Research article

Solving delay integro-differential inclusions with applications

  • Received: 15 February 2024 Revised: 12 April 2024 Accepted: 16 April 2024 Published: 09 May 2024
  • MSC : 26A33, 26D15, 47H08, 47H10

  • This work primarily delves into three key areas: the presence of mild solutions, exploration of the topological and geometrical makeup of solution sets, and the continuous dependency of solutions on a second-order semilinear integro-differential inclusion. The Bohnenblust-Karlin fixed-point method has been integrated with Grimmer's theory of resolvent operators. Ultimately, the study delves into a mild solution for a partial integro-differential inclusion to showcase the achieved outcomes.

    Citation: Maryam G. Alshehri, Hassen Aydi, Hasanen A. Hammad. Solving delay integro-differential inclusions with applications[J]. AIMS Mathematics, 2024, 9(6): 16313-16334. doi: 10.3934/math.2024790

    Related Papers:

  • This work primarily delves into three key areas: the presence of mild solutions, exploration of the topological and geometrical makeup of solution sets, and the continuous dependency of solutions on a second-order semilinear integro-differential inclusion. The Bohnenblust-Karlin fixed-point method has been integrated with Grimmer's theory of resolvent operators. Ultimately, the study delves into a mild solution for a partial integro-differential inclusion to showcase the achieved outcomes.



    加载中


    [1] S. Rezapour, H. R. Henriquez, V. Vijayakumar, K. S. Nisar, A. Shukla, A note on existence of mild solutions for second-order neutral integro-differential evolution equations with state-dependent delay, Fractal Fract., 5 (2021), 126. https://doi.org/10.3390/fractalfract5030126 doi: 10.3390/fractalfract5030126
    [2] A. Bensalem, A. Salim, M. Benchohra, J. J. Nieto, Controllability results for second-order integro-differential equations with statedependent delay, Evol. Equ. Control The., 12 (2023), 1559–1576. https://doi.org/10.3934/eect.2023026 doi: 10.3934/eect.2023026
    [3] H. R. Henríquez, J. C. Pozo, Existence of solutions of abstract non-autonomous second order integro-differential equations, Bound. Value Probl., 2016 (2016), 168. https://doi.org/10.1186/s13661-016-0675-7 doi: 10.1186/s13661-016-0675-7
    [4] R. C. Grimmer, Resolvent operators for integral equations in a Banach space, T. Am. Math. Soc., 273 (1982), 333–349. https://doi.org/10.2307/1999209 doi: 10.2307/1999209
    [5] R. C. Grimmer, A. J. Pritchard, Analytic resolvent operators for integral equations in a Banach space, J. Differ. Equations, 50 (1983), 234–259. https://doi.org/10.1016/0022-0396(83)90076-1 doi: 10.1016/0022-0396(83)90076-1
    [6] H. Kneser, K. H. Hofmann, G. Betsch, Über die Lösungen eines systems gewö hnlicher Differentialleichungen, das der Lipschitzschen Bedingung nicht genügt [7–23], In: Gesammelte abhandlungen/collected papers, New York: De Gruyter, 2005, 58–61.
    [7] N. Aronszajn, Le correspondant topologique de l'unicité dans lathéori des équations différentielles, Ann. Math., 43 (1942), 730–738. https://doi.org/10.2307/1968963 doi: 10.2307/1968963
    [8] J. Andres, G. Gabor, L. Górniewicz, Acyclicity of solution sets to functional inclusions, Nonlinear Anal. Theor., 49 (2002), 671–688. https://doi.org/10.1016/S0362-546X(01)00131-6 doi: 10.1016/S0362-546X(01)00131-6
    [9] G. Haddad, J. M. Lasry, Periodic solutions of functional-differential inclusions and fixed points of $\sigma$-selectionable correspondences, J. Math. Anal. Appl., 96 (1983), 295–312. https://doi.org/10.1016/0022-247X(83)90042-2 doi: 10.1016/0022-247X(83)90042-2
    [10] S. C. Hu, V. Lakshmikantham, N. S. Papageorgiou, On the properties of the solution set of semilinear evolution inclusions, Nonlinear Anal. Theor., 24 (1995), 1683–1712. https://doi.org/10.1016/0362-546X(94)00213-2 doi: 10.1016/0362-546X(94)00213-2
    [11] M. Bartha, Periodic solutions for differential equations with state-dependent delay and positive feedback, Nonlinear Anal. Theor., 53 (2003), 839–857. https://doi.org/10.1016/S0362-546X(03)00039-7 doi: 10.1016/S0362-546X(03)00039-7
    [12] Y. L. Cao, J. P. Fan, T. C. Gard, The effects of state-dependent time delay on a stage-structured population growth model, Nonlinear Anal. Theor., 19 (1992), 95–105. https://doi.org/10.1016/0362-546X(92)90113-S doi: 10.1016/0362-546X(92)90113-S
    [13] C. Nuchpong, S. K. Ntouyas, J. Tariboon, Boundary value problems of Hilfer-type fractional integro-differential equations and inclusions with nonlocal integro-multipoint boundary conditions, Open Math., 18 (2020), 1879–1894.
    [14] V. Obukhovskii, G. Petrosyan, C. F. Wen, V. Bocharov, On semilinear fractional differential inclusions with a nonconvex-valued right-hand side in Banach spaces, J. Nonlinear Var. Anal., 6 (2022), 185–197. https://doi.org/10.23952/jnva.6.2022.3.02 doi: 10.23952/jnva.6.2022.3.02
    [15] Y. Zhou, R. N. Wang, L. Peng, Topological structure of the solution set for evolution inclusions, Singapore: Springer, 2017. https://doi.org/10.1007/978-981-10-6656-6
    [16] E. Kaslik, S. Sivasundaram, Multiple periodic solutions in impulsive hybrid neural networks with delays, Appl. Math. Comput., 217 (2011), 4890–4899. https://doi.org/10.1016/j.amc.2010.11.025 doi: 10.1016/j.amc.2010.11.025
    [17] X. D. Li, J. H. Shen, R. Rakkiyappan, Persistent impulsive effects on stability of functional differential equations with finite or infinite delay, Appl. Math. Comput., 329 (2018), 14–22. https://doi.org/10.1016/j.amc.2018.01.036 doi: 10.1016/j.amc.2018.01.036
    [18] C. A. Popa, E. Kaslik, Multistability and multiperiodicity in impulsive hybrid quaternion-valued neural networks with mixed delays, Neural Networks, 99 (2018), 1–18. https://doi.org/10.1016/j.neunet.2017.12.006 doi: 10.1016/j.neunet.2017.12.006
    [19] Humaira, H. A. Hammad, M. Sarwar, M. De la Sen, Existence theorem for a unique solution to a coupled system of impulsive fractional differential equations in complex-valued fuzzy metric spaces, Adv. Differ. Equ., 2021 (2021), 242. https://doi.org/10.1186/s13662-021-03401-0 doi: 10.1186/s13662-021-03401-0
    [20] H. A. Hammad, H. Aydi, H. Isik, M. De la Sen, Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives, AIMS Mathematics, 8 (2023), 6913–6941. https://doi.org/10.3934/math.2023350 doi: 10.3934/math.2023350
    [21] T. Yang, Impulsive control theory, 1 Eds., Berlin: Springer, 2001. https://doi.org/10.1007/3-540-47710-1
    [22] X. Y. Yang, D. X. Peng, X. X. Lv, X. D. Li, Recent progress in impulsive control systems, Math. Comput. Simulat., 155 (2019), 244–268. https://doi.org/10.1016/j.matcom.2018.05.003 doi: 10.1016/j.matcom.2018.05.003
    [23] A. Bucur, About applications of the fixed point theory, Scientific Bulletin, 22 (2017), 13–17. https://doi.org/10.1515/bsaft-2017-0002 doi: 10.1515/bsaft-2017-0002
    [24] Z. A. Khan, I. Ahmad, K. Shah, Applications of fixed point theory to investigate a system of fractional order differential equations, J. Funct. Space., 2021 (2021), 1399764. https://doi.org/10.1155/2021/1399764 doi: 10.1155/2021/1399764
    [25] S. A. Mohiuddine, A. Das, A. Alotaibi, Existence of solutions for nonlinear integral equations in tempered sequence spaces via generalized Darbo-type theorem, J. Funct. Space., 2022 (2022), 4527439. https://doi.org/10.1155/2022/4527439 doi: 10.1155/2022/4527439
    [26] S. Chouhan, B. Desai, Fixed-point theory and its some real-life applications, In: Research highlights in mathematics and computer science vol. 1, West Bengal: B P International, 2022,119–125.
    [27] M. Younis, H. Ahmad, L. L. Chen, M. Han, Computation and convergence of fixed points in graphical spaces with an application to elastic beam deformations, J. Geom. Phys., 192 (2023), 104955. https://doi.org/10.1016/j.geomphys.2023.104955 doi: 10.1016/j.geomphys.2023.104955
    [28] H. A. Hammad, R. A. Rashwan, A. Nafea, M. E. Samei, M. De la Sen, Stability and existence of solutions for a tripled problem of fractional hybrid delay differential euations, Symmetry, 14 (2022), 2579. https://doi.org/10.3390/sym14122579 doi: 10.3390/sym14122579
    [29] H. A. Hammad, R. A. Rashwan, A. Nafea, M. E. Samei, S. Noeiaghdam, Stability analysis for a tripled system of fractional pantograph differential equations with nonlocal conditions, J. Vib. Control, 30 (2024), 632–647. https://doi.org/10.1177/10775463221149232 doi: 10.1177/10775463221149232
    [30] H. A. Hammad, P. Agarwal, S. Momani, F. Alsharari, Solving a fractional-order differential equation using rational symmetric contraction mappings, Fractal Fract., 5 (2021), 159. https://doi.org/10.3390/fractalfract5040159 doi: 10.3390/fractalfract5040159
    [31] A. Domoshnitsky, M. Drakhlin, E. Litsyn, On equations with delay depending on solution, Nonlinear Anal. Theor., 49 (2002), 689–701. https://doi.org/10.1016/S0362-546X(01)00132-8 doi: 10.1016/S0362-546X(01)00132-8
    [32] F. Hartung, Linearized stability in periodic functional differential equations with state-dependent delays, J. Comput. Appl. Math., 174 (2005), 201–211. https://doi.org/10.1016/j.cam.2004.04.006 doi: 10.1016/j.cam.2004.04.006
    [33] F. Hartung, T. Krisztin, H. O. Walther, J. H. Wu, Functional differential equations with state-dependent delays: theory and applications, Handbook of Differential Equations: Ordinary Differential Equations, 3 (2006), 435–545. https://doi.org/10.1016/S1874-5725(06)80009-X doi: 10.1016/S1874-5725(06)80009-X
    [34] H. A. Hammad, M. De la Sen, Stability and controllability study for mixed integral fractional delay dynamic systems endowed with impulsive effects on time scales, Fractal Fract., 7 (2023), 92. https://doi.org/10.3390/fractalfract7010092 doi: 10.3390/fractalfract7010092
    [35] K. Karthikeyan, A. Anguraj, Solvability of impulsive neutral functional integro-differential inclusions with state dependent delay, J. Appl. Math. Inform., 30 (2012), 57–69. https://doi.org/10.14317/JAMI.2012.30.1_2.057 doi: 10.14317/JAMI.2012.30.1_2.057
    [36] R. Torrejon, Positive almost periodic solutions of a state-dependent delay nonlinear integral equation, Nonlinear Anal. Theor., 20 (1993), 1383–1416. https://doi.org/10.1016/0362-546X(93)90167-Q doi: 10.1016/0362-546X(93)90167-Q
    [37] D. R. Willé, C. T. H. Baker, Stepsize control and continuity consistency for state-dependent delay-differential equations, J. Comput. Appl. Math., 53 (1994), 163–170. https://doi.org/10.1016/0377-0427(94)90043-4 doi: 10.1016/0377-0427(94)90043-4
    [38] Z. H. Yang, J. D. Cao, Existence of periodic solutions in neutral state-dependent delays equations and models, J. Comput. Appl. Math., 174 (2005), 179–199. https://doi.org/10.1016/j.cam.2004.04.007 doi: 10.1016/j.cam.2004.04.007
    [39] H. A. Hammad, M. Zayed, Solving systems of coupled nonlinear Atangana-Baleanu-type fractional differential equations, Bound. Value Probl., 2022 (2022), 101. https://doi.org/10.1186/s13661-022-01684-0 doi: 10.1186/s13661-022-01684-0
    [40] H. A. Hammad, M. Zayed, Solving a system of differential equations with infinite delay by using tripled fixed point techniques on graphs, Symmetry, 14 (2022), 1388. https://doi.org/10.3390/sym14071388 doi: 10.3390/sym14071388
    [41] J. K. Hale, J. Kato, Phase space for retarded equations with infinite delay, Funkc. Ekvacioj, 21 (1978), 11–41.
    [42] L. Gorniewicz, Topological fixed point theory of multivalued mappings, 1 Eds., Dordrecht: Springer, 1999. https://doi.org/10.1007/978-94-015-9195-9
    [43] A. Granas, J. Dugundji, Fixed point theory, 1 Eds., New York: Springer, 2003. https://doi.org/10.1007/978-0-387-21593-8
    [44] F. E. Browder, G. P. Gupta, Topological degree and nonlinear mappings of analytic type in Banach spaces, J. Math. Anal. Appl., 26 (1969), 390–402. https://doi.org/10.1016/0022-247X(69)90162-0 doi: 10.1016/0022-247X(69)90162-0
    [45] K. Deimling, Nonlinear functional analysis, 1 Eds., Berlin: Springer, 1985. https://doi.org/10.1007/978-3-662-00547-7
    [46] A. Lasota, Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys., 13 (1965), 781–786.
    [47] J. P. Aubin, H. Frankowska, Set-valued analysis, 1 Eds., Boston: Birkhauser, 2009. https://doi.org/10.1007/978-0-8176-4848-0
    [48] C. Horvath, Measure of non-compactness and multivalued mappings in complete metric topological spaces, J. Math. Anal. Appl., 108 (1985), 403–408. https://doi.org/10.1016/0022-247X(85)90033-2 doi: 10.1016/0022-247X(85)90033-2
    [49] M. I. Kamenskii, V. V. Obukhovskii, P. Zecca, Condensing multivalued maps and semilinear differential inclusion in Banach spaces, New York: De Gruyter, 2001. https://doi.org/10.1515/9783110870893
    [50] A. Petrusel, Operatorial inclusions, Cluj-Napoka: House of the Book of Science, 2002.
    [51] D. Bainov, P. Simeonov, Integral inequalities and applications, 1 Eds., Dordrecht: Springer, 1992. https://doi.org/10.1007/978-94-015-8034-2
    [52] Y. Hino, S. Murakami, T. Naito, Functional-differential equations with infinite delay, 1 Eds., Berlin: Springer, 1991. https://doi.org/10.1007/BFb0084432
    [53] A. Pazy, Semigroups of linear operators and applications to partial differential equations, 1 Eds., New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(456) PDF downloads(35) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog