Research article

Some geometric properties of multivalent functions associated with a new generalized $ q $-Mittag-Leffler function

  • Received: 25 February 2022 Revised: 01 April 2022 Accepted: 07 April 2022 Published: 18 April 2022
  • MSC : 33E12, 30C45

  • In this article, a new generalized $ q $-Mittag-Leffler function is introduced and investigated. Motivated by the newly defined function and using the concept of differential subordination, a new subclass of multivalent functions is introduced. Some geometric properties of them are obtained. Furthermore, the radii for the aforementioned subclass associated with a generalized Srivastava-Attiya integral operator are also studied.

    Citation: Sarem H. Hadi, Maslina Darus, Choonkil Park, Jung Rye Lee. Some geometric properties of multivalent functions associated with a new generalized $ q $-Mittag-Leffler function[J]. AIMS Mathematics, 2022, 7(7): 11772-11783. doi: 10.3934/math.2022656

    Related Papers:

  • In this article, a new generalized $ q $-Mittag-Leffler function is introduced and investigated. Motivated by the newly defined function and using the concept of differential subordination, a new subclass of multivalent functions is introduced. Some geometric properties of them are obtained. Furthermore, the radii for the aforementioned subclass associated with a generalized Srivastava-Attiya integral operator are also studied.



    加载中


    [1] O. Ahuja, S. Kumar, A. Cetinkaya, Normalized multivalent functions connected with generalized Mittag-Leffler functions, Acta Univ. Apulensis, 67 (2021), 111–123.
    [2] M. K. Aouf, A generalization of multivalent functions with negative coefficient, J. Korean Math. Soc., 25 (1989), 681095. http://dx.doi.org/10.1155/S0161171289000633 doi: 10.1155/S0161171289000633
    [3] M. K. Aouf, J. Dziok, Distortion and convolutional theorems for operators of generalized fractional calculus involving Wright function, J. Appl. Anal., 14 (2008), 183–192. https://doi.org/10.1515/JAA.2008.183 doi: 10.1515/JAA.2008.183
    [4] A. A. Attiya, Some applications of Mittag-Leffler function in the unit disk, Filomat, 30 (2016), 2075–2081. http://dx.doi.org/10.2298/FIL1607075A doi: 10.2298/FIL1607075A
    [5] D. Bansal, J. K. Prajapat, Certain geometric properties of the Mittag-Leffler functions, Complex Var. Ellip. Equ., 61 (2016), 338–350. https://doi.org/10.1080/17476933.2015.1079628 doi: 10.1080/17476933.2015.1079628
    [6] A. Baricz, A. Prajapati, Radii of starlikeness and convexity of generalized Mittag-Leffler functions, Math. Commun., 25 (2020), 117–135.
    [7] E. Bas, B. Acay, The direct spectral problem via local derivative including truncated Mittag-Leffler function, Appl. Math. Comput., 367 (2020), 124787. https://doi.org/10.1016/j.amc.2019.124787 doi: 10.1016/j.amc.2019.124787
    [8] Y. L. Cang, J. L. Liu, A family of multivalent analytic functions associated with Srivastava-Tomovski generalization of the Mittag-Leffler function, Filomat, 32 (2018), 4619–4625. http://dx.doi.org/10.2298/FIL1813619C doi: 10.2298/FIL1813619C
    [9] K. A. Challab, M. Darus, F. Ghanim, Some application on Hurwitz Lerch Zeta function defined by a generalization of the Srivastava Attiya operator, Kragujev. J. Math., 43 (2019), 201–217.
    [10] E. Deniz, On $p$-valently close-to-convex, starlike and convex functions, Hacet. J. Math. Stat., 41 (2012), 635–642.
    [11] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, New York: Springer-Verlag, 1983.
    [12] J. Dziok, A new class of multivalent analytic functions defined by the Hadamard product, Demonstr. Math., 44 (2011), 233–251. https://doi.org/10.1515/dema-2013-0313 doi: 10.1515/dema-2013-0313
    [13] S. Elhaddad, M. Darus, Differential subordination and superordination for a new differential operator containing Mittag-Leffler function, Kraguj. J. Math., 45 (2021), 699–708.
    [14] E. A. Elrifai, H. E. Darwish, A. R. Ahmed, Some applications of Srivastava-Attiya operator to $p$-valent starlike functions, J. Inequal. Appl., 2010 (2010), 790730. https://doi.org/10.1155/2010/790730 doi: 10.1155/2010/790730
    [15] P. Gochhayat, Convolution properties of $p$-valent functions associated with a generalization of the Srivastava-Attiya operator, J. Complex Anal., 2013 (2013), 6760275. http://dx.doi.org/10.1155/2013/676027 doi: 10.1155/2013/676027
    [16] R. M. Goel, N. S. Sohi, Multivalent functions with negative coefficients, Indian J. Pure. Appl. Math., 12 (1981), 844–853.
    [17] S. Horrigue, S. M. Madian, Some inclusion relationships of meromorphic functions associated to new generalization of Mittag-Leffler function, Filomat, 34 (2020), 1545–1556. https://doi.org/10.2298/FIL2005545H doi: 10.2298/FIL2005545H
    [18] F. H. Jackson, On $q$-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46 (1908), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751
    [19] I. Jung, Y. Kim, H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138–147. https://doi.org/10.1006/jmaa.1993.1204 doi: 10.1006/jmaa.1993.1204
    [20] J. L. Liu, Sufficient conditions for strongly star-like functions involving the generalized Srivastava-Attiya operator, Integr. Transf. Spec. F., 22 (2011), 79–90. https://doi.org/10.1080/10652469.2010.498110 doi: 10.1080/10652469.2010.498110
    [21] A. K. Mishra, P. Gochhayat, Invariance of some subclass of multivalent functions under a differintegral operator, Complex Var. Elliptic Equ., 55 (2010), 677–689. https://doi.org/10.1080/17476930903568712 doi: 10.1080/17476930903568712
    [22] G. M. Mittag-Leffler, Sur la nouvelle function $E\alpha(x)$, C. R. Acad. Sci. Paris, 137 (1903), 554–558.
    [23] M. Nunokawa, J. Sokoł, N. Tuneski, On coefficients of some $p$-valent starlike functions, Filomat, 33 (2019), 2277–2284. https://doi.org/10.2298/FIL1908277N doi: 10.2298/FIL1908277N
    [24] R. Ozarslan, E. Bas, D. Baleanu, B. Acay, Fractional physical problems including wind-influenced projectile motion with Mittag-Leffler kernel, AIMS Math., 5 (2020), 467–481. https://doi.org/10.3934/math.2020031 doi: 10.3934/math.2020031
    [25] T. R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokohama Math. J., 19 (1971), 2277–2284.
    [26] T. M. Seoudy, M. K. Aouf, Coefficient estimates of new classes of $q$-starlike and $q$-convex functions of complex order, J. Math. Inequal., 10 (2016), 135–145. https://doi.org/10.7153/jmi-10-11 doi: 10.7153/jmi-10-11
    [27] A. K. Shukla, J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., 336 (2007), 797–811. https://doi.org/10.1016/j.jmaa.2007.03.018 doi: 10.1016/j.jmaa.2007.03.018
    [28] P. Singh, S. Jain, C. Cattani, Some unified integrals for generalized Mittag-Leffler functions, Axioms, 10 (2021), 261. https://doi.org/10.3390/axioms10040261 doi: 10.3390/axioms10040261
    [29] H. M. Srivastava, Some families of Mittag-Leffler type functions and associated operators of fractional calculus, TWMS J. Pure Appl. Math., 7 (2016), 123–145.
    [30] H. M. Srivastava, A. A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integr. Transf. Spec. F., 18 (2007), 207–216. https://doi.org/10.1080/10652460701208577 doi: 10.1080/10652460701208577
    [31] H. M. Srivastava, D. Bansal, Close-to-convexity of a certain family of $q$-Mittag-Leffer functions, J. Nonlinear Var. Anal., 1 (2017), 61–69.
    [32] H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernal, Appl. Math. Comput., 211 (2009), 198–210. https://doi.org/10.1016/j.amc.2009.01.055 doi: 10.1016/j.amc.2009.01.055
    [33] Z. G. Wang, Z. H. Liu, Y. Sun, Some properties of the generalized Srivastava-Attiya operator, Integr. Transf. Spec. F., 23 (2012), 223–236. https://doi.org/10.1080/10652469.2011.585425 doi: 10.1080/10652469.2011.585425
    [34] A. Wiman, Uber den fundamental satz in der theory der funktionen, Acta Math., 29 (1905), 191–201. https://doi.org/10.1007/BF02403202 doi: 10.1007/BF02403202
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1798) PDF downloads(129) Cited by(13)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog