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Abstract: This research focuses on the fascinating exploration of the (2 + 1)-dimensional complex
modified Korteweg-de Vries (CmKdV) system, exhibiting its complex dynamics and solitary wave
solutions. This system is a versatile mathematical model that finds applications in various branches
of physics, including fluid dynamics, plasma physics, optics, and nonlinear dynamics. Two newly
developed methodologies, namely the auxiliary equation (AE) method and the Hirota bilinear (HB)
method, are implemented for the construction of novel solitons in various formats. Numerous
novel soliton solutions are synthesised in distinct formats, such as dark, bright, singular, periodic,
combo, W-shape, mixed trigonometric, exponential, hyperbolic, and rational, based on the proposed
methods. Furthermore, we also find some lump solutions, including the periodic cross rational
wave, the homoclinic breather (HB) wave solution, the periodic wave solution, the M-shaped rational
wave solution, the M-shaped interaction with one kink wave, and the multiwave solution, which
are not documented in the literature. In addition, we employ the Galilean transformation to derive
the dynamic framework for the presented equation. Our inquiry includes a wide range of topics,
including bifurcations, chaotic flows, and other intriguing dynamic properties. Also, for the physical
demonstration of the acquired solutions, 3D, 2D, and contour plots are provided. The resulting
structure of the acquired results can enrich the nonlinear dynamical behaviors of the given system
and may be useful in many domains, such as mathematical physics and fluid dynamics, as well as
demonstrate that the approaches used are effective and worthy of validation.
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1. Introduction

Nonlinear partial differential equations (PDEs) propose groundwork in the scientific description
of complicated manifestations throughout numerous systematic disciplines that play a vital role in
providing thoughtful insight into the complex changing aspects of natural systems [1–5]. These
equations have emerged as a focal point in contemporary nonlinear research, notably in the study of
integrable systems. This research area provides vital insights that enrich our understanding of nonlinear
processes in a variety of scientific domains, including plasma physics, fluid dynamics, and nonlinear
optics, both of which rely significantly on NLPDEs for practical applications. NLPDEs are an effective
tool for characterizing a wide variety of phenomena, including optics, nonlinear fiber optics, plasma
physics, engineering, and physical effects in fluid dynamics [6–11]. In recent years, a devoted crew
of academics has made major attempts to uncover the qualitative and quantitative aspects of these
equations, with a special emphasis on investigating soliton solutions within the context of NLPDEs.

Nonlinear evolution equations (NLEEs) are mathematical equations that describe the evolution
of systems where nonlinear interactions play a significant role. These equations arise in various
branches of science and engineering, encompassing diverse phenomena such as wave propagation,
pattern formation, turbulence, and particle dynamics [12]. They describe how the system evolves in
time based on the current state of the system. NLEEs have widespread applications across various
fields, including physics, engineering, biology, and finance. They are used to model and understand a
wide range of phenomena, including wave propagation, fluid dynamics, chemical reactions, population
dynamics, and financial markets [13, 14]. Finding accurate solutions to nonlinear NLEEs is critical
in nonlinear systems research because they provide a thorough understanding of the underlying
physical processes. For this purpose, researchers and scientists have employed several successful
strategies, such as the multiple exponential function method [15], the ( 1

G′ )-expansion method [16],
the new Kudryashov method [17], the improved F -expansion method [18], the sardar sub-equation
method [19], the Hirota bilinear method [20], the extended simple method [21], the Heir equation
method [22], the first integral equation method [23], the Darboux transformation method [24], and the
Nucci reduction method [25, 26], to gain deeper insights into the behavior of complex systems and to
refine their understanding of real-world phenomena. Futhermore, by employing the dressing method,
Wang et al. [27] successfully deduced the three-component coupled Hirota hierarchy. An effective and
direct approach was proposed by Tian et al. [28] to study the symmetry-preserving discretization for
a class of generalized higher-order equations, and they proposed an open problem about symmetries
and the multipliers of the conservation law. In addition, by using the Riemann-Hilbert method, Li and
Tian [29] solved the Cauchy problem of the general n-component nonlinear Schrödinger equations,
and gave the N-soliton solutions. Besides, a conjecture about the law of nonlinear wave propagation
was proposed. Moreover, by employing the D̄-steepest descent method, Li, Tian, Yang, and Fan have
done some interesting work with respect to the solutions of the Wadati-Konno-Ichikawa equation and
other complex equations [30, 31]. They solved the long-time asymptotic behavior of the solutions of
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these equations, and proved the soliton resolution conjecture and the asymptotic stability of solutions
of these equations [32].

The CmKDV sytem is a fundamental model in the study of nonlinear waves and fluid dynamics,
offering insights into the formation and propagation of coherent structures in various physical systems.
The CmKDV system supports soliton solutions, which are localized, stable, nonlinear waves that
propagate without dispersion. These solitons are often interpreted as coherent structures in fluid
dynamics and can describe phenomena such as rogue waves. In the current study, we consider the (2+1)
dimentional CmKDV equation [33], which occurs in several applied science and optics disciplines:

Nt +Nxxy + iNH + (NQ)x = 0.
Hx + 2iλ(N∗Nxy − N

∗
xyN) = 0,

Qx − 2λ(|N|2)y = 0. (1.1)

The function N(x, y, t) is a complex function with its conjugate denoted as N∗(x, y, t), and H(x, y, t)
and Q(x, y, t) are real functions. This model generalizes the (2 + 1)-dimension CmKdV equation and
has significant applications in nanomagnetism and ferromagnetism [33]. The Darboux transformation
(DT) is used in various works to study Eq (1.1). Starting from zero, the one-soliton and two-soliton
solutions are found using DT [34]. Moreover, n-fold DT is used to generate deformed solitons [35].
The plane wave, breather solutions, and periodic line wave solutions were found in [36]. The authors
in [37] also established the order-n-breather solutions. The nonlocal counterpart was fully investigated
in [38]. Other investigations, via the concept of traveling wave solutions for Eq (1.1), were established
by elaborating on the sine-cosine, Kudryashov, and tanh-coth methods [39]. However, the main goal
of this study is to investigate the (2 + 1)-dimentional CmKDV equations by using the AE scheme and
the HB method. The CmKDV equations are crucial for simulating soliton propagation in mathematical
sciences, and the solutions that are produced can be used to explain several significant physical events.
Also, bifurcation analysis of the aforementioned model is performed, which is especially essential in
dynamical systems. Using the aforementioned approaches, we compare our results to those discovered
in [33] and find that the current work contains several innovative solutions. This study has yielded
numerous solitary as well as lump solutions which have not been documented in previous literature. In
addition, some of the discovered solutions are graphically represented.

The remaining structure of our manuscript is as follows: Section 3 presents the methodology of the
selected method. The applications of the selected method are displayed in Section 4. The applications
of the HB method are demonstrated in Section 5. The bifurcations and chaotic dynamics are presented
in Section 6. The results are illustrated in Section 8. Finally, we provide our concluding remark in
Section 9.

2. The Lax pair system of the equation

The Lax pair system of equations for Eq (1.1) is [40]

Πx = XΠ, Πt = 4σ2Πy +ZΠ, (2.1)

where,

X = σJ + X0, Z = σZ1 +Z0, (2.2)
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with,

J =

(
−i 0
0 i

)
, X0 =

(
0 N

−R 0

)
, Z1 =

(
iQ 2iNy

2iRy −iQ

)
, (2.3)

Z0 =

(
− iH

2 −Nxy − QN

Rxy + QR iH
2

)
, Π =

(
Π1(σ, x, y, t)
Π2(σ, x, y, t)

)
, (2.4)

and the compatibility condition

Xt −Zx + XZ −ZX − 4σ2Xy = 0. (2.5)

This infers the following (2 + 1)-dimensional coupled CmKdV equations:

Nt +Nxxy + iNH + (QN)x = 0,
Rt + Rxxy − iHR + (QR)x = 0,
Hx + 2i(RNxy − RxyN) = 0,

Hx − 2(NR)y = 0 (2.6)

where H , Q are complex and real functions. By setting R = λN∗, Eq (2.6) becomes the CmKdV
equations (1.1).

3. Methodology

In this section, the procedures employed will be described. We consider a particular type of
nonlinear fractional equation given by

G(H , Hx, Hy, Hxx, Hxy, Hxt, Hyy, · · · ) = 0. (3.1)

The wave transformation is defined as

H(x, y, t) = P(ζ), where ζ = ax + by + cz − µt. (3.2)

Here, P(ζ) denotes the amplitude. In accordance with the strategy, the above transformation changes
Eq (3.2) into the nonlinear ordinary differential equation (ODE)

Q(P, P′, P′′, · · · ) = 0. (3.3)

3.1. The AE method

This section provides a fresh revision of the AE approach. The revised methodology results in novel
and differentiated findings. To achieve various results, we assume a trial solution of Eq (3.3) as the
1st step. Suppose the trial solution of Eq (3.3) is given by

P(ζ) = γ0 +

n∑
i=1

γiS(ζ)i, γn , 0, (3.4)
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where γi(i = 0, 1, 2, · · · , n) should be computed after the constants. Equation (3.4) and the function
S(ζ) are satisfied by the Ricati equation

(S′(ζ))2 =
√
℘1S(ζ)2 + ℘2S(ζ)3 + ℘3S(ζ)4. (3.5)

where ℘0, ℘1, and ℘2 are parameters. Furthermore, mentioned below are typical solutions to Eq (3.5):

S1(ζ) = −
℘1℘2sech

( √
℘1ζ

2

)2

℘2
2 − ℘3℘1

(
ε tanh

( √
℘1ζ

2

)
+ 1

)
2
, ℘1 > 0, (3.6)

S2(ζ) =
℘1℘2csch

( √
℘1ζ

2

)2

℘2
2 − ℘3℘1

(
ε coth

( √
℘1ζ

2

)
+ 1

)
2
, ℘1 > 0, (3.7)

S3(ζ) =
2℘1sech

(√
℘1ζ

)
ε
√

Ω − ℘2sech
(√
℘1ζ

) , ℘1 > 0 and Ω > 0, (3.8)

S4(ζ) =
2℘1 sec

(√
−℘1ζ

)
ε
√

Ω − ℘2 sec
(√
−℘1ζ

) , ℘1 < 0, Ω > 0, (3.9)

S5(ζ) =
2℘1csch

(√
℘1ζ

)
ε
√
−Ω − ℘2csch

( √
℘1ζ

2

) , ℘1 > 0, Ω < 0. (3.10)

S6(ζ) =
2℘1 csc

(√
−℘1ζ

)
ε
√

Ω − ℘2 csc
(√
−℘1ζ

) , ℘1 < 0, Ω > 0, (3.11)

S7(ζ) = −
℘1sech2

( √
℘1ζ

2

)
℘2 + 2

√
−℘1℘3ε tanh

( √
℘1ζ

2

) , ℘1 > 0, ℘2 > 0, (3.12)

S8(ζ) = −
℘1 sec2

(
1
2

√
−℘1ζ

)
℘2 + 2

√
−℘1℘3ε tan

(
1
2

√
−℘1ζ

) , ℘1 < 0, ℘2 > 0, (3.13)

S9(ξ) =
℘1csch2

(
1
2

√
−℘1ζ

)
℘2 + 2

√
℘1℘3ε coth

(
1
2

√
−℘1ζ

) , ℘1 > 0, ℘2 > 0, (3.14)

AIMS Mathematics Volume 9, Issue 6, 16116–16145.



16121

S10(ζ) = −
℘1 csc2

(
1
2

√
−℘1ζ

)
℘2 + 2

√
−℘1℘3ε cot

(
1
2

√
−℘1ζ

) , ℘1 < 0, γ2 > 0, (3.15)

S11(ζ) = −
℘1

(
ε tanh2

( √
℘1ζ

2

)
+ 1

)
℘2

, ℘1 > 0, Ω = 0, (3.16)

S12(ζ) = −
℘1

(
ε coth2

( √
℘1ζ

2

)
+ 1

)
℘2

, ℘1 > 0, Ω = 0, (3.17)

S13(ζ) =
4℘1 exp

(
e
(√
℘1ζ

))
exp2

(
ε
(√
℘1ζ

)
− ℘2

)
− 4℘3℘1

, ℘1 > 0, (3.18)

Where, Ω = ℘2
2 − 4℘3℘1 and ε = ±1 is parameter.

2nd step. We calculate the value of n by applying balance theory on Eq (3.3).
3rd step. Substituting Eqs (3.4) and (3.5) into Eq (3.3), and setting all the coefficients power of S(ζ)
to zero. Finally, by using computational software, we solve these equations to obtain the values of the
unknowns γ0, γi, and µ, which will be utilized to obtain the solution of Eq (3.1).

4. Extraction of solution

The major goal of this part is to compile a diverse set of solutions to the given model. Now, by
using the complex wave transformations, we have

N(x, y, t) = P(ζ)eiψ(x, t), (4.1)

where ζ = ax + by + µt and ψ = κ1x + κ2y + κ3t.
The function P(ζ) illustrates the amplitude component. The unknowns κ1, κ2, κ3, and µ represent

independent variables. Substituting Eq (4.1) into Eq (1.1), we get

Pt − 2κ1κ2Px − κ
2
1Py + Pxxy + PxQ + PQx + i((κ3 − κ

2
1κ2)P + 2κ1Pxy + κ2Pxx + κ1PQ + PH = 0. (4.2)

Hx − 4λ(κ2PPx + κ1PPy = 0, (4.3)
Qx − 2λ(P2)y = 0. (4.4)

Substituting the wave transformation

N(x, y, t) = P(ζ) = P(x + y + µt), (4.5)
H(x, y, t) = H(ζ) = H(x + y + µt), (4.6)
Q(x, y, t) = Q(ζ) = Q(x + y + µt), (4.7)

into system (4.3) and (4.4), we get,

(µ − 2κ1κ2 − κ
2
1)P

′

+ P
′′′

+ P
′

Q + PQ
′

+ i((κ3 − κ
2
1κ2)P + (2κ1 + κ2)P

′′

+ κ1NQ + PQ) = 0, (4.8)
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H
′

− 4λ(κ2 + κ1)PP
′

= 0, (4.9)
Q
′

− 2λ(P2)
′

= 0. (4.10)

Integrating Eqs (4.9) and (4.10) with respect to ζ and taking the integration constant as zero, we have

H = 2λ(κ2 + κ1)P2, Q = 2λP2. (4.11)

Substituting Eq (4.11) into Eq (4.9), we get the following ODE:

(µ − 2κ1κ2 − κ
2
1)P

′

+ P
′′′

+ 2λ(P3)
′

+ i((κ3 − κ
2
1κ2)P + (2κ1 + κ2)P

′′

+ 2λ(2κ1 + κ2)P3) = 0. (4.12)

Now, splitting the real and imaginary parts of Eq (4.12), we have

(µ − 2κ1κ2 − κ
2
1)P

′

+ P
′′′

+ 2λ(P3)
′

= 0, (4.13)
(κ3 − κ

2
1κ2)

(2κ1 + κ2)
P + P

′′

+ 2λP3 = 0. (4.14)

Taking the anti-derivative of Eq (4.14) once with respect to ζ, and setting the constant of integration to
zero, we have

(µ − 2κ1κ2 − κ
2
1)P + P

′′

+ 2λ(P3) = 0. (4.15)

Equations (4.14) and (4.15) are the same if and only if the following constraint condition is satisfied:

µ − 2κ1κ2 − κ
2
1 =

κ3 − κ
2
1κ2

2κ1 − κ2
. (4.16)

Solving for

µ = 2κ1κ2 + κ2
1 +

κ3 − κ
2
1κ2

2κ1 − κ2
, (4.17)

we rewrite Eq (4.14) as

P
′′

+
κ3 − κ

2
1κ2

2κ1 − κ2
P + 2λP3 = 0. (4.18)

4.1. Application of the AE method

In Eq (4.18), we get N = 1 by balancing the highest power nonlinear term P3 with the largest
derivative P

′′

. Then, from Eq (3.4), we get

P(ζ) = γ0 + γ1S(ζ). (4.19)

Inserting Eqs (4.19) and (3.5) into Eq (4.18) yields a system of algebraic equations. By solving them,
we determine the following solution set:
Family-1: {

γ0 → γ0, γ1 →
4γ0℘3

℘2
, κ1 → −

3
√
κ3

3√2
, κ2 → 22/3 3

√
κ3, λ→ −

℘2
2

16γ2
0℘3

}
. (4.20)
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Inserting these solutions into Eq (4.19), we recovered the following solutions for the (2 + 1) CmKdV
system.
Cluster 1:

N±1,1(x, y, t) =

[
γ0

1 − 4℘1℘3sech
(

1
2
√
℘1(+µt + x + y)

)
℘2

2 − ℘1℘3

(
ε tanh

(
1
2
√
℘1(+µt + x + y)

)
+ 1

)
2

 ] × e
iκ3t−

i 3√κ3(x−2y)
3√2 . (4.21)

H±1,1(x, y, t) = 2λ(κ2 + κ1) ×
[
γ0

1 − 4℘1℘3sech
(

1
2
√
℘1(+µt + x + y)

)
℘2

2 − ℘1℘3

(
ε tanh

(
1
2
√
℘1(+µt + x + y)

)
+ 1

)
2

 ]2
. (4.22)

Q±1,1(x, y, t) = 2λ ×
[
γ0

1 − 4℘1℘3sech
(

1
2
√
℘1(+µt + x + y)

)
℘2

2 − ℘1℘3

(
ε tanh

(
1
2
√
℘1(+µt + x + y)

)
+ 1

)
2

 ]2
. (4.23)

Cluster 2:

N±1,2(x, y, t) =

[
γ0

 4℘1℘3csch2
(

1
2
√
℘1(+µt + x + y)

)
℘2

2 − ℘1℘3

(
ε coth

(
1
2
√
℘1(+µt + x + y)

)
+ 1

)
2

+ 1

 ] × e
iκ3t−

i 3√κ3(x−2y)
3√2 . (4.24)

H±1,2(x, y, t) = 2λ(κ2 + κ1) ×
[
γ0

 4℘1℘3csch2
(

1
2
√
℘1(+µt + x + y)

)
℘2

2 − ℘1℘3

(
ε coth

(
1
2
√
℘1(+µt + x + y)

)
+ 1

)
2

+ 1

 ]2
. (4.25)

Q±1,2(x, y, t) = 2λ ×
[
γ0

 4℘1℘3csch2
(

1
2
√
℘1(+µt + x + y)

)
℘2

2 − ℘1℘3

(
ε coth

(
1
2
√
℘1(+µt + x + y)

)
+ 1

)
2

+ 1

 ]2
. (4.26)

Cluster 3:

N±1,3(x, y, t) =

[
γ0

 8℘1℘3

ε
√

Ω℘2 cosh
(√
℘1(+µt + x + y)

)
− ℘2

2

+ 1

 ] × e
iκ3t−

i 3√κ3(x−2y)
3√2 . (4.27)

H±1,3(x, y, t) = 2λ(κ2 + κ1) ×
[
γ0

 8℘1℘3

ε
√

Ω℘2 cosh
(√
℘1(+µt + x + y)

)
− ℘2

2

+ 1

 ]2
. (4.28)

Q±1,3(x, y, t) = 2λ ×
[
γ0

 8℘1℘3

ε
√

Ω℘2 cosh
(√
℘1(+µt + x + y)

)
− ℘2

2

+ 1

 ]2
. (4.29)

Cluster 4:

N±1,4(x, y, t) =

[
γ0

 8℘1℘3

ε
√

Ω℘2 cos
(√
−℘1(+µt + x + y)

)
− ℘2

2

+ 1

 ] × e
iκ3t−

i 3√κ3(x−2y)
3√2 . (4.30)

H±1,4(x, y, t) = 2λ(κ2 + κ1) ×
[
γ0

 8℘1℘3

ε
√

Ω℘2 cos
(√
−℘1(+µt + x + y)

)
− ℘2

2

+ 1

 ]2
. (4.31)

Q±1,4(x, y, t) = 2λ ×
[
γ0

 8℘1℘3

ε
√

Ω℘2 cos
(√
−℘1(+µt + x + y)

)
− ℘2

2

+ 1

 ]2
. (4.32)

Cluster 5:

N±1,5(x, y, t) =

[
γ0

 8℘1℘3csch
(√
℘1(+µt + x + y)

)
ε
√
−Ω℘2 − ℘

2
2csch

(
1
2
√
℘1(+µt + x + y)

) + 1

 ] × e
iκ3t−

i 3√κ3(x−2y)
3√2 . (4.33)

H±1,5(x, y, t) = 2λ(κ2 + κ1) ×
[
γ0

 8℘1℘3csch
(√
℘1(+µt + x + y)

)
ε
√
−Ω℘2 − ℘

2
2csch

(
1
2
√
℘1(+µt + x + y)

) + 1

 ]2
. (4.34)
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Q±1,5(x, y, t) = 2λ ×
[
γ0

 8℘1℘3csch
(√
℘1(+µt + x + y)

)
ε
√
−Ω℘2 − ℘

2
2csch

(
1
2
√
℘1(+µt + x + y)

) + 1

 ]2
. (4.35)

Cluster 6:

N±1,6(x, y, t) =

[
γ0

 8℘1℘3

ε
√

Ω℘2 sin
(√
−℘1(+µt + x + y)

)
− ℘2

2

+ 1

 ] × e
iκ3t−

i 3√κ3(x−2y)
3√2 . (4.36)

H±1,6(x, y, t) = 2λ(κ2 + κ1) ×
[
γ0

 8℘1℘3

ε
√

Ω℘2 sin
(√
−℘1(+µt + x + y)

)
− ℘2

2

+ 1

 ]2
. (4.37)

Q±1,6(x, y, t) = 2λ ×
[
γ0

 8℘1℘3

ε
√

Ω℘2 sin
(√
−℘1(+µt + x + y)

)
− ℘2

2

+ 1

 ]2
. (4.38)

Cluster 7:

N±1,7(x, y, t) =

[
γ0

1 − 4℘1℘3sech2
(

1
2
√
℘1(+µt + x + y)

)
2ε
√
−℘1℘3℘2 tanh

(
1
2
√
℘1(+µt + x + y)

)
+ ℘2

2

 ] × e
iκ3t−

i 3√κ3(x−2y)
3√2 . (4.39)

H±1,7(x, y, t) = 2λ(κ2 + κ1) ×
[
γ0

1 − 4℘1℘3sech2
(

1
2
√
℘1(+µt + x + y)

)
2ε
√
−℘1℘3℘2 tanh

(
1
2
√
℘1(+µt + x + y)

)
+ ℘2

2

 ]2
. (4.40)

Q±1,7(x, y, t) = 2λ ×
[
γ0

1 − 4℘1℘3sech2
(

1
2
√
℘1(+µt + x + y)

)
2ε
√
−℘1℘3℘2 tanh

(
1
2
√
℘1(+µt + x + y)

)
+ ℘2

2

 ]2
. (4.41)

Cluster 8:

N±1,8(x, y, t) =

[
γ0

1 − 4℘1℘3 sec2
(

1
2
√
−℘1(+µt + x + y)

)
2ε
√
−℘1℘3℘2 tan

(
1
2
√
−℘1(+µt + x + y)

)
+ ℘2

2

 ] × e
iκ3t−

i 3√κ3(x−2y)
3√2 . (4.42)

H±1,8(x, y, t) = 2λ(κ2 + κ1) ×
[
γ0

1 − 4℘1℘3 sec2
(

1
2
√
−℘1(+µt + x + y)

)
2ε
√
−℘1℘3℘2 tan

(
1
2
√
−℘1(+µt + x + y)

)
+ ℘2

2

 ]2
. (4.43)

Q±1,8(x, y, t) = 2λ ×
[
γ0

1 − 4℘1℘3 sec2
(

1
2
√
−℘1(+µt + x + y)

)
2ε
√
−℘1℘3℘2 tan

(
1
2
√
−℘1(+µt + x + y)

)
+ ℘2

2

 ]2
. (4.44)

Cluster 9:

N±1,9(x, y, t) =

[
γ0

 4℘1℘3csch2
(

1
2
√
−℘1(+µt + x + y)

)
2ε
√
℘1℘3℘2 coth

(√
−
γ0℘3
℘2

(+µt + x + y)
)

+ ℘2
2

+ 1


]
× e

iκ3t−
i 3√κ3(x−2y)

3√2 . (4.45)

H±1,9(x, y, t) = 2λ(κ2 + κ1) ×
[
γ0

 4℘1℘3csch2
(

1
2
√
−℘1(+µt + x + y)

)
2ε
√
℘1℘3℘2 coth

(√
−
γ0℘3
℘2

(+µt + x + y)
)

+ ℘2
2

+ 1


]2
. (4.46)

Q±1,9(x, y, t) = 2λ ×
[
γ0

 4℘1℘3csch2
(

1
2
√
−℘1(+µt + x + y)

)
2ε
√
℘1℘3℘2 coth

(√
−
γ0℘3
℘2

(+µt + x + y)
)

+ ℘2
2

+ 1


]2
. (4.47)

Cluster 10:

N±1,10(x, y, t) =

[
γ0

1 − 4℘1℘3 csc2
(

1
2
√
−℘1(+µt + x + y)

)
2ε
√
−℘1℘3℘2 cot

(
1
2
√
−℘1(+µt + x + y)

)
+ ℘2

2

 ] × e
iκ3t−

i 3√κ3(x−2y)
3√2 . (4.48)
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H±1,10(x, y, t) = 2λ(κ2 + κ1) ×
[
γ0

1 − 4℘1℘3 csc2
(

1
2
√
−℘1(+µt + x + y)

)
2ε
√
−℘1℘3℘2 cot

(
1
2
√
−℘1(+µt + x + y)

)
+ ℘2

2

 ]2
. (4.49)

Q±1,10(x, y, t) = 2λ ×
[
γ0

1 − 4℘1℘3 csc2
(

1
2
√
−℘1(+µt + x + y)

)
2ε
√
−℘1℘3℘2 cot

(
1
2
√
−℘1(+µt + x + y)

)
+ ℘2

2

 ]2
. (4.50)

Cluster 11:

N±1,11(x, y, t) =

[γ0

(
℘2

2 − 4℘1℘3

(
ε tanh2

(
1
2
√
℘1(+µt + x + y)

)
+ 1

))
℘2

2

]
× e

iκ3t−
i 3√κ3(x−2y)

3√2 . (4.51)

H±1,11(x, y, t) = 2λ(κ2 + κ1) ×
[γ0

(
℘2

2 − 4℘1℘3

(
ε tanh2

(
1
2
√
℘1(+µt + x + y)

)
+ 1

))
℘2

2

]2
. (4.52)

Q±1,11(x, y, t) = 2λ ×
[γ0

(
℘2

2 − 4℘1℘3

(
ε tanh2

(
1
2
√
℘1(+µt + x + y)

)
+ 1

))
℘2

2

]2
. (4.53)

Cluster 12:

N±1,12(x, y, t) =

[γ0

(
℘2

2 − 4℘1℘3

(
ε coth2

(
1
2
√
℘1(+µt + x + y)

)
+ 1

))
℘2

2

]
× e

iκ3t−
i 3√κ3(x−2y)

3√2 . (4.54)

H±1,12(x, y, t) = 2λ(κ2 + κ1) ×
[γ0

(
℘2

2 − 4℘1℘3

(
ε coth2

(
1
2
√
℘1(+µt + x + y)

)
+ 1

))
℘2

2

]
.2 (4.55)

Q±1,12(x, y, t) = 2λ ×
[γ0

(
℘2

2 − 4℘1℘3

(
ε coth2

(
1
2
√
℘1(+µt + x + y)

)
+ 1

))
℘2

2

]2
. (4.56)

Cluster 13:

N±1,13(x, y, t) =

[
γ0

 16℘1℘3eε
√
℘1(+µt+x+y)

℘2

(
e2ε
√
℘1(+µt+x+y)−2℘2 − 4℘1℘3

) + 1

 ] × e
iκ3t−

i 3√κ3(x−2y)
3√2 . (4.57)

H±1,13(x, y, t) = 2λ(κ2 + κ1) ×
[
γ0

 16℘1℘3eε
√
℘1(+µt+x+y)

℘2

(
e2ε
√
℘1(+µt+x+y)−2℘2 − 4℘1℘3

) + 1

 ]2
. (4.58)

Q±1,13(x, y, t) = 2λ ×
[
γ0

 16℘1℘3eε
√
℘1(+µt+x+y)

℘2

(
e2ε
√
℘1(+µt+x+y)−2℘2 − 4℘1℘3

) + 1

 ]2
. (4.59)

5. Extraction of lump soliton solutions

By utilizing the logarithmic transformation in Eq (4.18)

P = 2(ln f )ζ , (5.1)

equation (5.1) converts Eq (4.18) into a bilinear form as

4 (2κ1 + κ2) (4λ + 1) f ′(ζ)3 + 2 f (ζ)2
(
2κ1 f (3)(ζ) + κ2 f (3)(ζ) − κ2

1κ2 f ′(ζ) + κ3 f ′(ζ)
)
− 6 (2κ1 + κ2) f (ζ) f ′(ζ) f ′′(ζ) = 0. (5.2)
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5.1. Periodic cross rational wave

We consider the following test function for extracting the periodic cross rational wave:

f = β0 cos (α1ζ + α2) + β1 cosh (α3ζ + α4) + (ζ$1 +$2) 2 + (ζ$3 +$4) 2 +$5, (5.3)

where αi(i = 1, 2, · · · , 4) and $i, i = 1, 2, · · · , 4 are constants. Inserting Eqs (5.3) into (5.2) and
taking coefficients hyperbolic and trigonometric functions to zero with similar powers and hence on
proceeding with mathematica, we get
Set-1. When {

α1 → 0, $1 → −
$3$4

$2
, κ1 → −

3
√
κ3

3√2
, κ2 → 22/3 3

√
κ3

}
, (5.4)

via the above values, we get

f = β1 cosh (α3ζ + α4) + β0 cos (α2) +

(
$2 −

ζ$3$4

$2

)
2 + (ζ$3 +$4) 2 +$5. (5.5)

Thus,

P =

2
(
α3β1 sinh (α3ζ + α4) +

2ζ($2
2+$2

4)$2
3

$2
2

)
β1 cosh (α3ζ + α4) + β0 cos (α2) +

(
$2 −

ζ$3$4
$2

)
2 + (ζ$3 +$4) 2 +$5

, (5.6)

and by imposing Eq (5.6), we get the following solutions:
Cluster 1:

N±1,1(x, y, t) =

[ 2
(
α3β1 sinh (α4 + α3(+µt + x + y)) +

2
(
$2

2+$2
4
)
$2

3(+µt+x+y)

$2
2

)
β0 cos (α2) + β1 cosh (α4 + α3(+µt + x + y)) +

(
$2 −

$3$4(+µt+x+y)
$2

)
2 + ($3(+µt + x + y) +$4) 2 +$5

]
× e

iκ3 t−
i 3√κ3(x−2y)

3√2 . (5.7)

H±1,1(x, y, t) = 2λ(κ2 + κ1) ×
[ 2

(
α3β1 sinh (α4 + α3(+µt + x + y)) +

2
(
$2

2+$2
4
)
$2

3(+µt+x+y)

$2
2

)
β0 cos (α2) + β1 cosh (α4 + α3(+µt + x + y)) +

(
$2 −

$3$4(+µt+x+y)
$2

)
2 + ($3(+µt + x + y) +$4) 2 +$5

]2

. (5.8)

Q±1,1(x, y, t) = 2λ ×
[ 2

(
α3β1 sinh (α4 + α3(+µt + x + y)) +

2
(
$2

2+$2
4
)
$2

3(+µt+x+y)

$2
2

)
β0 cos (α2) + β1 cosh (α4 + α3(+µt + x + y)) +

(
$2 −

$3$4(+µt+x+y)
$2

)
2 + ($3(+µt + x + y) +$4) 2 +$5

]2

. (5.9)

5.2. HB

We use the following test function for attaining the HB wave solution:

f = β1e(q(α3ζ+α4)) + e(−q(α1ζ+α2)) + β0 cos (q1 (α5ζ + α6)) , (5.10)

where αi(i = 1, 2, · · · , 6) are constants. Inserting Eqs (5.10) into (5.2) and taking coefficients
hyperbolic and exponential functions to zero with similar powers and hence on proceeding with
mathematica, we get
Set-1. When α3 → −α1 +

i 6√2 3
√
κ3

q
, β0 → 0, κ1 → −

3
√
κ3

3√2
, κ2 → 22/3 3

√
κ3

 , (5.11)
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via the above values, we get

f = e−q(α1ζ+α2)
(
1 + β1e

6√2iζ 3√κ3+α2q+α4q
)
. (5.12)

Thus,

P = −2α1q +
2i 6√2β1

3
√
κ3e

6√2iζ 3√κ3+α2q+α4q

1 + β1e
6√2iζ 3√κ3+α2q+α4q

, (5.13)

and by imposing Eq (5.13), we get the following solutions:
Cluster 2:

N±1,2(x, y, t) =

[
− 2α1q +

2i 6√2β1
3
√
κ3eα2q+α4q+

6√2i 3√κ3(+µt+x+y)

1 + β1eα2q+α4q+
6√2i 3√κ3(+µt+x+y)

]
× e

iκ3t−
i 3√κ3(x−2y)

3√2 . (5.14)

H±1,2(x, y, t) = 2λ(κ2 + κ1) ×
[
− 2α1q +

2i 6√2β1
3
√
κ3eα2q+α4q+

6√2i 3√κ3(+µt+x+y)

1 + β1eα2q+α4q+
6√2i 3√κ3(+µt+x+y)

]2

. (5.15)

Q±1,2(x, y, t) = 2λ ×
[
− 2α1q +

2i 6√2β1
3
√
κ3eα2q+α4q+

6√2i 3√κ3(+µt+x+y)

1 + β1eα2q+α4q+
6√2i 3√κ3(+µt+x+y)

]2

. (5.16)

5.3. Evaluation of M-shape solitons

We assume the following test function for achieving the M-shape wave solution:

f = (α1ζ + α2) 2 + (α3ζ + α4) 2 + α5, (5.17)

where αi(i = 1, 2, · · · , 5) are constants. Inserting Eqs (5.17) into (5.2) and taking coefficients ζ to zero
with similar powers and hence on proceeding with mathematica, we get
Set-1. When {

α5 → −
(α2α3 − α1α4) 2

α2
1 + α2

3

, λ→ −
1

16
, κ3 → κ2

1κ2

}
, (5.18)

via the above values, we get

f = (α1ζ + α2) 2 + (α3ζ + α4) 2 −
(α2α3 − α1α4) 2

α2
1 + α2

3

. (5.19)

Thus,

P =
4
(
α2

1 + α2
3

)
α2

1ζ + α3 (α3ζ + α4) + α2α1
, (5.20)

and by imposing Eq (5.20), we get the following solutions:
Cluster 3:

N±1,3(x, y, t) =

[ 4
(
α2

1 + α2
3

)
α2α1 + α2

1(+µt + x + y) + α3 (α4 + α3(+µt + x + y))

]
× ei(κ2κ

2
1t+κ1 x+κ2y). (5.21)
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H±1,3(x, y, t) = 2λ(κ2 + κ1) ×
[ 4

(
α2

1 + α2
3

)
α2α1 + α2

1(+µt + x + y) + α3 (α4 + α3(+µt + x + y))

]2

. (5.22)

Q±1,3(x, y, t) = 2λ ×
[ 4

(
α2

1 + α2
3

)
α2α1 + α2

1(+µt + x + y) + α3 (α4 + α3(+µt + x + y))

]2

. (5.23)

5.4. Cross-kink rational wave solution

We construct the following test function for obtaining the cross kink rational wave solution:

f = α1e(ζ%1+%2) + e(−(ζ%1+%2)) + (ζ$1 +$2) 2 + (ζ$3 +$4) 2 +$5, (5.24)

where %1, %2, and $i, i = 1, · · · , 5 are constants. Inserting Eqs (5.24) into (5.2) and taking coefficients
exponential and ζ to zero with similar powers and hence on proceeding with mathematica, we get
Set-1. When%1 → 0, $1 → i$3, $5 →

(
κ3/2

2 − 2
√
κ3

)
(4λ + 1) ($2 − i$4) 3

3
√
κ3$2

, α1 → 0, κ1 → −

√
κ3
√
κ2

 , (5.25)

via the above values, we get

f = ($2 + iζ$3) 2 + (ζ$3 +$4) 2 +

(
κ3/2

2 − 2
√
κ3

)
(4λ + 1) ($2 − i$4) 3

3
√
κ3$2

+ e−%2 . (5.26)

Thus,

P =
4$3 ($4 + i$2)

($2 + iζ$3) 2 + (ζ$3 +$4) 2 +

(
κ3/2

2 −2
√
κ3

)
(4λ+1)($2−i$4)3

3
√
κ3$2

+ e−%2

, (5.27)

and by imposing Eq (5.27), we get the following solutions:
Cluster 4:

N±1,4(x, y, t) =

[ 4$3 ($4 + i$2)(
κ
3/2
2 −2√κ3

)
(4λ+1)($2−i$4)3

3√κ3$2
+ ($2 + i$3(+µt + x + y)) 2 + ($3(+µt + x + y) +$4) 2 + e−%2

]
× e

i
(
κ3 t−

√
κ3 x
√
κ2

+κ2y
)
. (5.28)

H±1,4(x, y, t) = 2λ(κ2 + κ1) ×
[ 4$3 ($4 + i$2)(

κ
3/2
2 −2√κ3

)
(4λ+1)($2−i$4)3

3√κ3$2
+ ($2 + i$3(+µt + x + y)) 2 + ($3(+µt + x + y) +$4) 2 + e−%2

]2

. (5.29)

Q±1,4(x, y, t) = 2λ ×
[ 4$3 ($4 + i$2)(

κ
3/2
2 −2√κ3

)
(4λ+1)($2−i$4)3

3√κ3$2
+ ($2 + i$3(+µt + x + y)) 2 + ($3(+µt + x + y) +$4) 2 + e−%2

]2

. (5.30)

5.5. M-Shaped rational wave solution with one kink wave

We construct the following test function for attaining the M-shaped rational wave solution with one
kink wave:

f = (ζ$1 +$2) 2 + (ζ$3 +$4) 2 + e(ζ$6+$7) +$5, (5.31)
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where$i, i = 1, · · · , 7 are constants. Inserting Eqs (5.31) into (5.2) and taking coefficients exponential
and ζ to zero with similar powers and hence on proceeding with mathematica, we get
Set-1. When {

$2 → −
$3$4

$1
, κ1 → −

3
√
κ3

3√2
, κ2 → 22/3 3

√
κ3

}
, (5.32)

via the above values, we get

f =

(
ζ$1 −

$3$4

$1

)
2 + eζ$6+$7 + (ζ$3 +$4) 2 +$5. (5.33)

Thus,

P =
2$2

1

(
2ζ$2

1 + 2ζ$2
3 +$6eζ$6+$7

)
ζ2$4

1 +$2
1

(
ζ2$2

3 + eζ$6+$7 +$2
4 +$5

)
+$2

3$
2
4

, (5.34)

and by imposing Eq (5.34), we get the following solutions:
Cluster 4:

N±1,5(x, y, t) =

[ 2$2
1

(
2$2

1(+µt + x + y) + 2$2
3(+µt + x + y) +$6e$6(+µt+x+y)+$7

)
$4

1(+µt + x + y)2 +$2
1

(
$2

3(+µt + x + y)2 + e$6(+µt+x+y)+$7 +$2
4 +$5

)
+$2

3$
2
4

]
× e

iκ3 t−
i 3√κ3(x−2y)

3√2 . (5.35)

H±1,5(x, y, t) = 2λ(κ2 + κ1) ×
[ 2$2

1

(
2$2

1(+µt + x + y) + 2$2
3(+µt + x + y) +$6e$6(+µt+x+y)+$7

)
$4

1(+µt + x + y)2 +$2
1

(
$2

3(+µt + x + y)2 + e$6(+µt+x+y)+$7 +$2
4 +$5

)
+$2

3$
2
4

]2

. (5.36)

Q±1,5(x, y, t) = 2λ ×
[ 2$2

1

(
2$2

1(+µt + x + y) + 2$2
3(+µt + x + y) +$6e$6(+µt+x+y)+$7

)
$4

1(+µt + x + y)2 +$2
1

(
$2

3(+µt + x + y)2 + e$6(+µt+x+y)+$7 +$2
4 +$5

)
+$2

3$
2
4

]2

. (5.37)

5.6. Multiwave solution

We formulate the following test function for obtaining double kink interaction with the M-shape
solution:

f = β1 cos (ζ$3 +$4) + β0 cosh (ζ$1 +$2) + β2 cosh (ζ$5 +$6) , (5.38)

where $i, i = 1, · · · , 6, are constants. Inserting Eqs (5.38) into (5.2) and taking coefficients
trigonometric, hyperbolic and ζ to zero with similar powers and hence on proceeding with
mathematica, we get
Set-1. When $3 →

√
κ3 − κ

2
1κ2

√
−4κ1 − 2κ2

, $5 →

√
κ3 − κ

2
1κ2

√
2
√

2κ1 + κ2

, β0 =, λ→ −
1
4

 , (5.39)

via the above values, we get

f = β1 cos


ζ
√
κ3 − κ

2
1κ2

√
−4κ1 − 2κ2

+$4

 + β2 cosh


ζ
√
κ3 − κ

2
1κ2

√
2
√

2κ1 + κ2

+$6

 . (5.40)
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Thus,

P =

√
2
√
κ3 − κ

2
1κ2

(
β2
√
−2κ1 − κ2 sinh

(
ζ
√
κ3−κ

2
1κ2

√
2
√

2κ1+κ2
+$6

)
− β1
√

2κ1 + κ2 sin
(
ζ
√
κ3−κ

2
1κ2

√
−4κ1−2κ2

+$4

))
√
− (2κ1 + κ2) 2

(
β1 cos

(
ζ
√
κ3−κ

2
1κ2

√
−4κ1−2κ2

+$4

)
+ β2 cosh

(
ζ
√
κ3−κ

2
1κ2

√
2
√

2κ1+κ2
+$6

)) ,(5.41)

and by imposing Eq (5.41), we get the following solutions:
Cluster 6:

N±1,6(x, y, t) =

[ √2
√
κ3 − κ

2
1κ2

(
β2
√
−2κ1 − κ2 sinh

(
ζ
√
κ3−κ

2
1κ2

√
2
√

2κ1+κ2
+$6

)
− β1

√
2κ1 + κ2 sin

(
ζ
√
κ3−κ

2
1κ2√

−4κ1−2κ2
+$4

))
√
− (2κ1 + κ2) 2

(
β1 cos

(
ζ
√
κ3−κ

2
1κ2√

−4κ1−2κ2
+$4

)
+ β2 cosh

(
ζ
√
κ3−κ

2
1κ2

√
2
√

2κ1+κ2
+$6

)) ]
× ei(κ3 t+κ1 x+κ2y). (5.42)

H±1,6(x, y, t) = 2λ(κ2 + κ1) ×
[ √2

√
κ3 − κ

2
1κ2

(
β2
√
−2κ1 − κ2 sinh

(
ζ
√
κ3−κ

2
1κ2

√
2
√

2κ1+κ2
+$6

)
− β1

√
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. (5.43)
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. (5.44)

Here, ζ = x + y + µt.

6. Dynamical system of the proposed system

The Galilean transformation is a set of equations used in classical mechanics to relate the
coordinates of an event in one inertial frame to those in another. This theory, named after
physicist Galileo Galilei, describes daily observations at non-relativistic speeds when the relative
velocity between two frames is significantly slower than the speed of light. Applying the Galilean
transformation to Eq (4.18) yields the dynamical system [41]

dP
dζ =W,

dW
dζ = −µ1P(ζ) − µ2P

3(ζ),
(6.1)

where µ1 =
κ3−κ

2
1κ2

2κ1+κ2
and µ2 = 2λ such that κ1, κ2, κ3, and λ are parameters.

7. The exploration of bifurcation and chaotic dynamics of the proposed system

This section delves further into the bifurcation and chaotic dynamics of the proposed system [42].

7.1. Bifurcation analysis

Here, we analyze the system’s bifurcation, which comprises the investigation of phase portraits for
the system defined by Eq (4.18). We will resolve the system presented below:

W = 0,

−µ1P(ζ) − µ2P
3(ζ) = 0.

(7.1)
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The derived equilibrium points (EPs) of system (6.1) are as follows:

ζ1 = (0, 0), ζ2 = (

√
iµ2

µ1
, 0), ζ3 = (−i

√
−µ2

µ1
, 0).

The Jacobian for system (6.1) is

J(P,W) =

∣∣∣∣∣∣ 0 1
−µ1 − 3µ2P

2 0

∣∣∣∣∣∣ = −µ1 − 3µ2P
2. (7.2)

Hence,
•(P,0) produces a saddle if J(P,W)) < 0,
•(P,0) produces a center if J(P,W) > 0,
• (P,0) produces a cuspidal if J(P,W) = 0.

(a) (b)

(c) (d)

Figure 1. Phase variation plots of the bifurcations of the governed system with arbitrary
parameters.
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The potential outcomes that can be achieved by modifying the settings are described below.
• Case-(i) When µ1 > 0 and µ2 > 0, under the parameters κ1 = −3, κ2 = 1, κ3 = 1, and λ = 1

3 , we
identify the EP (0, 0). This EP is depicted in Figure 1a, which represents center-like behavior.
• Case-(ii) When µ1 > 0 and µ2 < 0, under the parameters κ1 = 0.1, κ2 = 0.6, κ3 = 3, and λ = −1

2 , we
identified the EPs, which are (0, 0), (−1, 0), and (1, 0). These EPs are visualized in Figure 1b, with (0,
0) characterized as a saddle point, while (−1, 0) and (1, 0) represents center-like behavior.
• Case-(iii) When µ1 > 0 and µ2 < 0, under the parameters κ1 = 0.1, κ2 = −1, κ3 = 3, and λ = 2

3 ,
we identified the three EPs (0, 0), (−1, 0), and (1, 0). These EPs are demonstrated in Figure 1c, where
(0,0) represents center-like behavior, while the remaining two represent the saddle points.
• Case-(iv) When µ1 > 0 & µ2 < 0, upon applying the parameter values κ1 = 0.1, κ2 = −1

2 , κ3 =

0.3, and λ = −2
3 , we find a single point (0, 0). This is visually represented in Figure 1d, where (0, 0)

signifies a saddle point.

7.2. Chaotic behavior of the governed system

In the following section, we introduce a perturbation term to investigate the chaotic tendencies of
the system described in Eq (6.1). Our analysis encompasses 2D and 3D phase diagrams relevent to this
system. We consider the following system:


dP
dt = W(t),

dW
dt = −µ1P(t) − µ2P

3(t) + υ1 sin(υ2t),
(7.3)

For the numerical simulations of both the W − P and W − P − t phase diagrams of the governed
system with parameters κ1 = 1, κ2 = 1, κ3 = 1, λ = .5, here we take into account two sets of parameter
combinations: [(a), (b)] υ1 = 1, υ2 = 1, and [(c), (d)] υ1 = .5, υ2 = .1, as depicted in Figure 2.
Additionally, in Figure 3 we exhibit two different sets of frequency and amplitude values: [(a), (b)]
υ1 = 2.5, υ2 = 1.1, and [(c), (d)] υ1 = 2.1, υ2 = 1.1, as shown in Figure 2. Figures 2 and 3 illustrate
complicated and intriguing behaviors within the phase diagrams, demonstrating the system’s sensitivity
to perturbations in the parameters υ1 and υ2. The system shows a multiscroll pattern and unanticipated
dynamics, revealing how the perturbed term υ1 sin(υ2t) affects the entire system behavior.

Comparing the P −W and P −W − t phase diagrams under certain parametric values allows for
a better awareness of the system’s complicated behavior. Such insights are useful for characterizing
and predicting the system’s response to parameter changes, which has applications in domains such as
biology, physics, and engineering.

In Figures 4 and 5, we investigate the dynamics of the perturbed model under different initial
conditions. For Figure 4, we used the following parameters: κ1 = 1, κ2 = 1, κ3 = 1, λ = 1.5, υ1 = 4.2
and υ2 = .7. Also, for Figure 5, the frequency and amplitude values are chosen as υ1 = 4.2, υ2 = .7.
We used the following initial conditions for both figures: (a) [P, W] = [0, 0.5], (b) [P, W] = [0, 0],
(c) [P, W] = [0.5, 0], and (d) [P, W] = [0, 0.6]. The discovery of new attractors enhances our
comprehension of the system’s complex dynamics.

AIMS Mathematics Volume 9, Issue 6, 16116–16145.



16133

Figure 2. Effects of the initial conditions on the dynamics of system (7.3) with arbitrary
parameter values.

Figure 3. Effects of the initial conditions on the dynamics of system (7.3) with arbitrary
parameter values.
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Figure 4. Effects of the initial conditions on the dynamics of system (7.3) with arbitrary
parameter values.

Figure 5. Effects of the initial conditions on the dynamics of system (7.3) with arbitrary
parameter values.
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8. Results and discussion

In this part, unique contribution is demonstrated by a detailed comparison in contrast of the assessed
finding with the previously calculated results. In [33], the (2 + 1)-dimensional CmKDV system was
studied by using the Darboux transformation to find soliton solutions. Our work synthesizes this
research to apply more effective techniques, namely the AE method and the HB method. Thus,
by implementing of the above methodologies, we give novel soliton solutions, such as the bright,
dark, combo, periodic, singular, mixed trigonometric, W-M-shape, exponential, hyperbolic, and
rational solitary wave solutions, adding complexity to our study. Furthermore, we also find some
lump solutions, including the periodic cross rational wave, the HB wave solution, the periodic wave
solution, the M-shaped rational wave solution, the M-shaped interaction with one kink wave, and
the multiwave solution. These techniques are crucial for producing a variety of soliton structures,
as the literature makes clear. Moreover, these techniques are used to generate new soliton wave
structures, which improves our research as we investigate the distinct dynamical characteristics and
frameworks of soliton solutions. Additionally, the bifurcation analysis of the aforementioned model is
also examined, which is especially essential in dynamical systems. Both chaos theory and bifurcation
theory are essential tools for understanding complex systems and have widespread applications across
various scientific disciplines. This analysis is crucial for understanding the robustness and long-term
behavior of solitons in various physical systems. Also, visualizing the solitary wave solutions in
various graphical formats is critical for acquiring important physical insights and developing a deeper
knowledge of the waveform’s structure and dynamics. Here we present some graphs in 3D and 2D, as
well as contour plots of the attained solutions in Figures 6–19. These solutions are presented in many
dimensions to show how waveforms evolve across time and space, demonstrating their propagation
stability. Contour and density plots contribute to elucidating fine details of the solution topology
and identifying outlines. The amalgamation of these several graphical representations serves as a
significant complement to quantitative analysis, giving researchers a more detailed grasp of solitary
wave behavior. The physical interpretation of the analytical sketches as given as follows: In Figure 6,
the hyperbolic solution of Eq (4.21) obtained via the AE method is presented using 3D, 2D, and
contour plots. Figure 7 showcases W − M-shape wave solutions of Eq (4.24), using similar graphical
formats. Figure 8 signifies the singular wave solutions of Eq (4.33) by using appropriate parameters.
We discovered the periodic behavior of solitons in Figure 9 of Eq (4.36). Figure 10 denotes the
combo shape solution of Eq (4.39). Figure 11 illustrates the periodic W-shape solution of Eq (4.42).
Figure 12 depicts the dark soliton solutions of Eq (4.51). Figure 13 represents the exponential behavior
of Eq (4.57). Figure 14 represents the periodic cross rational behavior of Eq (5.8). Figure 15 shows the
HB behavior of Eq (5.15). Figure 16 shows the M-shape behavior of Eq (5.22). Figure 16 illustrates
the cross kink rational wave behavior of Eq (5.29). Figure 17 shows the M- shape rational with kink
wave behavior of Eq (5.36). Figure 17 represents the multiwave behavior of Eq (5.43). These reported
solutions have some physical meaning, for instance dark solitons describe solitary waves with lower
intensity than the background. Dark solitons are more difficult to handle than standard solitons, but they
have been shown to be more stable and robust to losses. The bright soliton is a soliton whose intensity
is higher than the background. There are further types of solitary waves called singular solitons that
have singularities, typically with infinite discontinuities. Singular solitons might be linked to solitary
waves when the location of the center of the solitary wave is imaginary. Therefore, discussing the
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topic of singular solitons is relevant. This type of solution contains spikes and therefore may suggest
an explanation for the development of rogue waves. Periodic wave solutions describe waves with a
repeating continuous pattern, which determines its wavelength and frequency, while period defines the
time required to complete a cycle of waveforms and frequency is a number of cycles per second of
time. Periodic solutions in optics form the foundation for understanding and exploiting the periodic
nature of light waves, enabling a wide range of applications in science and technology. The kink-type
wave solutions are characterized by a sharp transition between two different states, such as a high-
density state and a low-density state. The kink itself is a region of rapid change in the wave amplitude,
and it propagates through the system at a constant velocity. Homoclinic breather wave solutions are a
type of nonlinear wave solution that can arise in certain physical systems. They are characterized by
a localized, periodic oscillation that maintains its shape while propagating through the medium. The
study confirms that the (2 + 1)-dimensional CmKDV equations can accurately simulate complicated
nonlinear dispersive wave phenomena found in modern physics systems.

Figure 6. Physical configuration of Eq (4.21) with γ0 = 2.1, ℘1 = −2.8, ℘2 = −3.1, ℘3 =

0.75, κ3 = 0.21, ε = −1, µ = 2.6, y = 0.3.

Figure 7. Physical configuration of Eq (4.24) with γ0 = 2.1, ℘1 = −1.2, ℘2 = 2.01, ℘3 =

2.75, κ3 = 1.21, ε = −1, µ = 2.6, y = 0.3.
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Figure 8. Physical configuration of Eq (4.33) with γ0 = 0.41, ℘1 = 1.2, ℘2 = 3.1, ℘3 =

2.7, κ3 = 3.2, ε = 1, µ = −2.6, y = 0.43.

Figure 9. Physical configuration of Eq (4.36) with γ0 = 0.41, ℘1 = −1.4, ℘2 = 0.2, ℘3 =

0.3, κ3 = 3.1, ε = −1, µ = −2.6, y = 0.43.

Figure 10. Physical configuration of Eq (4.39) with γ0 = 0.41, ℘1 = 2.4, ℘2 = 3.2, ℘3 =

2.3, κ3 = 1.1, ε = 1, µ = 1.6, y = 0.3.
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Figure 11. Physical configuration of Eq (4.42) with γ0 = 0.41, ℘1 = −0.1, ℘2 = 0.2, ℘3 =

2.3, κ3 = 2.21, ε = −1, µ = −3.6, y = 0.65.

Figure 12. Physical configuration of Eq (4.51) with γ0 = 0.41, ℘1 = 1, ℘2 = 2, ℘3 = 1, κ3 =

1.1, ε = 1, µ = 1.6, y = 0.3.

Figure 13. Physical configuration of Eq (4.57) with γ0 = −3.1, ℘1 = −2.2, ℘2 = −2.4, ℘3 =

3.1, κ3 = 2.1, ε = −1, µ = −2, y = 0.4.
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Figure 14. Physical configuration of Eq (5.8) with α3 = 3.2, α4 = 0.33, κ3 = 5.2, $2 =

0.45, ‘$3 = 0.9, $4 = 0.6, $5 = 0.99, α2 = 0.22, α4 = −7, µ = 2.2, β0 = 0.1, β1 =

−3.2, κ3 = 5.1, y = 0.5.

Figure 15. Physical configuration of Eq (5.15) with q = 2.2, α1 = 2.33, α2 = 4.2, α4 =

−7, µ = 0.22, β1 = −5.2, κ3 = 5.1, y = 0.5.

Figure 16. Physical configuration of Eq (5.22) with α1 = 0.1, α2 = 0.5, α3 = 2.3, α4 =

3.48, κ1 = −2.2, κ2 = 0.11, y = 0.2, µ = −0.2.

AIMS Mathematics Volume 9, Issue 6, 16116–16145.



16140

Figure 17. Physical configuration of Eq (5.29) with $2 = −5.2, $3 = 8.2, $4 = −7, %2 =

0.22, %3 = −5.2, α1 = 5.1, y = −0.6, κ1 = 1.5, κ2 = 2.7, ‘κ3 = 2.4, λ = 0.19, µ = −0.62.

Figure 18. Physical configuration of Eq (5.36) with $1 = 3.2, $3 = −2.2, $4 = 2.1, $5 =

2.9, $6 = 2.1, $7 = 5.1, y = 0.1, κ3 = 1.5, µ = −0.62.

Figure 19. Physical configuration of Eq (5.43) with $4 = 0.4, $6 = 2.2, β1 = 2.33, β2 =

4.2, κ1 = −7, κ2 = 0.22, κ3 = −5.2, µ = 5.1, y = 0.5.
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9. Conclusions

In conclusion, this manuscript has offered a through investigation of the (2 + 1)-dimensional
CmKDV system, shedding light on its complex dynamics and unveiling a wide array of solitary
wave solutions. The features and behavior of the governing model have been illuminated by the
underlying methodologies known as the HB method and the AE method. In accordance with the
structure of the (2 + 1)-dimensional CmKDV system, we have derived different soliton wave solutions,
including dark, bright, singular, periodic, combo, W-shape, trigonometric, hyperbolic, and rational.
Additionally, we also found some lump solutions, including the periodic cross rational wave, the
HB wave solution, the periodic wave solution, the M-shaped rational wave solution, the M-shaped
interaction with one kink wave, and the multiwave solution. Furthermore, we implemented the
Galilean transformation to develop a system of ODEs, facilitating a deeper investigation of the system’s
behavior. Throughout this study, we investigated bifurcations, chaos, and a wide array of other
dynamical properties, ultimately providing detailed visualizations of solitary wave solutions. These
findings represent a significant advancement in our knowledge of the CmKDV system’s complex and
frequently unpredictable behavior. It leads readers on an exciting journey into the world of nonlinear
waves and dynamical systems, offering additional revelations and insights. As we look ahead, potential
pathways for additional inquiry may include a more in-depth examination of the stability and long-term
behavior of the identified solitary wave solutions. Moreover, investigating parametric variations and
their influence on system dynamics may reveal further intriguing phenomena.
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