Research article

Reflexive edge strength of convex polytopes and corona product of cycle with path

  • Received: 25 December 2021 Revised: 16 February 2022 Accepted: 21 February 2022 Published: 18 April 2022
  • MSC : 05C78, 05C38

  • For a graph $ G $, we define a total $ k $-labeling $ \varphi $ is a combination of an edge labeling $ \varphi_e(x)\to\{1, 2, \ldots, k_e\} $ and a vertex labeling $ \varphi_v(x) \to \{0, 2, \ldots, 2k_v\} $, such that $ \varphi(x) = \varphi_v(x) $ if $ x\in V(G) $ and $ \varphi(x) = \varphi_e(x) $ if $ x\in E(G) $, then $ k = \, \mbox{max}\, \{k_e, 2k_v\} $. The total $ k $-labeling $ \varphi $ is an edge irregular reflexive $ k $-labeling of $ G $ if every two different edges $ xy $ and $ x^\prime y^\prime $, the edge weights are distinct. The smallest value $ k $ for which such labeling exists is called a reflexive edge strength of $ G $. In this paper, we focus on the edge irregular reflexive labeling of antiprism, convex polytopes $ \mathcal D_{n} $, $ \mathcal R_{n} $, and corona product of cycle with path. This study also leads to interesting open problems for further extension of the work.

    Citation: Kooi-Kuan Yoong, Roslan Hasni, Gee-Choon Lau, Muhammad Ahsan Asim, Ali Ahmad. Reflexive edge strength of convex polytopes and corona product of cycle with path[J]. AIMS Mathematics, 2022, 7(7): 11784-11800. doi: 10.3934/math.2022657

    Related Papers:

  • For a graph $ G $, we define a total $ k $-labeling $ \varphi $ is a combination of an edge labeling $ \varphi_e(x)\to\{1, 2, \ldots, k_e\} $ and a vertex labeling $ \varphi_v(x) \to \{0, 2, \ldots, 2k_v\} $, such that $ \varphi(x) = \varphi_v(x) $ if $ x\in V(G) $ and $ \varphi(x) = \varphi_e(x) $ if $ x\in E(G) $, then $ k = \, \mbox{max}\, \{k_e, 2k_v\} $. The total $ k $-labeling $ \varphi $ is an edge irregular reflexive $ k $-labeling of $ G $ if every two different edges $ xy $ and $ x^\prime y^\prime $, the edge weights are distinct. The smallest value $ k $ for which such labeling exists is called a reflexive edge strength of $ G $. In this paper, we focus on the edge irregular reflexive labeling of antiprism, convex polytopes $ \mathcal D_{n} $, $ \mathcal R_{n} $, and corona product of cycle with path. This study also leads to interesting open problems for further extension of the work.



    加载中


    [1] G. Chartrand, P. Zhang, A first course in graph theory, Mineola, New York: Dover Publication, Inc., 2013.
    [2] G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz, F. Saba, Irregular networks, Congr. Numer., 64 (1988), 197–210. https://doi.org/10.2307/3146243 doi: 10.2307/3146243
    [3] D. Tanna, Graph labeling techniques, Doctoral dissertation, University of Newcastle, Newcastle, Australia, 2017.
    [4] M. Bača, S. Jendrol', M. Miller, J. Ryan, On irregular total labelings, Discrete Math., 307 (2007), 1378–1388. https://doi.org/10.1016/j.disc.2005.11.075 doi: 10.1016/j.disc.2005.11.075
    [5] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Comb., 2021.
    [6] D. Tanna, J. Ryan, A. Semaničová-Feňovčíková, Edge irregular reflexive labeling of prisms and wheels, Australas. J. Comb., 69 (2017), 394–401. https://doi.org/10.1215/00104124-4260427 doi: 10.1215/00104124-4260427
    [7] M. Bača, M. Irfan, J. Ryan, A. Semaničová-Feňovčíková, D. Tanna, Note on edge irregular reflexive labelings of graphs, AKCE Int. J. Graphs Comb., 16 (2019), 145–157. https://doi.org/10.1016/j.akcej.2018.01.013 doi: 10.1016/j.akcej.2018.01.013
    [8] M. Bača, M. Irfan, J. Ryan, A. Semaničová-Feňovčíková, D. Tanna, On edge irregular reflexive labelings for the generalized friendship graphs, Mathematics, 5 (2017), 67. https://doi.org/10.3390/math5040067 doi: 10.3390/math5040067
    [9] X. Zhang, M. Ibrahim, S. A. H. Bokhary, M. K. Siddiqui, Edge irregular reflexive labeling for the disjoint union of gear graphs and prism graphs, Mathematics, 6 (2018), 142. https://doi.org/10.3390/math6090142 doi: 10.3390/math6090142
    [10] J. L. G. Guirao, S. Ahmad, M. K. Siddiqui, M. Ibrahim, Edge irregular reflexive labeling for the disjoint union of generalized Petersen graph, Mathematics, 6 (2018), 304. https://doi.org/10.3390/math6120304 doi: 10.3390/math6120304
    [11] M. Basher, On the reflexive edge strength of the circulant graphs, AIMS Math., 6 (2021), 9342–9365. https://doi.org/10.3934/math.2021543 doi: 10.3934/math.2021543
    [12] K. K. Yoong, R. Hasni, M. Irfan, I. Taraweh, A. Ahmad, S. M. Lee, On the edge irregular reflexive labeling of corona product of graphs with path, AKCE Int. J. Graphs Comb., 18 (2021), 53–59. https://doi.org/10.1080/09728600.2021.1931555 doi: 10.1080/09728600.2021.1931555
    [13] Y. Ke, M. J. A. Khan, M. Ibrahim, M. K. Siddiqui, On edge irregular reflexive labeling for cartesian product of two graphs, Eur. Phys. J. Plus, 136 (2021), 6. https://doi.org/10.1140/epjp/s13360-020-00960-1 doi: 10.1140/epjp/s13360-020-00960-1
    [14] M. J. A. Khan, M. Ibrahim, A. Ahmad, On edge irregular reflexive labeling of categorical product of two paths, Comput. Syst. Sci. Eng., 36 (2021), 485–492. https://doi.org/10.32604/csse.2021.014810 doi: 10.32604/csse.2021.014810
    [15] I. H. Agustin, Dafik, M. I. Utoyo, Slamin, M. Venkatachalam, The reflexive edge strength on some almost regular graphs, Heliyon, 7 (2021), e06991. https://doi.org/10.1016/j.heliyon.2021.e06991 doi: 10.1016/j.heliyon.2021.e06991
    [16] M. Bača, Labelings of two classes of convex polytopes, Utilitas Math., 34 (1988), 24–31. https://doi.org/10.1002/bit.260310105 doi: 10.1002/bit.260310105
    [17] M. Bača, On magic labelings of convex polytopes, Ann. Discrete Math., 51 (1992), 13–16. https://doi.org/10.1016/S0167-5060(08)70599-5 doi: 10.1016/S0167-5060(08)70599-5
    [18] I. Tarawneh, R. Hasni, A. Ahmad, G. C. Lau, S. M. Lee, On the edge irregularity strength of corona product of graphs with cycle, Discret. Math. Algorithms Appl., 12 (2020), 2050083. https://doi.org/10.1142/S1793830920500834 doi: 10.1142/S1793830920500834
    [19] H. Raza, S. Hayat, X. F. Pan, On the fault-tolerant metric dimension of convex polytopes, Appl. Math. Comput., 339 (2018), 172–185. https://doi.org/10.1016/j.amc.2018.07.010 doi: 10.1016/j.amc.2018.07.010
    [20] H. Raza, S. Hayat, M. Imran, X. F. Pan, Fault-tolerant resolvability and extremal structures of graphs, Mathematics, 7 (2019), 78. https://doi.org/10.3390/math7010078 doi: 10.3390/math7010078
    [21] S. Hayat, M. Y. H. Malik, A. Ahmad, S. Khan, F. Yousafzai, R. Hasni, On Hamilton-connectivity and detour index of certain families of convex polytopes, Math. Probl. Eng., 2021 (2021), 5553216. https://doi.org/10.1155/2021/5553216 doi: 10.1155/2021/5553216
    [22] S. Hayat, A. Khan, S. Khan, J. B. Liu, Hamilton connectivity of convex polytopes with applications to their detour index, Complexity, 2021 (2021), 6684784. https://doi.org/10.1155/2021/6684784 doi: 10.1155/2021/6684784
    [23] S. Khan, S. Hayat, A. Khan, M. Y. H. Malik, J. Cao, Hamilton-connectedness and Hamilton-laceability of planar geometric graphs with applications, AIMS Math., 6 (2021), 3947–3973. https://doi.org/10.3934/math.2021235 doi: 10.3934/math.2021235
    [24] Y. Zhang, S. Gao, On the edge metric dimension of convex polytopes and its related graphs, J. Comb. Optim., 39 (2020), 334–350. https://doi.org/10.1007/s10878-019-00472-4 doi: 10.1007/s10878-019-00472-4
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1646) PDF downloads(86) Cited by(2)

Article outline

Figures and Tables

Figures(8)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog