S (T3) ∪

C(T3) ∪ {v2} can dominate the tree T3, and S (T3) ∩ C(T3) = ∅, so γ(T3) ≤ |S (T3) ∪ C(T3) ∪ {v2}| =

|S (T3)|+ |C(T3)|+1. Based on assumptions, ∀ v ∈ C(T3), v is at least 2 away from every vertex in S (T3).
Since v1 is adjacent to u1, v4 is adjacent to u2 and u1, u2 ∈ S (T3) and from Lemma 4, γ(P2) = ⌈ 2

3⌉ = 1.
So, γ(T3) ≥ |S (T3)|+ |C(T3)|+1. Therefore, γ(T3) = |S (T3)|+ |C(T3)|+1, and thus S (T3)∪C(T3)∪{v2}

is a γ(T3)-set of the tree T3.
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Figure 7. The constructions for the tree T . The filled-in circles denote vertices in V1, and the
empty circles denote vertices in V0.
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Let f = (V0,V1,V2) = (V − S (T3) ∪ C(T3) ∪ {v2, v3}, S (T3) ∪ C(T3) ∪ {v2, v3}, ∅), and then it has no
undefended vertex. Obviously, the vertices in V − S (T3) ∪ C(T3) ∪ {v2, v3} consist of three parts: (i)
the set of all leaves L(T3); (ii) the set of outer vertices W(T3) of the stars K1,t1 ,K1,t2 , · · · ,K1,tn(ti ≥ 2, i =
1, 2, · · · , n); (iii) the set {v1, v4}, that is, V − S (T3) ∪ C(T3) ∪ {v2, v3} = L(T3) ∪ W(T3) ∪ {v1, v4} and
L(T3) ∩ W(T3) = ∅, L(T3) ∩ {v1, v4} = ∅, W(T3) ∩ {v1, v4} = ∅. ∀u ∈ V − S (T3) ∪ C(T3) ∪ {v2, v3} =

L(T3) ∪ W(T3) ∪ {v1, v4}, if u ∈ L(T3), since the tree T3 does not contain any strong support vertices,
let uv ∈ E(T3) and v ∈ S (T3), and let fu = (V∗0 ,V

∗
1 ,V

∗
2) = (L(T3)∪W(T3)∪{v1, v4, v}\{u}, S (T3)∪C(T3)∪

{v2, v3, u} \ {v}, ∅). Then, obviously, fu has no undefended vertex. If u ∈ W(T3), let uv ∈ E(T3) and
v ∈ C(T3), and let fu = (V∗0 ,V

∗
1 ,V

∗
2) = (L(T3)∪W(T3)∪{v1, v4, v}\{u}, S (T3)∪C(T3)∪{v2, v3, u}\{v}, ∅).

Then, obviously, fu has no undefended vertex. If u = v1, let fu = (V∗0 ,V
∗
1 ,V

∗
2) = (L(T3) ∪ W(T3) ∪

{v2, v4}, S (T3) ∪ C(T3) ∪ {v1, v3}, ∅), and then, obviously, fu has no undefended vertex. If u = v4, let
fu = (V∗0 ,V

∗
1 ,V

∗
2) = (L(T3) ∪W(T3) ∪ {v1, v3}, S (T3) ∪ C(T3) ∪ {v2, v4}, ∅). Then, obviously, fu has no

undefended vertex. So f is a WRDF of the tree T3. Therefore, γr(T3) ≤ w( f ) = |S (T3) ∪ C(T3) ∪
{v2, v3}| = |S (T3)| + |C(T3)| + 2 = γ(T3) + 1.

The leaves of T3 one-to-one correspond to their support vertices, and each leaf requires at least one
legion for security defense or security defense by its support vertex. ∀v ∈ C(T3), v is at least 2 away
from every vertex in S (T3), so the vertex v requires at least one legion for security defense, and if the
vertex v1 for security defense, either f (v1) = 1, or f (v2) = 1, or f (u1) = 2. The same if the vertex
v4 for security defense, either f (v4) = 1, or f (v3) = 1, or f (u2) = 2, as shown in Figure 7(T3). That
is, the vertex v1 cannot be securely defended by u1, and the vertex v4 cannot be securely defended by
u2, unless u1 or u2 are stationed in two legions. From Lemma 2, γr(P4) = ⌈ 3×4

7 ⌉ = 2, so γr(T3) ≥
|S (T3)| + |C(T3)| + 2 = γ(T3) + 1. Therefore, γr(T3) = γ(T3) + 1.

(4) If the tree T has only the path P5, P6, P7, P9, as shown in Figure 7(T4, T5, T6, T7), the proof
of (3) is the same.
Note 2. Suppose the tree T = (V, E) does not contain any strong support vertices, contains m (m is
a positive integer) K2 (let ui, li ∈ V , uili ∈ E, i = 1, 2, · · · ,m) and n (n is a positive integer) stars
K1,t1 ,K1,t2 , · · · ,K1,tn(ti ≥ 2, i = 1, 2, · · · , n) (the set formed by their center vertices is C, and the set
formed by their outer vertices is W), and has only one of the following three cases: (1) P3; (2) P8; (3)
Pn (n ≥ 10). Further suppose also that the following conditions are satisfied: (a) Each K2 has a vertex
ui ∈ S (T ) and another vertex li ∈ L(T ), S (T ) = {u1, u2, · · · , um}, and L(T ) = {l1, l2, · · · , lm}. (b)
∀w ∈ W, there is a unique support vertex u ∈ S (T ), such that wu ∈ E(T ), and ∀v ∈ C, v is at least 2
away from every vertex in S (T ). (c) Both ends of P3, P8, Pn (n ≥ 10) are adjacent to a unique support
vertex u ∈ S (T ). (d) ∀u ∈ S (T ), except for its leaf, either u is adjacent to an outer vertex w ∈ W, or
u is adjacent to one of the endpoints of P3, P8, Pn (n ≥ 10), or u is adjacent to other vertices in S (T ).
Then, γr(T ) , γ(T ) + 1.

In fact, if the tree T has only the path P3, then P3 is also star K1,2, and according to Lemma 5,
γr(T ) = γ(T ) , γ(T )+1. If the tree T has only the path P8, as shown in Figure 8, based on assumptions,
S (T )∪C(T )∪{v3, v6} can dominate the tree T , and S (T )∩C(T ) = ∅, so γ(T ) ≤ |S (T )∪C(T )∪{v3, v6}| =

|S (T )| + |C(T )| + 2. Based on assumptions, ∀ v ∈ C(T ), v is at least 2 away from every vertex in
S (T ). v1 is adjacent to u1, and v8 is adjacent to u2, and u1, u2 ∈ S (T ). With regards from Lemma 4,
γ(P6) = ⌈ 6

3⌉ = 2. So, γ(T ) ≥ |S (T )| + |C(T )| + 2. Therefore, γ(T ) = |S (T )| + |C(T )| + 2. The leaves
of T one-to-one correspond to their support vertices, and each leaf requires at least one legion for
security defense or security defense by its support vertex. ∀v ∈ C(T ), v is at least 2 away from every
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vertex in S (T ), so the vertex v requires at least one legion for security defense, and if the vertex v1 for
security defense, either f (v1) = 1, or f (v2) = 1, or f (u1) = 2. The same if the vertex v8 for security
defense, either f (v8) = 1, or f (v7) = 1, or f (u2) = 2, as shown in Figure 8. That is, the vertex v1

cannot be securely defended by u1 and the vertex v8 cannot be securely defended by u2, unless u1 or
u2 are stationed in two legions. From Lemma 2, γr(P8) = ⌈ 3×8

7 ⌉ = 4, so γr(T ) ≥ |S (T )| + |C(T )| + 4 =
γ(T ) + 2 > γ(T ) + 1. If the tree T has only the path Pn (n ≥ 10), the same is true for the path
P8 above, γ(T ) = |S (T )| + |C(T )| + ⌈n−2

3 ⌉, and from Lemma 2, γr(Pn) = ⌈ 3n
7 ⌉. Then, when n ≥ 10,

γr(T ) ≥ |S (T )| + |C(T )| + ⌈ 3n
7 ⌉ = γ(T ) + ⌈ 3n

7 ⌉ − ⌈
n−2

3 ⌉ ≥ γ(T ) + 2 > γ(T ) + 1.

Figure 8. The constructions for the tree T . The filled-in circles denote vertices in V1, and the
empty circles denote vertices in V0.

Theorem 10. Suppose the tree T = (V, E) does not contain any strong support vertices, contains m
(m is a positive integer) K2 (let ui, li ∈ V , uili ∈ E, i = 1, 2, · · · ,m) and n (n is a positive integer) stars
K1,t1 ,K1,t2 , · · · ,K1,tn(ti ≥ 2, i = 1, 2, · · · , n) and has only one connected branch from star K∗1,t (t ≥ 2) and
an outer vertex w∗ of star K∗1,t (t ≥ 2) connected to a vertex v∗ (the set formed by the center vertices of
all stars is C, and the set formed by the outer vertices is W). Further, suppose the following conditions
are satisfied:

(a) Each K2 has a vertex ui ∈ S (T ) and another vertex li ∈ L(T ), S (T ) = {u1, u2, · · · , um}, and
L(T ) = {l1, l2, · · · , lm}.

(b) ∀w ∈ W\{w∗}, there is a unique support vertex u ∈ S (T ), such that wu ∈ E(T ), and ∀v ∈ C, v is
at least 2 away from every vertex in S (T ).

(c) ∃u∗ ∈ S (T ), such that u∗v∗ ∈ E(T ).
(d) ∀u ∈ S (T )\{u∗}, except for its leaf, either u is adjacent to an outer vertex w ∈ W\{w∗}, or u is

adjacent to other vertices in S (T ).
As shown in Figure 9, then, γr(T ) = γ(T ) + 1.
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Figure 9. The constructions for the tree T . The filled-in circles denote vertices in V1, and the
empty circles denote vertices in V0.

Proof . By Theorem 2, there is a γ(T )-set S such that S (T ) ⊆ S . Based on assumptions, the set
formed by the center vertices of the stars K1,t1 ,K1,t2 , · · · ,K1,tn(ti ≥ 2, i = 1, 2, · · · , n) and the star K∗1,t
(t ≥ 2) is C(T ). Then, obviously, S (T ) ∪ C(T ) is a dominating set of tree T , and S (T ) ∩ C(T ) = ∅, so
γ(T ) ≤ |S (T ) ∪ C(T )| = |S (T )| + |C(T )|. Based on assumptions, ∀ v ∈ C(T ), v is at least 2 away from
every vertex in S (T ), so γ(T ) ≥ |S (T )| + |C(T )|. Hence, γ(T ) = |S (T )| + |C(T )|, and thus S (T ) ∪ C(T )
is a γ(T )-set of the tree T .

Let f = (V0,V1,V2) = (V −S (T )∪C(T )∪{v∗}, S (T )∪C(T )∪{v∗}, ∅), and then it has no undefended
vertex, as shown in Figure 9. Obviously, the vertices in V − S (T ) ∪ C(T ) ∪ {v∗} consist of two parts:
(i) the set of all leaves L(T ); (ii) the set of outer vertices W(T ) of the stars K1,t1 ,K1,t2 , · · · ,K1,tn(ti ≥

2, i = 1, 2, · · · , n) and the star K∗1,t (t ≥ 2), that is, u ∈ V − S (T ) ∪ C(T ) ∪ {v∗} = L(T ) ∪ W(T ) and
L(T ) ∩ W(T ) = ∅. ∀u ∈ V − S (T ) ∪ C(T ) ∪ {v∗} = L(T ) ∪ W(T ), if u ∈ L(T ), since the tree T
does not contain any strong support vertices, let uv ∈ E(T ) and v ∈ S (T ), and let fu = (V∗0 ,V

∗
1 ,V

∗
2) =

(L(T ) ∪W(T ) ∪ {v} \ {u}, S (T ) ∪C(T ) ∪ {v∗, u} \ {v}, ∅). Then, obviously, fu has no undefended vertex.
If u ∈ W(T ), let uv ∈ E(T ) and v ∈ C(T ), and let fu = (V∗0 ,V

∗
1 ,V

∗
2) = (L(T ) ∪W(T ) ∪ {v} \ {u}, S (T ) ∪

C(T ) ∪ {v∗, u} \ {v}, ∅). Then, obviously, fu has no undefended vertex. So, f is a WRDF of the tree T .
Therefore, γr(T ) ≤ w( f ) = |S (T ) ∪C(T ) ∪ {v∗}| = |S (T )| + |C(T )| + 1 = γ(T ) + 1.

The leaves of T one-to-one correspond to their support vertices, and each leaf requires at least one
legion for security defense or security defense by its support vertex. ∀v ∈ C(T ), v is at least 2 away
from every vertex in S (T ), so the vertex v requires at least one legion for security defense, and if the
vertex v∗ for security defense, either f (v∗) = 1, or f (w∗) = 1, or f (u∗) = 2, as shown in Figure 9, so
γr(T ) ≥ |S (T ) ∪C(T )| + 1 = |S (T )| + |C(T )| + 1 = γ(T ) + 1. Therefore, γr(T ) = γ(T ) + 1.

4. Conclusions

In this paper, we give some sufficient conditions for a tree to have its weak Roman domination
number be equal to its domination number plus 1 (γr(T ) = γ(T ) + 1) by recursion and construction,
such as Theorems 6–10. Conversely, we hold that the trees T satisfying γr(T ) = γ(T )+ 1 only have the
characteristics of Theorems 6–10, which is subject to further verification. We will further investigate
some characteristics of trees in which the weak Roman domination number is equal to the domination
number plus k (γr(T ) = γ(T ) + k).
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