We consider semilinear elliptic equations of the form $ \Delta u + f(|x|, u) = 0 $ on $ {\mathbb{R}}^{N} $ with $ f(|x|, u) = q(|x|)g(u) $. These type of equations arise in various problems in applied mathematics, and particularly in the study of population dynamics, solitary waves, diffusion processes, and phase transitions. We show that under suitable assumptions on the nonlinearity $ f $, there exists an oscillating radial solution converging to a zero of the function $ g $. We also study the oscillating and limiting behavior of this solution.
Citation: H. Al Jebawy, H. Ibrahim, Z. Salloum. On oscillating radial solutions for non-autonomous semilinear elliptic equations[J]. AIMS Mathematics, 2024, 9(6): 15190-15201. doi: 10.3934/math.2024737
We consider semilinear elliptic equations of the form $ \Delta u + f(|x|, u) = 0 $ on $ {\mathbb{R}}^{N} $ with $ f(|x|, u) = q(|x|)g(u) $. These type of equations arise in various problems in applied mathematics, and particularly in the study of population dynamics, solitary waves, diffusion processes, and phase transitions. We show that under suitable assumptions on the nonlinearity $ f $, there exists an oscillating radial solution converging to a zero of the function $ g $. We also study the oscillating and limiting behavior of this solution.
[1] | H. Berestycki, P. Lions, Existence d'ondes solitaires dans des problèmes non-linéaires du type Klein-Gordon, C. R. Acad. Sci. A, 288 (1979), 395–398. |
[2] | H. Berestycki, P. Lions, Existence of a ground state in nonlinear equations of the Klein-Gordon type, Variational inequalities and complementarity problems (Proc. Internat. School, Erice, 1978), 1980, 35–51. |
[3] | M. Berger, On the existence and structure of stationary states for a nonlinear Klein-Gordon equation, J. Funct. Anal., 9 (1972), 249–261. http://dx.doi.org/10.1016/0022-1236(72)90001-8 doi: 10.1016/0022-1236(72)90001-8 |
[4] | A. Boscaggin, F. Colasuonno, B. Noris, Multiple positive solutions for a class of p-Laplacian Neumann problems without growth conditions, ESAIM: COCV, 24 (2018), 1625–1644. http://dx.doi.org/10.1051/cocv/2017074 doi: 10.1051/cocv/2017074 |
[5] | C. Coffman, Uniqueness of the ground state solution for $\Delta u - u + u^{3} = 0$ and a variational characterization of other solutions, Arch. Rational Mech. Anal., 46 (1972), 81–95. http://dx.doi.org/10.1007/BF00250684 doi: 10.1007/BF00250684 |
[6] | H. Ibrahim, Radial solutions of semilinear elliptic equations with prescribed asymptotic behavior, Math. Nachr., 293 (2020), 1481–1489. http://dx.doi.org/10.1002/mana.201900003 doi: 10.1002/mana.201900003 |
[7] | H. Ibrahim, H. Al Jebawy, E. Nasreddine, Radial and asymptotically constant solutions for nonautonomous elliptic equations, Appl. Anal., 100 (2021), 3132–3144. http://dx.doi.org/10.1080/00036811.2020.1712368 doi: 10.1080/00036811.2020.1712368 |
[8] | H. Ibrahim, E. Nasreddine, On the existence of nonautonomous ODE with application to semilinear elliptic equations, Mediterr. J. Math., 15 (2018), 64. http://dx.doi.org/10.1007/s00009-018-1112-1 doi: 10.1007/s00009-018-1112-1 |
[9] | M. Khuddush, K. Prasad, B. Bharathi, Denumerably many positive radial solutions to iterative system of nonlinear elliptic equations on the exterior of a ball, Nonlinear Dynamics and Systems Theory, 23 (2023), 95–106. |
[10] | Z. Nehari, On a nonlinear differential equation arising in nuclear physics, Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, 62 (1963), 117–135. |
[11] | W. Ni, On the positive radial solutions of some semilinear elliptic equations on $\mathbb{R}^{n}$, Appl. Math. Optim., 9 (1982), 373–380. http://dx.doi.org/10.1007/BF01460131 doi: 10.1007/BF01460131 |
[12] | G. Ryder, Boundary value problems for a class of nonlinear differential equations, Pac. J. Math., 22 (1967), 477–503. http://dx.doi.org/10.2140/pjm.1967.22.477 doi: 10.2140/pjm.1967.22.477 |