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Abstract: We consider semilinear elliptic equations of the form ∆u+ f (|x|, u) = 0 onRN with f (|x|, u) =

q(|x|)g(u). These type of equations arise in various problems in applied mathematics, and particularly
in the study of population dynamics, solitary waves, diffusion processes, and phase transitions. We
show that under suitable assumptions on the nonlinearity f , there exists an oscillating radial solution
converging to a zero of the function g. We also study the oscillating and limiting behavior of this
solution.
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1. Introduction

The existence and behavior of positive radial solutions of the semilinear elliptic equation

∆u + f (u) = 0 in RN (1.1)

has been studied by many authors [5–7, 9–12]. The unknown u being radial and smooth, the study of
existence shifts to the ordinary differential equationu′′ +

N − 1
r

u′ + f (u) = 0 on R+,

u(0) = α > 0 and u′(0) = 0,
(1.2)

where f : R+ → R is a locally Lipschitz function satisfying, among other conditions,

f (ξ) = 0 for some ξ > 0.
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It was proved (see [11]) that there exists a positive oscillating solution of (1.2) satisfying lim
r→∞

u(r) = ξ.
The proof is based on ODE methods and makes an important use of the following identity, which is
derived by multiplying the first equation of (1.2) by u′ and then integrating by parts:

(u′(b))2

2
−

(u′(a))2

2
+

∫ b

a

N − 1
r

(u′(r))2dr + F(u(b)) − F(u(a)) = 0, (1.3)

where F(t) =

∫ t

0
f (s)ds and 0 ≤ a ≤ b. The main advantage, remarkably and frequently taken in [11],

of (1.3) is a simple observation that

F(u(b)) ≤ F(u(a)) for 0 ≤ a ≤ b and u′(a) = 0. (1.4)

To our knowledge, this result of the existence of oscillating, radial, and convergent solutions of (1.1)
has not been generalized to non-autonomous equations of the form

∆u + f (|x|, u) = 0 in RN , (1.5)

that appear in various problems in applied mathematics related to, for example, solitary waves for
Klein-Gordon equations and the reaction-diffusion equations. Such a generalization is then worth
investigating. Let us mention that the existence of radial solutions for semilinear elliptic equations that
converges at infinity has attracted the attention of different authors (see for instance [1–3,5–7,10,12]).
Smooth radial solutions of (1.5) satisfy the following identity, analogous to (1.3),

(u′(b))2

2
−

(u′(a))2

2
+

∫ b

a

N − 1
r

(u′(r))2dr −
∫ b

a
Fr(r, u(r))dr + F(b, u(b)) − F(a, u(a)) = 0, (1.6)

where

F(r, t) =

∫ t

0
f (r, s)ds.

The difficulties here are in fact twofold: the determination of the exact limit ξ = lim
r→∞

u(r) strongly
depends on the behavior of f (r, t) when r → ∞, so we may directly get into a limiting problem of u
due to wild limiting behavior of f . The second difficulty is to obtain a practical inequality (useful in
various technical situations) like (1.4) due to the presence of the term

∫ b

a
Fr(r, u(r))dr in (1.6). Indeed,

maintaining a negative sign of this term is mainly subjected to the radial variation of f , and to the
location of the unknown function u. Since our aim is to understand how to generalize the existence
result of [11], we see that the consideration of all these conditions for the general nonlinearity f is not
our best starting point. For this reason, we hereby consider functions f : R+ × R+ → R of the form

f (r, t) = q(r)g(t), (1.7)

where q : R+ −→ ]0,∞[ is a positive, increasing C1 function with lim
r→∞

q(r) = q∞ < ∞, and g : R+ → R

is a locally Lipschitz function satisfying the following conditions:

g < 0 in (0, ξ) with g(0) = g(ξ) = 0 for some ξ > 0, (1.8)
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∃ η > ξ such that
∫ η

0
g(t)dt = 0 and g > 0 in (ξ, η), (1.9)

g′(ξ) > 0. (1.10)

As an immediate consequence, we deduce that f (r, t) is decreasing in r for 0 < t < ξ, increasing in r
for ξ < t < η, and lim

r→∞
f (r, t) = f∞(t) = q∞g(t). Moreover, for every r ≥ 0, we have

∫ η

0
f (r, t)dt =

∫ η

0
q(r)g(t)dt = q(r)

∫ η

0
g(t)dt = 0.

2. Main result

Since we are interested in radial solutions of (1.5) with f given by (1.7), we consider the following
initial value problem on [0,∞[: u′′ +

N − 1
r

u′ + q(r)g(u) = 0,

u(0) = α > 0 and u′(0) = 0,
(2.1)

where g satisfies (1.8)–(1.10). Then, for every α ∈ (0, η) with α , ξ, (2.1) admits a solution u that
remains positive for all r > 0 (see for instance [8]). Furthermore, we prove the following result:

Theorem 2.1. If f satisfies (1.7)–(1.10), then for every α ∈ (0, η) with α , ξ, the solution u of (2.1)
oscillates (has infinitely many local maxima and local minima) with lim

r→∞
u(r) = ξ in such a way that the

local maxima of u are strictly decreasing to ξ at∞ and the local minima are strictly increasing to ξ at
∞, and the distance between two consecutive zeros of u − ξ tends to π√

q∞g′(ξ)
.

We adopt the shooting method used in [4], which consists of varying α in (0, η) to obtain a radial
oscillating solution of (2.1). The main ingredient of our proof is the energy Eq (1.6) that now reads

(u′(b))2

2
−

(u′(a))2

2
+

∫ b

a

N − 1
r

(u′(r))2dr

−

∫ b

a
q′(r)

( ∫ u(r)

0
g(s)ds

)
dr + q(b)

∫ u(b)

0
g(s)ds − q(a)

∫ u(a)

0
g(s)ds = 0. (2.2)

Also, multiplying (2.1) by u′ and integrating between 0 ≤ a ≤ b with u′(a) = u′(b) = 0 gives∫ b

a
q(r)g(u(r))u′(r)dr ≤ 0. (2.3)

This inequality plays a crucial role in regards to the monotonicity of the local extrema of u. Finally, a
direct integration of (2.1) between 0 ≤ a ≤ b leads to

u′(b) − u′(a) +

∫ b

a

N − 1
r

u′(r)dr +

∫ b

a
q(r)g(u(r))dr = 0. (2.4)
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Finally, if v(r) = r
N−1

2 (u(r) − ξ), then

v′′ +
{

q(r)g(u(r))
u(r) − ξ

−
(N − 1)(N − 3)

4r2

}
v = 0, (2.5)

where we use the convention that g(u)
u−ξ = g′(ξ) when u = ξ.

Proof of Theorem 2.1. We only consider the case α ∈]ξ, η[. The case α ∈]0, ξ[ is treated similarly. The
proof is divided into several steps.
Step 1. (0 < u(r) < η for all r ≥ 0)

Let us show that if 0 < u(0) = α < η, then 0 < u(r) < η for all r ≥ 0. This inequality satisfied by

u ensures a negative sign for the term
∫ u(r)

0
g(s)ds appearing in (2.2), and thus leads to useful results

later on. Let
R = inf{r > 0 : u(r) = 0 or u(r) = η},

and assume that R < ∞. Since u(0) = α with α , 0 and α , η, then there exists δ > 0 such that
u(r) , 0 and u(r) , η for all 0 < r < δ. Hence, R > δ > 0. Again, using the continuity of u, we get that

u(R) = 0 or u(R) = η.

The important point is that 0 < u(r) < η for 0 ≤ r < R, and so by using (2.2) with a = 0 and b = R,

and owing to the fact that
∫ u(r)

0
g(s)ds ≤ 0 for 0 ≤ r < R, q′ ≥ 0, u′(0) = 0, and

∫ u(R)

0
g(s)ds = 0, we

obtain
q(0)

∫ α

0
g(s)ds ≥ 0.

But, q(0) > 0 and
∫ α

0
g(s)ds < 0, and hence there is a contradiction. This proves R = ∞.

Step 2.
(

lim inf
r→∞

u(r) > 0 and lim sup
r→∞

u(r) < η
)

Since u > 0, then lim inf
r→∞

u(r) ≥ 0. Assume that lim inf
r→∞

u(r) = 0, then there exists a sequence (rn) of
positive numbers such that

lim
n→∞

rn = ∞ and lim
n→∞

u(rn) = 0. (2.6)

Applying (2.2) for a = 0 and b = rn, we get

(u′(rn))2

2
+

∫ rn

0

N − 1
r

(u′(r))2dr−
∫ rn

0
q′(r)

( ∫ u(r)

0
g(s)ds

)
dr+q(rn)

∫ u(rn)

0
g(s)ds−q(0)

∫ α

0
g(s)ds = 0.

The first three terms of this equation are nonnegative, so

q(rn)
∫ u(rn)

0
g(s)ds ≤ q(0)

∫ α

0
g(s)ds, (2.7)

and using (2.6), we get that

lim
n→∞

q(rn) = q∞ > 0 and lim
n→∞

∫ u(rn)

0
g(s)ds = 0,
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therefore, by taking the limit n→ ∞ in (2.7), we finally obtain

q(0)
∫ α

0
g(s)ds ≥ 0.

This is a contradiction since q(0) > 0 and
∫ α

0
g(s)ds < 0. The proof that lim sup

r→∞
u(r) < η is done in a

similar manner.
Step 3. (u is an oscillating function)

Let us show that u oscillates on [0,∞[. First, note that

u′′(0) = −q(0)g(α) < 0,

and then, by the regularity of u, there exists δ > 0 such that u decreases on ]0, δ[. Let

r1 = sup
{
δ > 0 : u is decreasing on ]0, δ[

}
,

then r1 < ∞. Suppose this is not true, i.e., r1 = ∞, then u decreases to a limit 0 < ` ≤ α. We observe
that ` > 0 since lim inf

r→∞
u(r) > 0 by step 2. This is an essential observation to ensure that g(`) , 0 if

` , ξ. Two cases can be considered:
• Case ` , ξ. Without loss of generality, we assume ` > ξ. Applying the mean value theorem between
n ∈ N and n + 1 we get u(n + 1) − u(n) = u′(bn), n < bn < n + 1, and hence the existence of a sequence
(bn) such that

lim
n→∞

bn = ∞ and lim
n→∞

u′(bn) = 0.

Applying inequality (2.4) between 1 and bn, we get

u′(bn) − u′(1) +

∫ bn

1

N − 1
r

u′(r)dr +

∫ bn

1
q(r)g(u(r))dr = 0. (2.8)

Straightforward computations give

0 ≥
∫ bn

1

N − 1
r

u′(r)dr ≥ (N − 1)(u(bn) − u(1)) ≥ (N − 1)(` − u(1)),

and so, as lim
n→∞

u′(bn) = 0, the first three terms of (2.8) are bounded. On the other hand, g(u(r)) > 0
since ξ < u(r) ≤ α and then q(r)g(u(r)) > 0 with lim

r→∞
q(r)g(u(r)) = q∞g(`) > 0. Consequently,

lim
n→∞

∫ bn

1
q(r)g(u(r))dr = ∞,

which is in contradiction with (2.8). The case ` < ξ is treated similarly, possibly with the application
of (2.4) with a large enough to ensure a negative sign of the term q(r)g(u(r)) that converges, as r → ∞,
to q∞g(`) < 0, leading to the same kind of contradiction as above.
• Case ` = ξ. Since lim

r→∞
u(r) = ξ, then, using (1.10),

lim
r→∞

q(r)g(u(r))
u(r) − ξ

= q∞g′(ξ) > 0.
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Hence, for r large enough, say r > R0, we have

q(r)g(u(r))
u(r) − ξ

−
(N − 1)(N − 3)

4r2 > ε2 > 0, (2.9)

for some ε > 0. Therefore, by the Sturm comparison principle applied to ODE (2.5), we deduce that v
must vanish infinitely many times in (R0,+∞), which leads to a contradiction.

Another approach to see this contradiction is as follows. Since v is a solution of (2.5), then we
deduce from (2.9) that v′′ < 0 for r > R0, which implies that v′(r) ↘ L ∈ [−∞,+∞[ as r → ∞.
If L < 0, then v(r) → −∞ and this is impossible by the positivity of v. Otherwise, if L ≥ 0, then
v′ > 0 and v increases on [R0,∞[, and thus v(r) ≥ v(R0) > 0 for r ≥ R0. Again, by (2.9) we get
v′′(r) ≤ −ε2v(R0) < 0, and consequently v′(r) → −∞ as r → ∞, and this is also impossible by the
positivity of v′.

The oscillation. From all that precedes, we deduce that r1 < ∞, u′(r1) = 0 and u is increasing on
]r1, r1 + δ1[ for some δ1 > 0. This, together with the equation u′′(r1) = −q(r1)g(u(r1)) and the fact that
q > 0 and g(r) > 0 for ξ < r ≤ α, show that u(r1) ≤ ξ. However, if u(r1) = ξ, then, by the uniqueness
of the ODE, we get u ≡ ξ, which leads to a contradiction. Finally,

u(r1) < ξ.

By essentially repeating the same arguments of this step, we are lead to the existence of r2 ∈]r1,∞[
such that u is increasing on ]r1, r2[, u′(r2) = 0 and u is decreasing on ]r2, r2 +δ2[ for some δ2 > 0. Here,
it is very important to remark that a part of the method of showing r2 , ∞ will essentially depend on
the fact that lim sup

r→∞
u(r) < η, as proved in step 2.

Again, incidentally,
u(r2) > ξ.

We redo the same analysis to conclude that u has infinitely many local maxima and local minima. More
precisely, there exists a sequence (rn)n≥1 such that

r1 < r2 < · · · < rk < · · · → ∞,

u(r2k), k ≥ 1, are local maxima with u(r2k) > ξ,

and
u(r2k−1), k ≥ 1, are local minima with u(r2k−1) < ξ.

For the simplicity of notation we set

ui := u(ri) for i ∈ N.

Step 4. ({u2k−1}k≥1 is increasing and {u2k}k≥1 is decreasing)
We only show that the sequence {u2k−1}k≥1 is increasing. To show that {u2k}k≥1 is decreasing we

follow the exact same arguments. First note that, since

u2k−1 < ξ < u2k (2.10)
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and u is increasing on ]r2k−1, r2k[, then there exists a point r̄ ∈]r2k−1, r2k[ such that

u(r̄) = ξ, u ≤ ξ on ]r2k−1, r̄[ and u ≥ ξ on ]r̄, r2k[. (2.11)

Owing to (2.10) and the regularity of u, we infer that u′ , 0 on some nonempty open subinterval of
]r2k−1, r2k[. Therefore, using (2.3) with a = r2k−1 and b = r2k, we get∫ r2k

r2k−1

q(r)g(u(r))u′(r)dr < 0,

and so ∫ r̄

r2k−1

q(r)g(u(r))u′(r)dr +

∫ r2k

r̄
q(r)g(u(r))u′(r)dr < 0. (2.12)

Now, using (1.8), (1.9), (2.11), the non-negativity of u′, and the monotonicity of q in (2.12), we obtain

q(r̄)
∫ r̄

r2k−1

g(u(r))u′(r)dr + q(r̄)
∫ r2k

r̄
g(u(r))u′(r)dr < 0,

and thus

q(r̄)
∫ r2k

r2k−1

g(u(r))u′(r)dr < 0.

But, q > 0, and therefore ∫ u2k

u2k−1

g(s)ds < 0. (2.13)

We reuse (2.3) with a = r2k and b = r2k+1 to get∫ r2k+1

r2k

q(r)g(u(r))u′(r)dr < 0.

Following a similar approach, we also note that

u2k+1 < ξ < u2k

leading to the existence of r ∈]r2k, r2k+1[ with u(r) = ξ, and thanks here to the non-positivity of u′, the
monotonicity of q, and the sign of g(u) on ]r2k, r2k+1[,

q(r)
∫ r

r2k

g(u(r))u′(r)dr + q(r)
∫ r2k+1

r
g(u(r))u′(r)dr < 0.

Consequently, ∫ u2k+1

u2k

g(s)ds < 0. (2.14)

Combining (2.13) and (2.14), we deduce that∫ u2k+1

u2k−1

g(s)ds < 0.
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Finally, as u2k−1, u2k+1 ∈]0, ξ[ and since g < 0 on ]0, ξ[, the previous inequality asserts that

u2k−1 < u2k+1,

and therefore the sequence {u2k−1}k≥1 is increasing. Having u2k−1 ≤ ξ for all k, we also deduce that

lim
k→∞

u2k−1 = γ ≤ ξ.

Similarly, {u2k}k≥1 is decreasing; u2k ≥ ξ for all k, and therefore

lim
k→∞

u2k = β ≥ ξ.

A particular case. Assume that ξ =
η

2 and

g(s) = s(s − ξ)(η − s),

then g is antisymmetric with respect to s = ξ. In such a situation we may show the monotonicity of
{u2k−1}k≥1 and {u2k}k≥1 by a different approach. We only give an idea of the proof by showing

u1 < u3. (2.15)

We first show that u1 < η − u2. Assume to the contrary that u1 ≥ η − u2 (see Figure 1).

Figure 1. Case u1 ≥ η − u2.

By applying (2.2) with a = r1 and b = r2, we get

q(r2)
∫ u2

0
g(s)ds − q(r1)

∫ u1

0
g(s)ds <

∫ r2

r1

∫ u(r)

0
q′(r)g(s)dsdr,

and as g is antisymmetric with respect to s = ξ, then∫ r2

r1

∫ u(r)

0
q′(r)g(s)dsdr =

"
R

q′(r)g(s)dsdr,
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and therefore
q(r2)

∫ u2

0
g(s)ds − q(r1)

∫ u1

0
g(s)ds <

"
R

q′(r)g(s)dsdr, (2.16)

where R is the shaded area in Figure 1. Notice that, since u1 ≥ η − u2 and q′(r)g(s) ≤ 0 on R, then"
R

q′(r)g(s)dsdr ≤
∫ r2

r1

∫ η−u2

0
q′(r)g(s)dsdr = q(r2)

∫ η−u2

0
g(s)ds − q(r1)

∫ η−u2

0
g(s)ds.

Using this inequality in (2.16), we finally get

q(r2)
∫ u2

0
g(s)ds − q(r1)

∫ u1

0
g(s)ds < q(r2)

∫ η−u2

0
g(s)ds − q(r1)

∫ η−u2

0
g(s)ds.

Again, the antisymmetry of g implies∫ η−u2

0
g(s)ds =

∫ u2

0
g(s)ds,

and then
q(r1)

∫ u1

0
g(s)ds > q(r1)

∫ u2

0
g(s)ds,

hence ∫ u2

u1

g(s)ds < 0,

which is in contradiction with the fact that u1 ≥ η − u2 and the definition of g. Consequently,

u1 < η − u2. (2.17)

We now show that u1 < u3. Assume to the contrary that u1 ≥ u3. Using this inequality together
with (2.17), we draw Figure 2 below.

Figure 2. Case u1 ≥ u3.

By applying (2.2) with a = r1 and b = r3, we get

q(r3)
∫ u3

0
g(s)ds − q(r1)

∫ u1

0
g(s)ds <

∫ r3

r1

∫ u(r)

0
q′(r)g(s)dsdr.
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Similar arguments as above yield

q(r3)
∫ u3

0
g(s)ds − q(r1)

∫ u1

0
g(s)ds <

"
R

q′(r)g(s)dsdr,

where R is the shaded area in Figure 2, and then

q(r3)
∫ u3

0
g(s)ds − q(r1)

∫ u1

0
g(s)ds <

∫ r3

r1

∫ u3

0
q′(r)g(s)dsdr = q(r3)

∫ u3

0
g(s)ds − q(r1)

∫ u3

0
g(s)ds.

As a result, we obtain ∫ u1

u3

g(s)ds > 0,

which leads to a contradiction, and inequality (2.15) is therefore valid.
Step 5. (γ = β = ξ)

We know that sup
r≥0

u(r) = α < η and inf
r≥0

u(r) = u(r1) > 0. Since g′(ξ) > 0, and by the boundedness

of q, we deduce that there exist c1, c2 > 0 such that for every r ≥ 0 we have

c1 <
q(r)g(u(r))

u(r) − ξ
< c2.

Therefore, for r large enough (say r ≥ R1), we deduce that there exist ε1, ε2 > 0 such that

ε2
1 <

q(r)g(u(r))
u(r) − ξ

−
(N − 1)(N − 3)

4r2 < ε2
2 .

Recall that v(r) = r
N−1

2 (u(r) − ξ) solves (2.5). Then, using the Sturm comparison theorem, we deduce
that for r ≥ R1 we have

π

ε2
< distance between two consecutive zeros of u(r) − ξ <

π

ε1
.

Consequently, there exists c > 0 such that

sup
k≥0

(rk − rk−1) ≤ c.

Then, applying Schwarz’s inequality, we get

β − γ < |u(rk) − u(rk−1)| < c
1/2

(∫ rk

rk−1

|u′(r)|2dr
)1/2

.

Therefore, for k large enough (say k ≥ k0), we have∫ rk

rk−1

(u′(r))2

r
dr ≥

1
rk

(β − γ)2

c
≥

c′

rk−1

(β − γ)2

c
≥

c′(β − γ)2

c2

∫ rk

rk−1

dr
r
,

where c′ is a positive constant that depends only on k0. Summing over all k ≥ k0, we get∫ ∞

rk0

(u′(r))2

r
dr ≥

c′(β − γ)2

c2

∫ ∞

rk0

dr
r
. (2.18)
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Moreover, by taking a = 0 and b = rk → ∞ in (2.2), we note that∫ ∞

rk0

(u′(r))2

r
dr < ∞.

Therefore, we deduce from (2.18) that β = γ. Moreover, since γ < ξ < β, we finally get β = γ = ξ.
Step 6. (conclusion)

Finally, we claim that the distance between two consecutive zeros of u(r) − ξ tends to π√
q∞g′(ξ)

as

r → ∞. In fact, since u(r)→ ξ as r → ∞, then

h(r) =
q(r)g(r)
u(r) − ξ

−
(N − 1)(N − 3)

4r2 −→
r→∞

q∞g′(ξ).

Therefore, for ε > 0, one can find R large enough such that for every r ≥ R we have

q∞g′(ξ) − ε < h(r) < q∞g′(ξ) + ε.

Therefore, applying the Sturm comparison theorem again on (2.5), we deduce that

π√
q∞g′(ξ) + ε

< distance between two consecutive zeros of u(r) − ξ <
π√

q∞g′(ξ) − ε
.

Taking the limit as ε → 0 we get the desired result. �

3. Conclusions

To summarize, we were finally able to generalize the existence of an oscillating radial solution that
converges to a root of f in the non-autonomous case despite the difficulties that rise from the presence
of the terms related to q(r) in the energy Eq (2.2). Furthermore, inequality (2.3) allows us to prove the
monotonicity of the local extrema. The question that arises now is whether we can generalize these
results for f having a singularity at 0; more precisely, for f (r, u) = q(r)g(u) with g(u) = u−α for some
α < 1.
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