In this article, the necessary and sufficient conditions for the existence and uniqueness of the mild solutions for nonlinear neutral implicit integro-differential equations of non-integer order $ 0 < \alpha < 1 $ in the sense of $ \mathcal{ABC} $ derivative with impulses, delay, and integro initial conditions were established. The existence results were derived using the semi-group theory, measures of non-compactness, and the fixed-point theory in the sense of Arzel$ \grave{a} $–Ascoli theorem and Schauder's fixed-point theorem. We analyzed the controllability results of the proposed problem by incorporating the ideas of semi-group theory and fixed-point techniques. The Banach contraction principle was used to derive the uniqueness and controllability of the proposed problem. We provide an example to support the theoretical results.
Citation: Sivaranjani Ramasamy, Thangavelu Senthilprabu, Kulandhaivel Karthikeyan, Palanisamy Geetha, Saowaluck Chasreechai, Thanin Sitthiwirattham. Existence, uniqueness and controllability results of nonlinear neutral implicit $ \mathcal{ABC} $ fractional integro-differential equations with delay and impulses[J]. AIMS Mathematics, 2025, 10(2): 4326-4354. doi: 10.3934/math.2025200
In this article, the necessary and sufficient conditions for the existence and uniqueness of the mild solutions for nonlinear neutral implicit integro-differential equations of non-integer order $ 0 < \alpha < 1 $ in the sense of $ \mathcal{ABC} $ derivative with impulses, delay, and integro initial conditions were established. The existence results were derived using the semi-group theory, measures of non-compactness, and the fixed-point theory in the sense of Arzel$ \grave{a} $–Ascoli theorem and Schauder's fixed-point theorem. We analyzed the controllability results of the proposed problem by incorporating the ideas of semi-group theory and fixed-point techniques. The Banach contraction principle was used to derive the uniqueness and controllability of the proposed problem. We provide an example to support the theoretical results.
[1] |
R. Gul, K. Shah, Z. A. Khan, F. Jarad, On a class of boundary value problems under $ABC$ fractional derivatives, Adv. Differ. Equ., 2021 (2021), 437. https://doi.org/10.1186/s13662-021-03595-3 doi: 10.1186/s13662-021-03595-3
![]() |
[2] |
Q. Tul Ain, T. Sathiyaraj, S. Karim, M. Nadeem, P. K. Mwanakatwe, $ABC$ fractional derivative for the Alcohol drinking model using two-scale fractal dimension, Complexity, 2022 (2022), 8531858. https://doi.org/10.1155/2022/8531858 doi: 10.1155/2022/8531858
![]() |
[3] |
Gulalai, S. Ahmad, F. A. Rihan, A. Ullah, Q. M. Al-Mdallal, Ali Akgül, Nonlinear analysis of a nonlinear modified KdV equation under Atangana Baleanu Caputo derivative, AIMS Math., 7 (2021), 7847–7865. https://doi.org/10.3934/math.2022439 doi: 10.3934/math.2022439
![]() |
[4] |
A. S. Alnahdi, M. B. Jeelani, M. S. Abdo, S. M. Ali, S. Saleh, On a nonlocal implicit problem under Atangana-Baleanu-Caputo fractional derivative, Bound. Value Probl., 2021 (2021), 104. https://doi.org/10.1186/s13661-021-01579-6 doi: 10.1186/s13661-021-01579-6
![]() |
[5] |
F. S. Khan, M. Khalid, O. Bazighifan, A. El-Mesady, Euler's numerical method on fractional DSEK model under ABC derivative, Complexity, 2022 (2022), 4475491. https://doi.org/10.1155/2022/4475491 doi: 10.1155/2022/4475491
![]() |
[6] |
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and nonsingular kernel: theory and application to heat transfer model, Therm Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI16011108A doi: 10.2298/TSCI16011108A
![]() |
[7] |
D. Aimene, D. Baleanu, D. Seba, Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay, Chaos Soliton. Fract., 128 (2019), 51–57. https://doi.org/10.1016/j.chaos.2019.07.027 doi: 10.1016/j.chaos.2019.07.027
![]() |
[8] |
D. Baleanu, A. Fernandez, On some new properties of fractional derivatives with Mittag-Leffler kernel, Commun. Nonlinear Sci. Numer. Simul., 59 (2018), 444–462. https://doi.org/10.1016/j.cnsns.2017.12.003 doi: 10.1016/j.cnsns.2017.12.003
![]() |
[9] |
K. Karthikeyan, J. Reunsumrit, P. Karthikeyan, S. Poornima, D. Tamizharasan, T. Sitthiwirattham, Existence results for impulsive fractional integrodifferential equations involving integral boundary conditions, Math. Probl. Eng., 2022 (2022), 6599849. https://doi.org/10.1155/2022/6599849 doi: 10.1155/2022/6599849
![]() |
[10] |
P. Bedi, A. Kumar, A. Khan, Controllability of neutral impulsive fractional differential equations with Atangana-Baleanu-Caputo derivatives, Chaos Soliton. Fract., 150 (2021), 111153. https://doi.org/10.1016/j.chaos.2021.111153 doi: 10.1016/j.chaos.2021.111153
![]() |
[11] |
J. Reunsumrit, P. Karthikeyann, S. Poornima, K. Karthikeyan, T. Sitthiwirattham, Analysis of existence and stability results for impulsive fractional integro-differential equations involving the Atangana-Baleanu-Caputo derivative under integral boundary conditions, Math. Probl. Eng., 2022 (2022), 5449680. https://doi.org/10.1155/2022/5449680 doi: 10.1155/2022/5449680
![]() |
[12] |
M. Benchohra, S. Bouriah, J. Henderson, Existence and stability results for nonlinear implicit neutral fractional differential equations with finite delay and impulses, Commun. Appl. Nonlinear Anal., 22 (2015), 46–67. https://doi.org/10.7153/dea-08-14 doi: 10.7153/dea-08-14
![]() |
[13] |
V. Wattanakejorn, P. Karthikeyann, S. Poornima, K. Karthikeyan, T. Sitthiwirattham, Existence solutions for implicit fractional relaxation differential equations with impulsive delay boundary conditions, Axioms, 11 (2022), 611. https://doi.org/10.3390/axioms11110611 doi: 10.3390/axioms11110611
![]() |
[14] |
P. Karthikeyann, S. Poornima, K. Karthikeyan, C. Promsakon, T. Sitthiwirattham, On implicit Atangana-Baleanu-Caputo fractional integro-differential equations with delay and impulses, J. Math., 2024 (2024), 5531984. https://doi.org/10.1155/2024/5531984 doi: 10.1155/2024/5531984
![]() |
[15] |
S. W. Yao, Y. Sughra, ASMA, M. A. Inc, K. J. Ansari, Qualitative analysis of implicit delay Mittag-Leffler-Type fractional differential equations, Fractals, 30 (2022), 2240208. https://doi.org/10.1142/S0218348X22402083 doi: 10.1142/S0218348X22402083
![]() |
[16] | Y. Kao, C. Wang, H. Xia, Y. Cao, Projective synchronization for uncertain fractional reaction-diffusion systems via adaptive sliding mode control based on finite-time scheme, In: Analysis and control for fractional-order systems, Springer, 2024,141–163. https://doi.org/10.1007/978-981-99-6054-5_8 |
[17] |
Y. Kao, Y. Li, J. H. Park, X. Chen, Mittag-Leffler synchronization of delayed fractional memristor neural networks via adaptive control, IEEE Trans. Neur. Net. Lear. Syst., 32 (2021), 2279–2284. https://doi.org/10.1109/TNNLS.2020.2995718 doi: 10.1109/TNNLS.2020.2995718
![]() |
[18] | Y. Kao, C. Wang, H. Xia, Y. Cao, Global Mittag-Leffler synchronization of coupled delayed fractional reaction-diffusion Cohen-Grossberg neural networks via sliding mode control, In: Analysis and control for fractional-order systems, Springer, 2024,121–140. https://doi.org/10.1007/978-981-99-6054-5_7 |
[19] |
B. Shiri, Well-Posedness of the mild solutions for incommensurate systems of delay fractional differential equations, Fractal Fract., 9 (2025), 60. https://doi.org/10.3390/fractalfract9020060 doi: 10.3390/fractalfract9020060
![]() |
[20] |
B. Shiri, Y. G. Shi, D. Baleanu, The Well-Posedness of incommensurate FDEs in the space of continuous functions, Symmetry, 16 (2024), 1058. https://doi.org/10.3390/sym16081058 doi: 10.3390/sym16081058
![]() |
[21] |
B. Shiri, G. C. Wu, D. Baleanu, Applications of short memory fractional differential equations with impulses, Discontinuity Nonlinearity Complexity, 12 (2023), 167–182. https://doi.org/10.5890/DNC.2023.03.012 doi: 10.5890/DNC.2023.03.012
![]() |